Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):m957. doi: 10.1107/S1600536812027158

Poly[tetra­aqua­(μ6-9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carboxyl­ato)dimanganese(II)]

Rui Xu a, Jian-Lan Liu a,*
PMCID: PMC3393211  PMID: 22807779

Abstract

The title complex, [Mn2(C18H4O10)(H2O)4]n, was synthesized from manganese(II) chloride tetra­hydrate and 9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carb­oxy­lic acid (H4AQTC) in water. The anthraquinone unit is located about a crystallographic center of inversion. Each asymmetric unit therefore contains one MnII atom, two water ligands and one half AQTC4− anion. The MnII atom is coordinated in a distorted octa­hedral geometry by four O atoms from three AQTC4− ligands and two water O atoms. Two of the carboxyl­ate groups coordinate one MnII atom in a chelating mode, whereas the others each coordinate two MnII atoms. Each AQTC4− tetra-anion therefore coordinates six different MnII ions and, as a result, a three-dimensional coordination polymer is formed. O—H⋯O hydrogen bonds, some of them bifurcated, between water ligands and neighboring water or anthraquinone ligands are observed in the crystal structure.

Related literature  

For general background to metal-organic frameworks, see: Li et al. (1999, 2012); Cheng et al. (2010); Hong et al. (2009); Miller & Gatteschi (2011); Liu et al. (2010). graphic file with name e-68-0m957-scheme1.jpg

Experimental  

Crystal data  

  • [Mn2(C18H4O10)(H2O)4]

  • M r = 562.16

  • Monoclinic, Inline graphic

  • a = 11.2255 (16) Å

  • b = 8.4153 (13) Å

  • c = 9.7252 (14) Å

  • β = 92.355 (2)°

  • V = 917.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 273 K

  • 0.46 × 0.32 × 0.26 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.553, T max = 0.702

  • 4340 measured reflections

  • 1609 independent reflections

  • 1499 reflections with I > 2σ(I)

  • R int = 0.065

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.076

  • S = 1.08

  • 1609 reflections

  • 170 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027158/im2383sup1.cif

e-68-0m957-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027158/im2383Isup2.hkl

e-68-0m957-Isup2.hkl (79.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H3⋯O2i 0.78 (3) 2.03 (3) 2.775 (2) 160 (3)
O8—H4⋯O3ii 0.89 (4) 1.86 (4) 2.742 (2) 174 (3)
O8—H4⋯O6ii 0.89 (4) 2.60 (3) 3.159 (2) 121 (3)
O9—H5⋯O8iii 0.81 (1) 2.03 (1) 2.832 (3) 168 (4)
O9—H6⋯O6ii 0.81 (1) 2.38 (2) 3.135 (3) 157 (5)
O9—H6⋯O7iii 0.81 (1) 2.50 (4) 3.031 (3) 124 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Porous solid materials, such as MOFs (metal-organic frameworks) have been widely studied for their potential applications in gas absorption, separation, catalysis and magnetic materials. Explorations of advanced porous materials for these applications are an intense subject of scientific research (Li et al.,1999; Li et al., 2012; Cheng et al., 2010; Hong et al., 2009; Miller & Gatteschi, 2011; Liu et al., 2010.) Herein we report the crystal structure of the title compound.

The molecular structure of (I) is illustrated in Fig. 1., a summary of the observed hydrogen bonds and the corresponding angles are given in Table 1.

Each asymmetric unit therefore contains one manganese(II) atom, two water ligands and one half AQTC4- ligand. The coordination sphere around manganese is distorted octahedral due to the coordination of four O atoms from three AQTC4- ligands and two O atoms from two water molecules. Two of the carboxylate groups coordinate one manganese in a chelating mode whereas the others each coordinate two manganese center. Each AQTC4- therefore coordinates six different manganese ions and as a result a three-dimensional coordination polymer is formed.

Experimental

A mixture of 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylic acid (H4AQTC; 0.025 mmol, 9.8 mg) was added to distilled water (4 ml) and ultra-sounded for 10 min. The pH value of the mixture was then adjusted to 7.0 with sodium hydroxide (0.5 mol L-1), prior to the addition of manganese(II) chloride tetrahydrate (0.05 mmol, 9.9 mg). The reactants were placed in a Teflon-lined stainless steel vessel, heated for 3 days, and then cooled to ambient temperature over 12 h. The solution was exposed to air for three days leading to the precipitation of brown crystals (yield 10%).

Refinement

All non-hydrogen atoms were refined anisotropically. H atoms of the H2O ligands were determined in difference Fourier maps and refined isotropically with distance restraints for O9—H5 and O9—H6 of 0.82 Å. H atoms of AQTC4- ligands calculated in idealized positions with C—H = 0.93 Å and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

One repeating unit of the coordination polymer, showing displacement ellipsoids at the 30% probability level. [Symmetry codes: (#1) x + 1,-y,-z + 1; (#2) x + 1,y + 1/2,-z + 1/2; (#3) x + 1,-y + 1,-z + 1; (#4) x + 1,y - 1/2,-z + 1/2.]

Fig. 2.

Fig. 2.

A view of the crystal structure of the title compound.

Crystal data

[Mn2(C18H4O10)(H2O)4] F(000) = 564
Mr = 562.16 Dx = 2.034 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5133 reflections
a = 11.2255 (16) Å θ = 2.2–27.6°
b = 8.4153 (13) Å µ = 1.46 mm1
c = 9.7252 (14) Å T = 273 K
β = 92.355 (2)° Block, brown
V = 917.9 (2) Å3 0.46 × 0.32 × 0.26 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1609 independent reflections
Radiation source: fine-focus sealed tube 1499 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.065
phi and ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −12→13
Tmin = 0.553, Tmax = 0.702 k = −10→7
4340 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.3487P] where P = (Fo2 + 2Fc2)/3
1609 reflections (Δ/σ)max < 0.001
170 parameters Δρmax = 0.35 e Å3
2 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.32095 (18) 0.3515 (2) 0.3203 (2) 0.0199 (4)
C2 0.44180 (17) 0.2999 (2) 0.37593 (19) 0.0182 (4)
C3 0.47029 (17) 0.1544 (2) 0.43842 (19) 0.0174 (4)
C4 0.58569 (16) 0.1290 (2) 0.49497 (19) 0.0168 (4)
C5 0.67291 (17) 0.2464 (2) 0.4857 (2) 0.0176 (4)
C6 0.64515 (18) 0.3863 (2) 0.4181 (2) 0.0214 (4)
H1 0.7036 0.4632 0.4081 0.026*
C7 0.53093 (18) 0.4128 (2) 0.3654 (2) 0.0214 (4)
H2 0.5133 0.5087 0.3217 0.026*
C8 0.79987 (17) 0.2271 (2) 0.5408 (2) 0.0187 (4)
C9 0.38273 (18) 0.0223 (2) 0.4344 (2) 0.0173 (4)
Mn1 0.14215 (3) 0.50978 (3) 0.21336 (3) 0.02054 (15)
O1 0.31881 (13) 0.4118 (2) 0.20209 (15) 0.0305 (4)
O2 0.23044 (12) 0.35278 (18) 0.39148 (15) 0.0261 (4)
O3 0.87242 (12) 0.15778 (18) 0.46563 (15) 0.0245 (3)
O6 0.82943 (13) 0.28802 (18) 0.65405 (15) 0.0274 (4)
O7 0.28972 (13) 0.03344 (17) 0.36714 (16) 0.0244 (4)
O8 0.09489 (15) 0.2961 (2) 0.08600 (17) 0.0267 (4)
O9 −0.04028 (17) 0.5190 (3) 0.2639 (2) 0.0489 (6)
H3 0.143 (3) 0.273 (4) 0.034 (3) 0.053 (10)*
H4 0.024 (3) 0.306 (4) 0.042 (4) 0.068 (10)*
H5 −0.064 (3) 0.590 (3) 0.312 (3) 0.079 (13)*
H6 −0.091 (3) 0.457 (5) 0.239 (5) 0.114 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0197 (10) 0.0151 (10) 0.0247 (11) −0.0006 (8) −0.0031 (8) 0.0011 (8)
C2 0.0176 (10) 0.0206 (10) 0.0166 (10) 0.0002 (8) 0.0007 (7) 0.0003 (8)
C3 0.0157 (9) 0.0201 (10) 0.0163 (10) 0.0020 (8) 0.0004 (7) −0.0001 (8)
C4 0.0171 (9) 0.0186 (10) 0.0147 (10) 0.0016 (8) −0.0007 (7) −0.0010 (7)
C5 0.0172 (10) 0.0191 (10) 0.0163 (10) 0.0015 (8) −0.0002 (7) −0.0031 (8)
C6 0.0183 (10) 0.0225 (11) 0.0233 (11) −0.0042 (8) 0.0000 (8) 0.0011 (8)
C7 0.0223 (10) 0.0191 (10) 0.0225 (10) 0.0012 (8) −0.0008 (8) 0.0042 (8)
C8 0.0177 (10) 0.0154 (10) 0.0228 (11) −0.0029 (8) −0.0027 (8) 0.0029 (8)
C9 0.0158 (10) 0.0183 (10) 0.0178 (10) 0.0016 (8) 0.0002 (8) −0.0015 (8)
Mn1 0.0173 (2) 0.0225 (2) 0.0215 (2) 0.00180 (12) −0.00320 (14) −0.00052 (12)
O1 0.0221 (8) 0.0426 (10) 0.0265 (8) 0.0031 (7) −0.0023 (6) 0.0113 (7)
O2 0.0205 (8) 0.0280 (8) 0.0299 (8) 0.0030 (6) 0.0035 (6) 0.0038 (6)
O3 0.0166 (7) 0.0319 (8) 0.0247 (8) 0.0000 (6) −0.0016 (6) −0.0063 (6)
O6 0.0260 (8) 0.0289 (8) 0.0266 (8) −0.0003 (7) −0.0069 (6) −0.0097 (7)
O7 0.0183 (8) 0.0225 (7) 0.0315 (9) 0.0000 (6) −0.0105 (6) 0.0041 (6)
O8 0.0185 (8) 0.0339 (9) 0.0276 (9) 0.0005 (7) −0.0007 (7) −0.0065 (7)
O9 0.0217 (9) 0.0638 (14) 0.0617 (14) −0.0095 (9) 0.0059 (9) −0.0353 (11)

Geometric parameters (Å, º)

C1—O2 1.253 (3) C8—O3 1.260 (2)
C1—O1 1.256 (2) C9—O7 1.212 (2)
C1—C2 1.504 (3) C9—C4i 1.483 (3)
C2—C7 1.386 (3) Mn1—O9 2.1270 (19)
C2—C3 1.398 (3) Mn1—O3ii 2.1412 (15)
C3—C4 1.403 (3) Mn1—O6iii 2.1508 (15)
C3—C9 1.483 (3) Mn1—O1 2.1547 (15)
C4—C5 1.396 (3) Mn1—O8 2.2350 (16)
C4—C9i 1.483 (3) Mn1—O2 2.3637 (15)
C5—C6 1.378 (3) O3—Mn1iv 2.1412 (15)
C5—C8 1.511 (3) O6—Mn1iii 2.1508 (15)
C6—C7 1.379 (3) O8—H3 0.78 (3)
C6—H1 0.9300 O8—H4 0.89 (4)
C7—H2 0.9300 O9—H5 0.812 (10)
C8—O6 1.247 (2) O9—H6 0.809 (10)
O2—C1—O1 121.11 (18) C4i—C9—C3 119.05 (17)
O2—C1—C2 122.96 (18) O9—Mn1—O3ii 97.16 (8)
O1—C1—C2 115.40 (17) O9—Mn1—O6iii 87.31 (7)
C7—C2—C3 118.63 (18) O3ii—Mn1—O6iii 91.81 (6)
C7—C2—C1 114.76 (17) O9—Mn1—O1 157.30 (8)
C3—C2—C1 126.59 (18) O3ii—Mn1—O1 102.77 (5)
C2—C3—C4 119.69 (18) O6iii—Mn1—O1 102.67 (6)
C2—C3—C9 120.34 (17) O9—Mn1—O8 87.05 (7)
C4—C3—C9 119.75 (18) O3ii—Mn1—O8 90.52 (6)
C5—C4—C3 120.36 (18) O6iii—Mn1—O8 174.13 (6)
C5—C4—C9i 118.84 (17) O1—Mn1—O8 82.05 (6)
C3—C4—C9i 120.80 (17) O9—Mn1—O2 103.28 (8)
C6—C5—C4 119.34 (17) O3ii—Mn1—O2 159.49 (5)
C6—C5—C8 116.90 (17) O6iii—Mn1—O2 87.45 (6)
C4—C5—C8 123.71 (17) O1—Mn1—O2 57.61 (5)
C5—C6—C7 120.24 (19) O8—Mn1—O2 92.25 (6)
C5—C6—H1 119.9 C1—O1—Mn1 95.23 (12)
C7—C6—H1 119.9 C1—O2—Mn1 85.71 (12)
C6—C7—C2 121.64 (19) C8—O3—Mn1iv 135.36 (13)
C6—C7—H2 119.2 C8—O6—Mn1iii 151.88 (14)
C2—C7—H2 119.2 Mn1—O8—H3 114 (2)
O6—C8—O3 123.22 (18) Mn1—O8—H4 112 (2)
O6—C8—C5 118.82 (17) H3—O8—H4 110 (3)
O3—C8—C5 117.82 (17) Mn1—O9—H5 120 (3)
O7—C9—C4i 120.01 (18) Mn1—O9—H6 126 (4)
O7—C9—C3 120.77 (18) H5—O9—H6 114 (5)
O2—C1—C2—C7 −122.6 (2) C4—C5—C8—O3 84.0 (2)
O1—C1—C2—C7 49.1 (3) C2—C3—C9—O7 6.4 (3)
O2—C1—C2—C3 55.6 (3) C4—C3—C9—O7 −168.17 (19)
O1—C1—C2—C3 −132.7 (2) C2—C3—C9—C4i −178.27 (17)
C7—C2—C3—C4 3.3 (3) C4—C3—C9—C4i 7.1 (3)
C1—C2—C3—C4 −174.94 (18) O2—C1—O1—Mn1 6.2 (2)
C7—C2—C3—C9 −171.33 (17) C2—C1—O1—Mn1 −165.70 (15)
C1—C2—C3—C9 10.5 (3) O9—Mn1—O1—C1 −39.0 (2)
C2—C3—C4—C5 −1.8 (3) O3ii—Mn1—O1—C1 170.17 (12)
C9—C3—C4—C5 172.81 (17) O6iii—Mn1—O1—C1 75.34 (13)
C2—C3—C4—C9i 178.11 (17) O8—Mn1—O1—C1 −101.11 (13)
C9—C3—C4—C9i −7.3 (3) O2—Mn1—O1—C1 −3.32 (11)
C3—C4—C5—C6 −1.2 (3) O1—C1—O2—Mn1 −5.63 (19)
C9i—C4—C5—C6 178.86 (18) C2—C1—O2—Mn1 165.63 (18)
C3—C4—C5—C8 −178.52 (18) O9—Mn1—O2—C1 169.94 (12)
C9i—C4—C5—C8 1.6 (3) O3ii—Mn1—O2—C1 −15.1 (2)
C4—C5—C6—C7 2.8 (3) O6iii—Mn1—O2—C1 −103.43 (12)
C8—C5—C6—C7 −179.76 (18) O1—Mn1—O2—C1 3.32 (11)
C5—C6—C7—C2 −1.3 (3) O8—Mn1—O2—C1 82.44 (12)
C3—C2—C7—C6 −1.8 (3) O6—C8—O3—Mn1iv 168.36 (14)
C1—C2—C7—C6 176.64 (19) C5—C8—O3—Mn1iv −15.9 (3)
C6—C5—C8—O6 82.5 (2) O3—C8—O6—Mn1iii 112.0 (3)
C4—C5—C8—O6 −100.1 (2) C5—C8—O6—Mn1iii −63.7 (4)
C6—C5—C8—O3 −93.4 (2)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O8—H3···O2v 0.78 (3) 2.03 (3) 2.775 (2) 160 (3)
O8—H4···O3vi 0.89 (4) 1.86 (4) 2.742 (2) 174 (3)
O8—H4···O6vi 0.89 (4) 2.60 (3) 3.159 (2) 121 (3)
O9—H5···O8vii 0.81 (1) 2.03 (1) 2.832 (3) 168 (4)
O9—H6···O6vi 0.81 (1) 2.38 (2) 3.135 (3) 157 (5)
O9—H6···O7vii 0.81 (1) 2.50 (4) 3.031 (3) 124 (4)

Symmetry codes: (v) x, −y+1/2, z−1/2; (vi) x−1, −y+1/2, z−1/2; (vii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2383).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, X. N., Xue, W. & Chen, X. M. (2010). Eur. J. Inorg. Chem. 24, 3850–3855.
  3. Hong, D. Y., Hwang, Y. K., Serre, C., Ferey, G. & Chang, J. S. (2009). Adv. Funct. Mater. 19, 1537–1552.
  4. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.
  5. Li, J. R., Sculley, J. & Zhou, H. C. (2012). Chem. Rev. 112, 869–932. [DOI] [PubMed]
  6. Liu, Y. M., He, R., Wang, F. M., Lu, C. S. & Meng, Q. J. (2010). Inorg. Chem. Commun. 13, 1375–1379.
  7. Miller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065–3066. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027158/im2383sup1.cif

e-68-0m957-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027158/im2383Isup2.hkl

e-68-0m957-Isup2.hkl (79.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES