Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 23;68(Pt 7):m962–m963. doi: 10.1107/S1600536812027687

Acetato(aqua){6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato}cobalt(III) methanol disolvate

Gervas Assey a, Ray J Butcher b,*, Yilma Gultneh b
PMCID: PMC3393214  PMID: 22807782

Abstract

In the title complex, [Co(C18H18N2O4)(C2H3O2)(H2O)]·2CH3OH, the CoIII atom is hexa­coordinated by water and acetate groups in the axial positions and by the tetra­dentate Schiff base occupying equatorial positions. These axial bonds are longer than the equatorial bonds to the tetra­dentate Schiff base. Two mol­ecules form a dimer through strong hydrogen bonds from the coordinated water of one mol­ecule to the meth­oxy O atoms of an adjoining mol­ecule. There is extensive intra- and inter­molecular O—H⋯O hydrogen bonding between the coordinated water and acetate ligands and the methanol solvent mol­ecules. In addition, there are weak inter­molecular C—H⋯O inter­actions, which link the mol­ecules into a three-dimensional array.

Related literature  

For reports on O2 binding of related cobalt complexes, see: Huie et al. (1979); Lindblom et al. (1971). For related dimeric structures formed through hydrogen bonding, see: Huie et al. (1979); Assey et al. (2010b ). For structurally related complexes with included hydrogen-bonded solvent mol­ecules, see: Assey et al. (2010a ,b ); Ayikoe et al. (2010); Bao et al. (2009); Ayikoé et al. (2011). For the use of cobalt(III)–salen complexes as catalysts, see: Morandi et al. (2011); Haak et al. (2010) and for the potential applications of cobalt–Schiff base complexes for magnetic and/or conducting devices, see: Nabei et al. (2009); Lin et al. (2011).graphic file with name e-68-0m962-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C18H18N2O4)(C2H3O2)(H2O)]·2CH4O

  • M r = 526.42

  • Monoclinic, Inline graphic

  • a = 9.6306 (3) Å

  • b = 13.4129 (5) Å

  • c = 17.9746 (7) Å

  • β = 90.716 (3)°

  • V = 2321.67 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 115 K

  • 0.49 × 0.45 × 0.38 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.916, T max = 1.000

  • 16513 measured reflections

  • 7669 independent reflections

  • 5549 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.106

  • S = 1.00

  • 7669 reflections

  • 322 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027687/jj2140sup1.cif

e-68-0m962-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027687/jj2140Isup2.hkl

e-68-0m962-Isup2.hkl (375.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co—O2 1.8839 (8)
Co—N1 1.8870 (10)
Co—O1 1.8892 (8)
Co—N2 1.8910 (10)
Co—O11 1.8995 (8)
Co—O1W 1.9454 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O12 0.84 1.83 2.6671 (14) 174
O2S—H2S⋯O1S 0.84 1.95 2.7682 (17) 165
O1W—H1W1⋯O1i 0.80 (1) 1.99 (1) 2.7334 (11) 153 (1)
O1W—H1W1⋯O3i 0.80 (1) 2.32 (1) 2.9124 (13) 131 (1)
O1W—H1W2⋯O2i 0.80 (1) 2.18 (2) 2.8071 (11) 136 (1)
O1W—H1W2⋯O4i 0.80 (1) 2.17 (1) 2.8840 (12) 148 (2)
C9—H9A⋯O1S ii 0.99 2.52 3.2610 (16) 132
C13—H13A⋯O11iii 0.95 2.61 3.5380 (15) 165
C12A—H12B⋯O1 0.98 2.38 3.1807 (15) 139
C8—H8A⋯O2S iv 0.95 2.55 3.4335 (16) 155
C10—H10A⋯O2S ii 0.99 2.61 3.5119 (17) 151
C12A—H12C⋯O2S v 0.98 2.62 3.5541 (19) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

Cobalt Schiff base complexes are of great importance because of their involvement in biological systems. One of their reactions of biological importance is that of binding O2 to a metal chelate (Lindblom et al. 1971). In recent years, there have been reports about many studies of metal complexes with di-oxygen as one ligand (Huie et al., 1979). The reason behind these studies is to understand the binding between oxygen and transition metals in the proteins that are involved in oxygen transport in living creatures. Another area where the cobalt Schiff bases have find application is that of organic reactions catalysis (Haak et al. 2010). Cobalt(III) salen complexes have been described in the literature as catalysts for enantioselective cyclopropagation with diazoacetates in organic media (Morandi et al. 2011). Cobalt Schiff base complexes have also been investigated with respect to their potential application for magnetic and/or conducting devices (Nabei et al., 2009; Lin et al., 2011).

In view of the importance of cobalt Schiff base complexes the structure of the title compound, CoC20 H23N2O7.2(CH3OH), has been determined. Schiff base ligands containing a methoxy or ethoxy substituent in the 3 position in the aromatic ring and in a cis conformation about the central metal are often involved in interactions where these substituent are either coordinated to a metal (Assey et al., 2010a,b; Ayikoe, et al., 2010) or form strong hydrogen bonds to a water molecule (or some other suitable solvent such as dimethylformamide) in the cavity created by this conformation (Bao et al., 2009; Ayikoé et al., 2011). In this case, as is found in related Mn and Co complexes (Assey et al., 2010b; Huie, et al., 1979), this is achieved by two metal complexes coming together to form a hydrogen bonded dimer. The axially coordinated water molecules of each metal complex form strong hydrogen bonds to the two methoxy groups of the adjoining complex (O1W···O1 2.7335 (11), O1W···O3 2.9124 (13), O1W··· O2 2.8071 (11), O1W···O4 2.8840 (12) Å).

The structure consists of six coordinate Co(III) in a slightly distorted octahedral geometry with both methanol and water occupying the axial positions and a tetradentate Schiff base (N2O2) which is in the equatorial plane. In addition there are two molecules of solvate methanol in the lattice (Fig. 1). From Table 1 it can be seen that the equatorial metal ligand bond lengths are very similar and vary from 1.8839 (8)Å to 1.8910 (10)Å while the axial bond lengths to the water and acetate moieties are slightly longer at 1.9454 (8)Å and 1.8995 (8)Å respectively. The only slightly distorted nature of the coordination sphere about the Co is emphasized by the fact that the cis angles vary from 78.40 (4)° to 94.18 (4)° while the trans angles range from 173.73 (3)° to 178.40 (4)°.

There is extensive O—H···O intra- and intermolecular hydrogen bonding between the coordinated water and acetate moieties and the methanol solvate molecules (Fig. 2). In addition there are weak C—H···O intermolecular interactions. These link the structure into a three-dimensional array.

Experimental

The synthesis of the ligand 3-methoxyethylenediaminebissalicylaldimine was accomplished by the reaction of the solution of (2 g, 33.3 mmol) of ethylenediamine in 10 ml methanol which was added to the solution of o-vanillin in 40 ml methanol dropwise using a glass pipette. The mixture was refluxed for 24 h. After solvent evaporation under reduced pressure yellow solids were obtained.

The complex was synthesized by mixing a solution of (0.25 g, 1 mmol) of Co(CH3COO)2.4H2O in 5 ml me thanol with a solution of (0.33 g, 1 mmol) 3-methoxyethylenediaminebissalicylaldimine in 3 ml of dichloromethene. The mixture was stirred for 1 h at room temperature, filtered and layered with diethyl ether for crystallization. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The H atoms attached to methanol O were idealized with an O–H distance of 0.84 Å. The water H's were constrained to have a bond length of 0.82 Å and bond angle of 104.5°.

Figures

Fig. 1.

Fig. 1.

Molecular Structure of the title compound (dimer) along with hydrogen bonding interactions between the coordinated water molecule of one molecule and adjoining oxygen atoms of an adjacent molecule (generated by symmetry codes 1 - x, 1 - y, 1 - z). Hydrogen bonding and weak C—H···O intermolecular interactions are shown by dashed lines.

Fig. 2.

Fig. 2.

The molecular packing for C22H31CoN2O9 viewed along the a axis. O—H···O hydrogen bonding and weak C—H···O intermolecular interactions are shown by dashed lines.

Crystal data

[Co(C18H18N2O4)(C2H3O2)(H2O)]·2CH4O F(000) = 1104
Mr = 526.42 Dx = 1.506 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8159 reflections
a = 9.6306 (3) Å θ = 4.6–32.6°
b = 13.4129 (5) Å µ = 0.80 mm1
c = 17.9746 (7) Å T = 115 K
β = 90.716 (3)° Block, black
V = 2321.67 (15) Å3 0.49 × 0.45 × 0.38 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector 7669 independent reflections
Radiation source: Enhance (Mo) X-ray Source 5549 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 10.5081 pixels mm-1 θmax = 32.7°, θmin = 4.6°
ω scans h = −14→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −19→19
Tmin = 0.916, Tmax = 1.000 l = −26→24
16513 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0609P)2] where P = (Fo2 + 2Fc2)/3
7669 reflections (Δ/σ)max = 0.003
322 parameters Δρmax = 0.86 e Å3
3 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co 0.466441 (15) 0.494930 (12) 0.628307 (8) 0.01070 (3)
O1 0.51899 (8) 0.38488 (6) 0.56942 (4) 0.01284 (17)
O2 0.61286 (8) 0.56561 (6) 0.58402 (4) 0.01292 (17)
O3 0.66160 (8) 0.25427 (7) 0.49906 (5) 0.01703 (19)
O4 0.81315 (8) 0.63147 (7) 0.50542 (5) 0.0193 (2)
O11 0.57142 (8) 0.45215 (7) 0.71259 (4) 0.01444 (18)
O12 0.74146 (9) 0.41453 (8) 0.78855 (5) 0.0254 (2)
O1S 0.97081 (11) 0.51409 (8) 0.82748 (6) 0.0316 (3)
H1S 0.9021 0.4805 0.8128 0.038*
O2S 1.00189 (11) 0.71051 (10) 0.78342 (6) 0.0372 (3)
H2S 0.9767 0.6530 0.7959 0.045*
O1W 0.34122 (8) 0.53835 (7) 0.54896 (4) 0.01342 (17)
H1W1 0.3795 (14) 0.5775 (9) 0.5223 (8) 0.033 (4)*
H1W2 0.3269 (17) 0.4892 (8) 0.5248 (9) 0.035 (5)*
N1 0.31519 (9) 0.42594 (8) 0.66977 (5) 0.0138 (2)
N2 0.40860 (9) 0.60406 (8) 0.68688 (5) 0.0133 (2)
C1 0.49094 (12) 0.29163 (9) 0.58520 (6) 0.0132 (2)
C2 0.56595 (12) 0.21670 (9) 0.54734 (6) 0.0149 (2)
C3 0.73547 (13) 0.18472 (10) 0.45519 (7) 0.0221 (3)
H3A 0.7886 0.1398 0.4878 0.033*
H3B 0.7992 0.2205 0.4225 0.033*
H3C 0.6697 0.1458 0.4249 0.033*
C4 0.54031 (13) 0.11683 (9) 0.55913 (7) 0.0186 (3)
H4A 0.5914 0.0680 0.5327 0.022*
C5 0.43877 (13) 0.08716 (10) 0.61010 (7) 0.0209 (3)
H5A 0.4220 0.0184 0.6188 0.025*
C6 0.36441 (12) 0.15766 (10) 0.64706 (7) 0.0192 (3)
H6A 0.2953 0.1372 0.6811 0.023*
C7 0.38811 (12) 0.26038 (9) 0.63580 (6) 0.0151 (2)
C8 0.30021 (12) 0.33125 (10) 0.67197 (6) 0.0162 (3)
H8A 0.2248 0.3058 0.6998 0.019*
C9 0.21663 (12) 0.49324 (10) 0.70532 (7) 0.0180 (3)
H9A 0.1627 0.4573 0.7434 0.022*
H9B 0.1512 0.5215 0.6680 0.022*
C10 0.30322 (12) 0.57550 (10) 0.74114 (7) 0.0172 (3)
H10A 0.2439 0.6334 0.7533 0.021*
H10B 0.3481 0.5511 0.7875 0.021*
C11 0.45679 (12) 0.69332 (9) 0.68597 (6) 0.0148 (2)
H11A 0.4160 0.7408 0.7183 0.018*
C12 0.56841 (12) 0.72658 (9) 0.63936 (6) 0.0145 (2)
C13 0.60648 (12) 0.82845 (9) 0.64321 (7) 0.0178 (3)
H13A 0.5585 0.8722 0.6756 0.021*
C14 0.71224 (13) 0.86428 (10) 0.60043 (7) 0.0209 (3)
H14A 0.7367 0.9328 0.6029 0.025*
C15 0.78416 (13) 0.80023 (10) 0.55325 (7) 0.0197 (3)
H15A 0.8576 0.8254 0.5239 0.024*
C16 0.74939 (12) 0.70131 (10) 0.54911 (6) 0.0153 (3)
C17 0.93798 (13) 0.66034 (12) 0.46918 (8) 0.0283 (3)
H17A 0.9178 0.7145 0.4341 0.042*
H17B 0.9758 0.6031 0.4422 0.042*
H17C 1.0060 0.6832 0.5064 0.042*
C18 0.63880 (11) 0.66078 (9) 0.59181 (6) 0.0127 (2)
C11A 0.69919 (12) 0.43003 (10) 0.72351 (7) 0.0168 (3)
C12A 0.79963 (13) 0.42151 (12) 0.66052 (7) 0.0244 (3)
H12A 0.8400 0.4871 0.6503 0.037*
H12B 0.7507 0.3973 0.6160 0.037*
H12C 0.8737 0.3746 0.6742 0.037*
C1S 0.96778 (15) 0.52329 (12) 0.90478 (8) 0.0308 (4)
H1S3 1.0350 0.5740 0.9209 0.046*
H1S1 0.9917 0.4592 0.9277 0.046*
H1S2 0.8745 0.5432 0.9200 0.046*
C2S 0.97663 (17) 0.72400 (13) 0.70700 (9) 0.0356 (4)
H2S1 0.9926 0.7940 0.6939 0.053*
H2S2 0.8802 0.7061 0.6951 0.053*
H2S3 1.0395 0.6814 0.6786 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co 0.01352 (6) 0.00968 (7) 0.00896 (6) −0.00053 (6) 0.00239 (5) −0.00046 (6)
O1 0.0197 (4) 0.0074 (4) 0.0115 (3) −0.0009 (3) 0.0038 (3) 0.0000 (3)
O2 0.0161 (3) 0.0090 (4) 0.0138 (4) −0.0018 (3) 0.0036 (3) −0.0012 (3)
O3 0.0225 (4) 0.0118 (4) 0.0169 (4) 0.0007 (3) 0.0048 (3) −0.0034 (3)
O4 0.0208 (4) 0.0178 (4) 0.0195 (4) −0.0061 (3) 0.0090 (3) −0.0042 (4)
O11 0.0165 (3) 0.0155 (4) 0.0114 (4) 0.0009 (3) 0.0014 (3) 0.0005 (3)
O12 0.0227 (4) 0.0368 (6) 0.0167 (4) 0.0030 (4) −0.0017 (3) 0.0068 (4)
O1S 0.0299 (5) 0.0407 (7) 0.0243 (5) −0.0068 (4) 0.0029 (4) −0.0023 (5)
O2S 0.0404 (6) 0.0390 (7) 0.0321 (6) 0.0006 (5) −0.0006 (5) 0.0016 (5)
O1W 0.0178 (4) 0.0106 (4) 0.0118 (4) −0.0020 (3) 0.0015 (3) −0.0002 (3)
N1 0.0145 (4) 0.0156 (5) 0.0114 (4) −0.0009 (4) 0.0023 (3) 0.0013 (4)
N2 0.0159 (4) 0.0134 (5) 0.0107 (4) 0.0016 (4) 0.0018 (3) −0.0014 (4)
C1 0.0180 (5) 0.0107 (5) 0.0109 (5) −0.0016 (4) −0.0023 (4) −0.0003 (4)
C2 0.0183 (5) 0.0125 (5) 0.0138 (5) −0.0004 (4) −0.0019 (4) 0.0004 (5)
C3 0.0238 (6) 0.0196 (6) 0.0231 (6) 0.0053 (5) 0.0041 (5) −0.0066 (5)
C4 0.0255 (6) 0.0103 (6) 0.0200 (6) 0.0009 (5) −0.0032 (5) −0.0017 (5)
C5 0.0288 (6) 0.0103 (6) 0.0236 (6) −0.0034 (5) −0.0043 (5) 0.0035 (5)
C6 0.0220 (5) 0.0167 (6) 0.0188 (6) −0.0055 (5) −0.0002 (5) 0.0048 (5)
C7 0.0184 (5) 0.0128 (5) 0.0141 (5) −0.0023 (4) −0.0003 (4) 0.0005 (5)
C8 0.0168 (5) 0.0196 (6) 0.0122 (5) −0.0048 (5) 0.0029 (4) 0.0020 (5)
C9 0.0148 (5) 0.0204 (6) 0.0189 (5) 0.0003 (5) 0.0049 (4) −0.0020 (5)
C10 0.0187 (5) 0.0191 (6) 0.0138 (5) 0.0005 (5) 0.0052 (4) −0.0030 (5)
C11 0.0168 (5) 0.0153 (6) 0.0124 (5) 0.0025 (4) 0.0000 (4) −0.0031 (5)
C12 0.0172 (5) 0.0127 (5) 0.0135 (5) 0.0011 (4) −0.0010 (4) −0.0019 (4)
C13 0.0238 (5) 0.0117 (5) 0.0177 (5) 0.0014 (5) −0.0027 (4) −0.0035 (5)
C14 0.0289 (6) 0.0115 (6) 0.0223 (6) −0.0042 (5) −0.0031 (5) 0.0000 (5)
C15 0.0233 (5) 0.0177 (6) 0.0181 (6) −0.0070 (5) 0.0010 (5) 0.0008 (5)
C16 0.0183 (5) 0.0157 (6) 0.0119 (5) −0.0016 (4) 0.0007 (4) −0.0017 (5)
C17 0.0224 (6) 0.0340 (8) 0.0287 (7) −0.0086 (6) 0.0114 (5) −0.0055 (6)
C18 0.0153 (5) 0.0110 (5) 0.0118 (5) −0.0013 (4) −0.0014 (4) −0.0006 (4)
C11A 0.0192 (5) 0.0145 (6) 0.0167 (5) −0.0020 (5) 0.0010 (4) 0.0014 (5)
C12A 0.0183 (5) 0.0338 (8) 0.0211 (6) 0.0070 (5) 0.0044 (5) 0.0040 (6)
C1S 0.0294 (7) 0.0370 (9) 0.0260 (7) 0.0033 (6) −0.0021 (6) −0.0010 (7)
C2S 0.0403 (8) 0.0391 (9) 0.0275 (7) 0.0132 (7) 0.0039 (6) 0.0047 (7)

Geometric parameters (Å, º)

Co—O2 1.8839 (8) C6—C7 1.4115 (18)
Co—N1 1.8870 (10) C6—H6A 0.9500
Co—O1 1.8892 (8) C7—C8 1.4342 (17)
Co—N2 1.8910 (10) C8—H8A 0.9500
Co—O11 1.8995 (8) C9—C10 1.5211 (18)
Co—O1W 1.9454 (8) C9—H9A 0.9900
O1—C1 1.3113 (14) C9—H9B 0.9900
O2—C18 1.3079 (14) C10—H10A 0.9900
O3—C2 1.3696 (14) C10—H10B 0.9900
O3—C3 1.4185 (15) C11—C12 1.4419 (16)
O4—C16 1.3723 (15) C11—H11A 0.9500
O4—C17 1.4279 (15) C12—C18 1.4083 (16)
O11—C11A 1.2786 (14) C12—C13 1.4162 (17)
O12—C11A 1.2505 (15) C13—C14 1.3708 (18)
O1S—C1S 1.3956 (18) C13—H13A 0.9500
O1S—H1S 0.8400 C14—C15 1.3970 (19)
O2S—C2S 1.4038 (18) C14—H14A 0.9500
O2S—H2S 0.8400 C15—C16 1.3702 (18)
O1W—H1W1 0.803 (11) C15—H15A 0.9500
O1W—H1W2 0.801 (11) C16—C18 1.4281 (16)
N1—C8 1.2789 (17) C17—H17A 0.9800
N1—C9 1.4625 (16) C17—H17B 0.9800
N2—C11 1.2842 (16) C17—H17C 0.9800
N2—C10 1.4672 (15) C11A—C12A 1.5027 (17)
C1—C7 1.4164 (16) C12A—H12A 0.9800
C1—C2 1.4168 (17) C12A—H12B 0.9800
C2—C4 1.3790 (17) C12A—H12C 0.9800
C3—H3A 0.9800 C1S—H1S3 0.9800
C3—H3B 0.9800 C1S—H1S1 0.9800
C3—H3C 0.9800 C1S—H1S2 0.9800
C4—C5 1.4058 (18) C2S—H2S1 0.9800
C4—H4A 0.9500 C2S—H2S2 0.9800
C5—C6 1.3640 (19) C2S—H2S3 0.9800
C5—H5A 0.9500
O2—Co—N1 177.81 (4) N1—C9—H9A 110.5
O2—Co—O1 87.09 (3) C10—C9—H9A 110.5
N1—Co—O1 92.96 (4) N1—C9—H9B 110.5
O2—Co—N2 94.18 (4) C10—C9—H9B 110.5
N1—Co—N2 85.73 (4) H9A—C9—H9B 108.7
O1—Co—N2 178.40 (4) N2—C10—C9 106.75 (9)
O2—Co—O11 95.47 (3) N2—C10—H10A 110.4
N1—Co—O11 86.71 (4) C9—C10—H10A 110.4
O1—Co—O11 93.85 (4) N2—C10—H10B 110.4
N2—Co—O11 86.98 (4) C9—C10—H10B 110.4
O2—Co—O1W 90.00 (3) H10A—C10—H10B 108.6
N1—Co—O1W 87.81 (4) N2—C11—C12 124.61 (11)
O1—Co—O1W 89.49 (4) N2—C11—H11A 117.7
N2—Co—O1W 89.55 (4) C12—C11—H11A 117.7
O11—Co—O1W 173.73 (3) C18—C12—C13 120.53 (11)
C1—O1—Co 124.52 (7) C18—C12—C11 121.78 (11)
C18—O2—Co 126.08 (7) C13—C12—C11 117.68 (11)
C2—O3—C3 117.14 (10) C14—C13—C12 120.30 (12)
C16—O4—C17 117.47 (10) C14—C13—H13A 119.8
C11A—O11—Co 133.96 (8) C12—C13—H13A 119.8
C1S—O1S—H1S 109.5 C13—C14—C15 120.16 (12)
C2S—O2S—H2S 109.5 C13—C14—H14A 119.9
Co—O1W—H1W1 110.4 (11) C15—C14—H14A 119.9
Co—O1W—H1W2 104.6 (11) C16—C15—C14 120.38 (12)
H1W1—O1W—H1W2 107.0 (14) C16—C15—H15A 119.8
C8—N1—C9 121.69 (10) C14—C15—H15A 119.8
C8—N1—Co 125.95 (8) C15—C16—O4 125.54 (11)
C9—N1—Co 112.23 (8) C15—C16—C18 121.52 (11)
C11—N2—C10 120.33 (10) O4—C16—C18 112.94 (11)
C11—N2—Co 127.27 (8) O4—C17—H17A 109.5
C10—N2—Co 112.27 (8) O4—C17—H17B 109.5
O1—C1—C7 124.67 (11) H17A—C17—H17B 109.5
O1—C1—C2 117.72 (10) O4—C17—H17C 109.5
C7—C1—C2 117.59 (11) H17A—C17—H17C 109.5
O3—C2—C4 125.31 (11) H17B—C17—H17C 109.5
O3—C2—C1 113.22 (10) O2—C18—C12 125.72 (10)
C4—C2—C1 121.46 (11) O2—C18—C16 117.18 (10)
O3—C3—H3A 109.5 C12—C18—C16 117.10 (11)
O3—C3—H3B 109.5 O12—C11A—O11 118.92 (11)
H3A—C3—H3B 109.5 O12—C11A—C12A 119.12 (11)
O3—C3—H3C 109.5 O11—C11A—C12A 121.96 (11)
H3A—C3—H3C 109.5 C11A—C12A—H12A 109.5
H3B—C3—H3C 109.5 C11A—C12A—H12B 109.5
C2—C4—C5 120.17 (12) H12A—C12A—H12B 109.5
C2—C4—H4A 119.9 C11A—C12A—H12C 109.5
C5—C4—H4A 119.9 H12A—C12A—H12C 109.5
C6—C5—C4 119.66 (12) H12B—C12A—H12C 109.5
C6—C5—H5A 120.2 O1S—C1S—H1S3 109.5
C4—C5—H5A 120.2 O1S—C1S—H1S1 109.5
C5—C6—C7 121.33 (11) H1S3—C1S—H1S1 109.5
C5—C6—H6A 119.3 O1S—C1S—H1S2 109.5
C7—C6—H6A 119.3 H1S3—C1S—H1S2 109.5
C6—C7—C1 119.78 (11) H1S1—C1S—H1S2 109.5
C6—C7—C8 118.98 (11) O2S—C2S—H2S1 109.5
C1—C7—C8 121.08 (11) O2S—C2S—H2S2 109.5
N1—C8—C7 125.23 (11) H2S1—C2S—H2S2 109.5
N1—C8—H8A 117.4 O2S—C2S—H2S3 109.5
C7—C8—H8A 117.4 H2S1—C2S—H2S3 109.5
N1—C9—C10 106.10 (9) H2S2—C2S—H2S3 109.5
O2—Co—O1—C1 156.99 (9) C5—C6—C7—C1 0.00 (18)
N1—Co—O1—C1 −25.20 (9) C5—C6—C7—C8 175.51 (11)
O11—Co—O1—C1 61.70 (9) O1—C1—C7—C6 178.37 (11)
O1W—Co—O1—C1 −112.98 (9) C2—C1—C7—C6 0.33 (16)
O1—Co—O2—C18 172.53 (9) O1—C1—C7—C8 2.96 (17)
N2—Co—O2—C18 −6.52 (9) C2—C1—C7—C8 −175.08 (10)
O11—Co—O2—C18 −93.88 (9) C9—N1—C8—C7 176.95 (11)
O1W—Co—O2—C18 83.04 (9) Co—N1—C8—C7 −7.49 (17)
O2—Co—O11—C11A −31.86 (12) C6—C7—C8—N1 175.92 (11)
N1—Co—O11—C11A 148.33 (12) C1—C7—C8—N1 −8.64 (18)
O1—Co—O11—C11A 55.58 (12) C8—N1—C9—C10 139.65 (11)
N2—Co—O11—C11A −125.78 (12) Co—N1—C9—C10 −36.47 (11)
O1—Co—N1—C8 20.37 (10) C11—N2—C10—C9 150.81 (11)
N2—Co—N1—C8 −160.54 (10) Co—N2—C10—C9 −33.08 (11)
O11—Co—N1—C8 −73.33 (10) N1—C9—C10—N2 43.52 (12)
O1W—Co—N1—C8 109.74 (10) C10—N2—C11—C12 174.50 (10)
O1—Co—N1—C9 −163.71 (8) Co—N2—C11—C12 −0.97 (17)
N2—Co—N1—C9 15.38 (8) N2—C11—C12—C18 −2.50 (18)
O11—Co—N1—C9 102.60 (8) N2—C11—C12—C13 177.98 (11)
O1W—Co—N1—C9 −74.34 (8) C18—C12—C13—C14 0.19 (18)
O2—Co—N2—C11 4.50 (10) C11—C12—C13—C14 179.72 (11)
N1—Co—N2—C11 −173.30 (10) C12—C13—C14—C15 −0.64 (19)
O11—Co—N2—C11 99.77 (10) C13—C14—C15—C16 0.24 (19)
O1W—Co—N2—C11 −85.47 (10) C14—C15—C16—O4 −179.43 (11)
O2—Co—N2—C10 −171.28 (7) C14—C15—C16—C18 0.62 (18)
N1—Co—N2—C10 10.92 (8) C17—O4—C16—C15 9.33 (17)
O11—Co—N2—C10 −76.01 (8) C17—O4—C16—C18 −170.72 (10)
O1W—Co—N2—C10 98.75 (8) Co—O2—C18—C12 5.24 (16)
Co—O1—C1—C7 17.82 (15) Co—O2—C18—C16 −175.66 (7)
Co—O1—C1—C2 −164.14 (8) C13—C12—C18—O2 179.73 (11)
C3—O3—C2—C4 3.12 (16) C11—C12—C18—O2 0.22 (18)
C3—O3—C2—C1 −176.12 (10) C13—C12—C18—C16 0.62 (16)
O1—C1—C2—O3 1.04 (15) C11—C12—C18—C16 −178.88 (10)
C7—C1—C2—O3 179.22 (10) C15—C16—C18—O2 179.78 (11)
O1—C1—C2—C4 −178.23 (10) O4—C16—C18—O2 −0.17 (14)
C7—C1—C2—C4 −0.05 (16) C15—C16—C18—C12 −1.04 (17)
O3—C2—C4—C5 −179.75 (11) O4—C16—C18—C12 179.01 (10)
C1—C2—C4—C5 −0.56 (18) Co—O11—C11A—O12 172.02 (9)
C2—C4—C5—C6 0.90 (18) Co—O11—C11A—C12A −8.37 (19)
C4—C5—C6—C7 −0.62 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1S—H1S···O12 0.84 1.83 2.6671 (14) 174
O2S—H2S···O1S 0.84 1.95 2.7682 (17) 165
O1W—H1W1···O1i 0.80 (1) 1.99 (1) 2.7334 (11) 153 (1)
O1W—H1W1···O3i 0.80 (1) 2.32 (1) 2.9124 (13) 131 (1)
O1W—H1W2···O2i 0.80 (1) 2.18 (2) 2.8071 (11) 136 (1)
O1W—H1W2···O4i 0.80 (1) 2.17 (1) 2.8840 (12) 148 (2)
C9—H9A···O1Sii 0.99 2.52 3.2610 (16) 132
C13—H13A···O11iii 0.95 2.61 3.5380 (15) 165
C12A—H12B···O1 0.98 2.38 3.1807 (15) 139
C8—H8A···O2Siv 0.95 2.55 3.4335 (16) 155
C10—H10A···O2Sii 0.99 2.61 3.5119 (17) 151
C12A—H12C···O2Sv 0.98 2.62 3.5541 (19) 161

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2140).

References

  1. Assey, G. E., Butcher, A. M., Butcher, R. J. & Gultneh, Y. (2010a). Acta Cryst. E66, m1384–m1385. [DOI] [PMC free article] [PubMed]
  2. Assey, G., Butcher, R. J. & Gultneh, Y. (2010b). Acta Cryst. E66, m851–m852. [DOI] [PMC free article] [PubMed]
  3. Ayikoe, K., Butcher, R. J. & Gultneh, Y. (2010). Acta Cryst. E66, m1487–m1488. [DOI] [PMC free article] [PubMed]
  4. Ayikoé, K., Butcher, R. J. & Gultneh, Y. (2011). Acta Cryst. E67, m328.
  5. Bao, Y., Li, H.-F., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m770. [DOI] [PMC free article] [PubMed]
  6. Haak, R. M., Martínez Belmonte, M., Escudero-Adán, E. C., Benet-Buchholz, J. & Kleij, A. W. (2010). Dalton Trans. 39, 593–602. [DOI] [PubMed]
  7. Huie, B. T., Leyden, R. M. & Schaefer, W. P. (1979). Inorg. Chem. 18, 125–129.
  8. Lin, Y., Li, G.-M., Chen, P., Yan, P.-F. & Hou, G.-F. (2011). Acta Cryst. E67, m1162. [DOI] [PMC free article] [PubMed]
  9. Lindblom, L. A., Schaefer, W. P. & Marsh, R. E. (1971). Acta Cryst. B27, 1461–1467.
  10. Morandi, B., Mariampillai, B. & Carreira, E. M. (2011). Angew. Chem. Int. Ed. 50, 1101–1104. [DOI] [PubMed]
  11. Nabei, A., Kuroda-Sowa, T., Okubo, T., Maekawa, M. & Munakata, M. (2009). Acta Cryst. E65, m188–m189. [DOI] [PMC free article] [PubMed]
  12. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027687/jj2140sup1.cif

e-68-0m962-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027687/jj2140Isup2.hkl

e-68-0m962-Isup2.hkl (375.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES