Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 23;68(Pt 7):m967. doi: 10.1107/S1600536812027092

Tetra­kis{1-[4-(1H-imidazol-1-yl-κN 3)phen­yl]ethanone}bis­(isothio­cyanato-κN)nickel(II)

Juan Zhao a,*, Bao-Cheng Liu b
PMCID: PMC3393218  PMID: 22807786

Abstract

The title complex mol­ecule, [Ni(NCS)2(C11H10N2O)4], has a crystallographically imposed centre of symmetry. The NiII atom is coordinated by the N atoms of two trans-arranged NCS anions and four 1-[4-(1H-imidazol-1-yl)phen­yl]ethan­one ligands in a distorted octa­hedral geometry. In the crystal, C—H⋯S hydrogen bonds link the complex mol­ecules into chains parallel to the b axis. The chains are further connected by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane.

Related literature  

For the structures of related compounds, see: Liu et al. (2005, 2006); Pang et al. (2007); Zheng & Jin (2012).graphic file with name e-68-0m967-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(NCS)2(C11H10N2O)4]

  • M r = 919.71

  • Triclinic, Inline graphic

  • a = 8.4816 (4) Å

  • b = 8.8834 (4) Å

  • c = 15.0357 (8) Å

  • α = 85.701 (1)°

  • β = 88.161 (2)°

  • γ = 73.684 (1)°

  • V = 1084.12 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.18 × 0.12 × 0.08 mm

Data collection  

  • Rigaku R-AXIS SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi 1995) T min = 0.918, T max = 0.951

  • 8987 measured reflections

  • 4005 independent reflections

  • 2231 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.259

  • S = 1.09

  • 4005 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.22 e Å−3

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027092/rz2769sup1.cif

e-68-0m967-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027092/rz2769Isup2.hkl

e-68-0m967-Isup2.hkl (196.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027092/rz2769Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.44 3.355 (8) 168
C9—H9A⋯Sii 0.93 2.87 3.759 (7) 160
C16—H16A⋯Sii 0.93 2.88 3.803 (8) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the NSF of China (No. 20871072), the NSF of Shandong Province (No. 2009ZRA02071) and the Scientific Development Plan of Universities in Shandong Province (No. J09LB53).

supplementary crystallographic information

Comment

Imidazole is of considerable interest as a ligand in many biological systems in which it provides a potential binding site for metal ions. Furthermore, the isothiocyanato anion is a versatile inorganic ligand in the synthesis of coordination compounds. As a continuation of our project devoted to study the conditions of the formation of thiocyanate-containing complexes with imidazole derivatives and to investigate the influence of steric properties on the stoichiometry of the resulting species (Liu et al., 2005; Liu et al., 2006; Pang, et al., 2007; Zheng et al., 2012), we report in the paper the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The Ni atom lies on a centre of symmetry and displays a distorted octahedral coordination geometry, with the N atoms from two trans-arranged thiocyanate anions in the axial positions [Ni—N = 2.087 (5) Å] and the N atom of four 1-[4-(1H-imidazol-1-yl)phenyl]ethanone ligands at the equatorial plane [Ni—N = 2.097 (5)-2.125 (5) Å]. These values are in agreement with those ob served for the related compounds [Ni(NCS)2(1-methyl-1H-imidazole)4] (Liu, et al., 2005), [Ni(NCS)2(1-ethyl-1H-imidazole)4] (Liu, et al., 2006), [Ni(NCS)2(1-vinyl-1H-imidazole)4] (Pang, et al., 2007), and [Ni(NCS)2(1-allyl-1H-imidazole)4] (Zheng, et al., 2012). The equatorial N—Ni—N bond angles are close to those expected for a regular octahedral geometry [86.53 (18)–93.47 (18) °]. In the crystal structure, weak intermolecular C—H···S hydrogen interactions link the molecules into chains parallel to the b axis, which are further connected by C—H···O hydrogen bonds to form two-dimensional layers parallel to the bc plane.

Experimental

The title compound was prepared by the reaction of 1-[4-(1H-imidazol-1-yl)phenyl]ethanone (3.72 g, 20 mmol) with NiSO4.6H2O (1.31 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 393 K for 24 h. Single crystals suitable for X-ray measurements were obtained by slow evaporation of a methanol solution at room temperature. Analysis, calculated for C46H40NiN10O4S2: C 60.07, H 4.38, N 15.23%; found: C 60.21, H 4.34, N 15.36%.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) or or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 50% probability displacement ellipsoids. Unlabelled atoms are generated by the symmetry operation 2-x, 2-y, 1-z.

Crystal data

[Ni(NCS)2(C11H10N2O)4] Z = 1
Mr = 919.71 F(000) = 478
Triclinic, P1 Dx = 1.409 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4816 (4) Å Cell parameters from 4970 reflections
b = 8.8834 (4) Å θ = 6.6–54.9°
c = 15.0357 (8) Å µ = 0.60 mm1
α = 85.701 (1)° T = 293 K
β = 88.161 (2)° Block, blue
γ = 73.684 (1)° 0.18 × 0.12 × 0.08 mm
V = 1084.12 (9) Å3

Data collection

Rigaku R-AXIS SPIDER diffractometer 2231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.057
Graphite monochromator θmax = 25.5°, θmin = 3.3°
ω scans h = −10→10
Absorption correction: multi-scan (ABSCOR; Higashi 1995) k = −9→10
Tmin = 0.918, Tmax = 0.951 l = −18→18
8987 measured reflections 13 standard reflections every 0 reflections
4005 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.259 w = 1/[σ2(Fo2) + (0.1329P)2 + 1.2354P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
4005 reflections Δρmax = 0.65 e Å3
287 parameters Δρmin = −1.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.026 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 1.0000 1.0000 0.5000 0.0402 (4)
S 1.2589 (3) 0.45967 (19) 0.44721 (13) 0.0642 (6)
O1 1.2327 (8) 0.1316 (6) 1.0204 (3) 0.0820 (17)
O2 0.3162 (8) 0.6234 (6) 0.0530 (3) 0.0815 (17)
N1 0.9580 (6) 0.8862 (5) 0.6220 (3) 0.0434 (12)
N2 0.9810 (6) 0.7107 (5) 0.7363 (3) 0.0447 (12)
N3 0.7715 (6) 0.9988 (5) 0.4465 (3) 0.0414 (12)
N4 0.6043 (6) 0.9326 (6) 0.3569 (4) 0.0487 (13)
N5 1.1113 (7) 0.7805 (6) 0.4516 (3) 0.0493 (13)
C1 1.0105 (8) 0.7372 (8) 0.6480 (4) 0.0518 (16)
H1A 1.0618 0.6587 0.6106 0.062*
C2 0.8867 (8) 0.9585 (7) 0.6959 (4) 0.0507 (16)
H2A 0.8357 1.0657 0.6972 0.061*
C3 0.9002 (8) 0.8533 (8) 0.7670 (4) 0.0532 (17)
H3A 0.8623 0.8737 0.8248 0.064*
C4 1.0289 (8) 0.5639 (7) 0.7894 (4) 0.0462 (15)
C5 1.0964 (8) 0.5577 (7) 0.8703 (4) 0.0496 (16)
H5A 1.1101 0.6488 0.8917 0.060*
C6 1.1448 (8) 0.4186 (7) 0.9209 (4) 0.0508 (16)
H6A 1.1906 0.4158 0.9766 0.061*
C7 1.1257 (8) 0.2803 (7) 0.8896 (4) 0.0443 (15)
C8 1.0581 (9) 0.2894 (8) 0.8055 (4) 0.0572 (18)
H8A 1.0457 0.1987 0.7830 0.069*
C9 1.0093 (8) 0.4304 (7) 0.7551 (4) 0.0509 (16)
H9A 0.9641 0.4354 0.6990 0.061*
C10 1.1798 (8) 0.1322 (8) 0.9466 (5) 0.0546 (17)
C11 1.1688 (13) −0.0185 (9) 0.9111 (6) 0.088 (3)
H11A 1.2083 −0.1040 0.9550 0.131*
H11B 1.2345 −0.0379 0.8577 0.131*
H11C 1.0565 −0.0097 0.8978 0.131*
C12 0.7482 (8) 0.8852 (7) 0.4024 (4) 0.0495 (16)
H12A 0.8208 0.7849 0.4022 0.059*
C13 0.6349 (8) 1.1254 (8) 0.4293 (5) 0.0598 (18)
H13A 0.6173 1.2236 0.4518 0.072*
C14 0.5321 (9) 1.0864 (8) 0.3760 (5) 0.065 (2)
H14A 0.4313 1.1504 0.3557 0.078*
C15 0.5460 (8) 0.8397 (7) 0.2991 (4) 0.0495 (16)
C16 0.5548 (9) 0.6859 (8) 0.3247 (5) 0.0614 (19)
H16A 0.5944 0.6438 0.3808 0.074*
C17 0.5056 (9) 0.5935 (8) 0.2679 (5) 0.0572 (18)
H17A 0.5145 0.4888 0.2853 0.069*
C18 0.4430 (8) 0.6558 (7) 0.1852 (4) 0.0509 (16)
C19 0.4326 (8) 0.8124 (8) 0.1608 (4) 0.0552 (17)
H19A 0.3894 0.8558 0.1055 0.066*
C20 0.4846 (8) 0.9049 (7) 0.2163 (4) 0.0510 (16)
H20A 0.4787 1.0089 0.1986 0.061*
C21 0.3882 (10) 0.5613 (9) 0.1216 (5) 0.066 (2)
C22 0.4202 (12) 0.3878 (8) 0.1422 (6) 0.086 (3)
H22A 0.3776 0.3435 0.0953 0.129*
H22B 0.3673 0.3689 0.1976 0.129*
H22C 0.5364 0.3398 0.1469 0.129*
C23 1.1725 (8) 0.6465 (7) 0.4481 (4) 0.0470 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0483 (7) 0.0358 (6) 0.0356 (7) −0.0097 (5) −0.0031 (5) −0.0029 (4)
S 0.0822 (14) 0.0385 (9) 0.0632 (12) −0.0011 (9) −0.0132 (10) −0.0039 (8)
O1 0.128 (5) 0.067 (3) 0.045 (3) −0.019 (3) −0.024 (3) 0.009 (2)
O2 0.112 (5) 0.077 (4) 0.060 (3) −0.032 (3) −0.038 (3) 0.001 (3)
N1 0.055 (3) 0.026 (2) 0.048 (3) −0.009 (2) −0.007 (2) −0.001 (2)
N2 0.056 (3) 0.039 (3) 0.037 (3) −0.009 (2) 0.000 (2) −0.002 (2)
N3 0.045 (3) 0.032 (2) 0.046 (3) −0.010 (2) 0.002 (2) 0.003 (2)
N4 0.049 (3) 0.041 (3) 0.056 (3) −0.010 (2) −0.010 (3) −0.009 (2)
N5 0.061 (3) 0.050 (3) 0.040 (3) −0.020 (3) 0.001 (2) −0.003 (2)
C1 0.064 (4) 0.056 (4) 0.037 (3) −0.019 (3) 0.005 (3) −0.013 (3)
C2 0.054 (4) 0.044 (3) 0.048 (4) −0.004 (3) 0.008 (3) −0.007 (3)
C3 0.061 (4) 0.058 (4) 0.036 (3) −0.010 (3) 0.002 (3) −0.006 (3)
C4 0.058 (4) 0.049 (4) 0.028 (3) −0.011 (3) −0.004 (3) 0.004 (3)
C5 0.060 (4) 0.049 (4) 0.039 (4) −0.014 (3) −0.007 (3) 0.000 (3)
C6 0.064 (4) 0.052 (4) 0.035 (3) −0.013 (3) −0.019 (3) 0.002 (3)
C7 0.049 (4) 0.043 (3) 0.036 (3) −0.008 (3) −0.002 (3) 0.011 (3)
C8 0.078 (5) 0.052 (4) 0.043 (4) −0.021 (4) −0.010 (3) 0.000 (3)
C9 0.067 (4) 0.048 (4) 0.038 (3) −0.016 (3) −0.012 (3) 0.000 (3)
C10 0.058 (4) 0.059 (4) 0.046 (4) −0.019 (3) 0.006 (3) 0.005 (3)
C11 0.129 (8) 0.058 (5) 0.074 (6) −0.024 (5) −0.008 (5) 0.008 (4)
C12 0.054 (4) 0.043 (3) 0.052 (4) −0.015 (3) −0.004 (3) 0.003 (3)
C13 0.051 (4) 0.053 (4) 0.073 (5) −0.009 (3) −0.013 (4) −0.010 (3)
C14 0.059 (4) 0.054 (4) 0.079 (5) −0.007 (3) −0.026 (4) −0.009 (4)
C15 0.043 (4) 0.051 (4) 0.057 (4) −0.016 (3) −0.007 (3) −0.009 (3)
C16 0.070 (5) 0.057 (4) 0.058 (4) −0.018 (4) −0.020 (4) 0.001 (3)
C17 0.068 (5) 0.054 (4) 0.054 (4) −0.021 (3) −0.016 (3) −0.009 (3)
C18 0.049 (4) 0.051 (4) 0.059 (4) −0.021 (3) −0.005 (3) −0.013 (3)
C19 0.059 (4) 0.059 (4) 0.048 (4) −0.016 (3) −0.012 (3) −0.004 (3)
C20 0.053 (4) 0.044 (3) 0.054 (4) −0.009 (3) −0.018 (3) −0.002 (3)
C21 0.070 (5) 0.075 (5) 0.058 (5) −0.023 (4) −0.007 (4) −0.011 (4)
C22 0.117 (7) 0.053 (4) 0.094 (6) −0.030 (5) −0.028 (6) −0.001 (4)
C23 0.059 (4) 0.047 (4) 0.032 (3) −0.010 (3) 0.008 (3) −0.007 (3)

Geometric parameters (Å, º)

Ni—N5i 2.087 (5) C6—H6A 0.9300
Ni—N5 2.087 (5) C7—C8 1.392 (8)
Ni—N1 2.097 (5) C7—C10 1.482 (8)
Ni—N1i 2.097 (5) C8—C9 1.379 (8)
Ni—N3 2.125 (5) C8—H8A 0.9300
Ni—N3i 2.125 (5) C9—H9A 0.9300
S—C23 1.616 (7) C10—C11 1.506 (10)
O1—C10 1.209 (8) C11—H11A 0.9600
O2—C21 1.228 (8) C11—H11B 0.9600
N1—C1 1.306 (7) C11—H11C 0.9600
N1—C2 1.363 (8) C12—H12A 0.9300
N2—C1 1.359 (8) C13—C14 1.334 (9)
N2—C3 1.366 (8) C13—H13A 0.9300
N2—C4 1.439 (7) C14—H14A 0.9300
N3—C12 1.310 (8) C15—C16 1.373 (9)
N3—C13 1.385 (8) C15—C20 1.386 (8)
N4—C12 1.363 (8) C16—C17 1.378 (9)
N4—C14 1.378 (8) C16—H16A 0.9300
N4—C15 1.431 (7) C17—C18 1.381 (9)
N5—C23 1.162 (8) C17—H17A 0.9300
C1—H1A 0.9300 C18—C19 1.391 (9)
C2—C3 1.353 (9) C18—C21 1.483 (9)
C2—H2A 0.9300 C19—C20 1.377 (9)
C3—H3A 0.9300 C19—H19A 0.9300
C4—C5 1.352 (8) C20—H20A 0.9300
C4—C9 1.381 (8) C21—C22 1.498 (10)
C5—C6 1.368 (8) C22—H22A 0.9600
C5—H5A 0.9300 C22—H22B 0.9600
C6—C7 1.400 (8) C22—H22C 0.9600
N5i—Ni—N5 180.0 (3) C7—C8—H8A 119.4
N5i—Ni—N1 91.00 (19) C8—C9—C4 118.7 (6)
N5—Ni—N1 89.00 (19) C8—C9—H9A 120.6
N5i—Ni—N1i 89.00 (19) C4—C9—H9A 120.6
N5—Ni—N1i 91.00 (19) O1—C10—C7 120.8 (6)
N1—Ni—N1i 180.000 (1) O1—C10—C11 120.3 (6)
N5i—Ni—N3 89.69 (19) C7—C10—C11 118.9 (6)
N5—Ni—N3 90.31 (19) C10—C11—H11A 109.5
N1—Ni—N3 93.47 (18) C10—C11—H11B 109.5
N1i—Ni—N3 86.53 (18) H11A—C11—H11B 109.5
N5i—Ni—N3i 90.31 (19) C10—C11—H11C 109.5
N5—Ni—N3i 89.69 (19) H11A—C11—H11C 109.5
N1—Ni—N3i 86.53 (18) H11B—C11—H11C 109.5
N1i—Ni—N3i 93.47 (18) N3—C12—N4 111.5 (6)
N3—Ni—N3i 180.000 (1) N3—C12—H12A 124.3
C1—N1—C2 105.1 (5) N4—C12—H12A 124.3
C1—N1—Ni 128.7 (4) C14—C13—N3 110.3 (6)
C2—N1—Ni 125.7 (4) C14—C13—H13A 124.9
C1—N2—C3 106.5 (5) N3—C13—H13A 124.9
C1—N2—C4 127.7 (5) C13—C14—N4 106.7 (6)
C3—N2—C4 125.7 (5) C13—C14—H14A 126.7
C12—N3—C13 105.3 (5) N4—C14—H14A 126.7
C12—N3—Ni 124.7 (4) C16—C15—C20 120.4 (6)
C13—N3—Ni 128.0 (4) C16—C15—N4 120.1 (6)
C12—N4—C14 106.3 (5) C20—C15—N4 119.4 (6)
C12—N4—C15 125.6 (5) C15—C16—C17 120.5 (6)
C14—N4—C15 128.1 (5) C15—C16—H16A 119.7
C23—N5—Ni 162.1 (5) C17—C16—H16A 119.7
N1—C1—N2 111.8 (6) C16—C17—C18 120.3 (6)
N1—C1—H1A 124.1 C16—C17—H17A 119.9
N2—C1—H1A 124.1 C18—C17—H17A 119.9
C3—C2—N1 110.8 (5) C17—C18—C19 118.5 (6)
C3—C2—H2A 124.6 C17—C18—C21 122.4 (6)
N1—C2—H2A 124.6 C19—C18—C21 119.1 (6)
C2—C3—N2 105.7 (6) C20—C19—C18 121.7 (6)
C2—C3—H3A 127.1 C20—C19—H19A 119.1
N2—C3—H3A 127.1 C18—C19—H19A 119.1
C5—C4—C9 121.2 (5) C19—C20—C15 118.5 (6)
C5—C4—N2 119.8 (6) C19—C20—H20A 120.7
C9—C4—N2 119.0 (5) C15—C20—H20A 120.7
C4—C5—C6 120.5 (6) O2—C21—C18 121.0 (7)
C4—C5—H5A 119.8 O2—C21—C22 119.7 (7)
C6—C5—H5A 119.8 C18—C21—C22 119.3 (6)
C5—C6—C7 120.5 (5) C21—C22—H22A 109.5
C5—C6—H6A 119.8 C21—C22—H22B 109.5
C7—C6—H6A 119.8 H22A—C22—H22B 109.5
C8—C7—C6 117.9 (5) C21—C22—H22C 109.5
C8—C7—C10 123.4 (6) H22A—C22—H22C 109.5
C6—C7—C10 118.7 (6) H22B—C22—H22C 109.5
C9—C8—C7 121.1 (6) N5—C23—S 177.9 (6)
C9—C8—H8A 119.4
N5i—Ni—N1—C1 −172.5 (5) C5—C6—C7—C10 180.0 (6)
N5—Ni—N1—C1 7.5 (5) C6—C7—C8—C9 −0.8 (10)
N3—Ni—N1—C1 97.8 (5) C10—C7—C8—C9 179.9 (6)
N3i—Ni—N1—C1 −82.2 (5) C7—C8—C9—C4 0.1 (11)
N5i—Ni—N1—C2 −1.9 (5) C5—C4—C9—C8 0.8 (11)
N5—Ni—N1—C2 178.1 (5) N2—C4—C9—C8 178.9 (6)
N3—Ni—N1—C2 −91.6 (5) C8—C7—C10—O1 −177.5 (7)
N3i—Ni—N1—C2 88.4 (5) C6—C7—C10—O1 3.2 (10)
N5i—Ni—N3—C12 179.8 (5) C8—C7—C10—C11 2.8 (10)
N5—Ni—N3—C12 −0.2 (5) C6—C7—C10—C11 −176.5 (7)
N1—Ni—N3—C12 −89.2 (5) C13—N3—C12—N4 0.6 (7)
N1i—Ni—N3—C12 90.8 (5) Ni—N3—C12—N4 −164.2 (4)
N5i—Ni—N3—C13 18.5 (6) C14—N4—C12—N3 −1.3 (7)
N5—Ni—N3—C13 −161.5 (6) C15—N4—C12—N3 177.0 (6)
N1—Ni—N3—C13 109.5 (6) C12—N3—C13—C14 0.3 (8)
N1i—Ni—N3—C13 −70.5 (6) Ni—N3—C13—C14 164.4 (5)
N1—Ni—N5—C23 −14.2 (17) N3—C13—C14—N4 −1.0 (9)
N1i—Ni—N5—C23 165.8 (17) C12—N4—C14—C13 1.4 (8)
N3—Ni—N5—C23 −107.7 (17) C15—N4—C14—C13 −176.8 (6)
N3i—Ni—N5—C23 72.3 (17) C12—N4—C15—C16 44.8 (10)
C2—N1—C1—N2 −2.1 (7) C14—N4—C15—C16 −137.4 (8)
Ni—N1—C1—N2 170.0 (4) C12—N4—C15—C20 −133.6 (7)
C3—N2—C1—N1 1.7 (7) C14—N4—C15—C20 44.3 (10)
C4—N2—C1—N1 −176.3 (6) C20—C15—C16—C17 1.1 (11)
C1—N1—C2—C3 1.6 (8) N4—C15—C16—C17 −177.2 (6)
Ni—N1—C2—C3 −170.7 (4) C15—C16—C17—C18 −1.5 (12)
N1—C2—C3—N2 −0.6 (8) C16—C17—C18—C19 0.6 (11)
C1—N2—C3—C2 −0.6 (7) C16—C17—C18—C21 180.0 (7)
C4—N2—C3—C2 177.4 (6) C17—C18—C19—C20 0.8 (11)
C1—N2—C4—C5 134.3 (7) C21—C18—C19—C20 −178.7 (7)
C3—N2—C4—C5 −43.4 (9) C18—C19—C20—C15 −1.2 (11)
C1—N2—C4—C9 −43.8 (9) C16—C15—C20—C19 0.2 (10)
C3—N2—C4—C9 138.6 (7) N4—C15—C20—C19 178.5 (6)
C9—C4—C5—C6 −1.0 (11) C17—C18—C21—O2 171.7 (8)
N2—C4—C5—C6 −179.1 (6) C19—C18—C21—O2 −8.9 (11)
C4—C5—C6—C7 0.3 (10) C17—C18—C21—C22 −7.7 (11)
C5—C6—C7—C8 0.6 (10) C19—C18—C21—C22 171.7 (8)

Symmetry code: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O1ii 0.93 2.44 3.355 (8) 168
C9—H9A···Siii 0.93 2.87 3.759 (7) 160
C16—H16A···Siii 0.93 2.88 3.803 (8) 173

Symmetry codes: (ii) −x+2, −y+1, −z+2; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2769).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Liu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457–m2458.
  3. Liu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568–m1570.
  4. Pang, S.-J., Su, J. & Lin, Q. (2007). Acta Cryst. E63, m2369.
  5. Rigaku (2004). RAPID-AUTO Rigaku Corporation, Tokyo,Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zheng, S.-M. & Jin, Y.-L. (2012). Acta Cryst. E68, m188–m189. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027092/rz2769sup1.cif

e-68-0m967-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027092/rz2769Isup2.hkl

e-68-0m967-Isup2.hkl (196.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027092/rz2769Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES