Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 27;68(Pt 7):m972. doi: 10.1107/S1600536812027778

catena-Poly[[[tetra­aqua­lanthanum(III)]-di-μ-isonicotinato-κ4 O:O′] chloride]

Jin-He Zhao a,*
PMCID: PMC3393223  PMID: 22807791

Abstract

In the title compound, {[La(C6H4NO2)2(H2O)4]Cl}n, the LaIII atom lies on a twofold rotation axis and is eight-coordinated by four O atoms from four isonicotinate ligands and four water mol­ecules in a distorted square-anti­prismatic coodination environment. Adjacent LaIII atoms are bridged by two carboxyl­ate groups from two isonicotinate ligands, forming an extended chain along [001]. These chains are linked through O—H⋯N hydrogen bonds into a three-dimensional network with channels in which the chloride anions form O—H⋯Cl hydrogen bonds. Intra­chain O—H⋯O hydrogen bonds and π–π inter­actions [centroid–centroid distance = 3.908 (2) Å] are also observed.

Related literature  

For lanthanide complexes with nicotinic acid, isonicotinic acid and isonicotinic acid N-oxide ligands, see: Cai et al. (2003); Chen & Fukuzumi (2009); Cui et al. (1999); Kay et al. (1972); Ma et al. (1996, 1999); Mao et al. (1998); Starynowicz (1991, 1993); Wu et al. (2008); Zeng et al. (2000); Zhang et al. (1999).graphic file with name e-68-0m972-scheme1.jpg

Experimental  

Crystal data  

  • [La(C6H4NO2)2(H2O)4]Cl

  • M r = 490.63

  • Orthorhombic, Inline graphic

  • a = 8.987 (3) Å

  • b = 19.769 (3) Å

  • c = 10.305 (3) Å

  • V = 1830.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 296 K

  • 0.36 × 0.34 × 0.32 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.464, T max = 0.500

  • 9336 measured reflections

  • 1652 independent reflections

  • 1442 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.058

  • S = 1.07

  • 1652 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027778/hy2530sup1.cif

e-68-0m972-sup1.cif (14.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027778/hy2530Isup2.hkl

e-68-0m972-Isup2.hkl (81.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1i 0.85 1.85 2.699 (4) 175
O3—H3B⋯Cl1ii 0.85 2.36 3.212 (2) 175
O4—H4C⋯O3iii 0.85 2.01 2.860 (3) 180
O4—H4D⋯Cl1 0.85 2.17 3.024 (3) 180

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Much attention has been devoted to the research on lanthanide metal polynuclear compounds because of their magnetic and luminescent properties. Most of these types of compounds were synthesized by the reaction of rare-earth metal ions with bi- or multi-dentate ligands such as nicotinic acid (Kay et al., 1972; Ma, Hu et al., 1996; Starynowicz, 1991, 1993), isonicotinic acid (Chen & Fukuzumi, 2009; Ma, Evans et al., 1999; Wu et al., 2008; Zeng et al., 2000) and isonicotinic acid N-oxide (Mao et al., 1998). In the course of research in this area, our extended group has reported several such compounds with different bridging ligands (Cai et al., 2003; Cui et al., 1999; Zhang et al., 1999). Herein, we report the synthesis and crystal structure of a new lanthanum complex with isonicotinic ligand.

The title compound contains extended [La(C6H4NO2)2(H2O)4]n cationic chains and Cl- anions. The LaIII ion, lying on a twofold rotation axis, is eight-coordinated by four O atoms belonging to four different isonicotinic ligands [average La—O = 2.451 (3) Å] and four water molecules [average La—O = 2.563 (3) Å] (Fig. 1). The coordination geometry of the LaIII ion is best described as slightly distorted square-antiprismatic. The La atoms are bridged each other by two syn-syn µ-O:O'-carboxylate groups of the isonicotinic ligands, forming an extended chain along [0 0 1]. This geometry is similar to that found in [Eu(L)2(H2O)4]n.nH2O (L = isonicotinic acid N-oxide) (Mao et al., 1998) and [La(C6H4NO2)2(H2O)4](NO3) (Cai et al., 2003), but differs from those found in Ln(isonicotinate)3(H2O)2 (Ln = Ce, Pr, Nd, Sm, Eu, Tb) (Ma, Evans et al., 1999), in which the LnIII atoms are bridged by four syn-syn µ-O:O'-carboxylate groups of the isonicotinic ligands (Ln = Ce, Pr, Nd) or coordinated by both two syn-syn µ-O:O'-carboxylate groups and chelating carboxylate groups of the isonicotinic ligands (Ln = Sm, Eu, Tb). To the best of our knowledge, the arrangement in the present complex is rare in the lanthanide analogs.

There are three kinds of hydrogen bonds, O—H···Cl, O—H···O and O—H···N (Table 1). Interchain O—H···N hydrogen bonds between the coordinated water molecules and uncoordinated N atoms of the isonicotinate ligands link the cationic chains into a three-dimensional network with channels along [0 0 1], in which the chloride anions are located, as shown in Fig. 2, forming O—H···Cl hydrogen bonds. Intrachain O—H···O hydrogen bonds are also present. π–π stacking interactions exist between two adjacent isonicotinate ligands located in a same chain [centroid–centroid distance = 3.908 (2) Å].

Experimental

LaCl3.7H2O (0.3174 g, 1 mmol), isonicotinic acid (0.2442 g, 2 mmol), NaOH (0.08 g, 2 mmol) were added to a mixture of water (15 ml) and ethanol (10 ml). The resulting mixture was stirred at 423 K for 4 h and filtered off. The filtrate was allowed to stand at room temperature and slow evaporation afforded colorless block crystals of the title complex (yield: 65%). Analysis, calculated for C12H16ClLaN2O8: C 29.38, N 5.71, H 3.29%; found: C 29.36, N 5.74, H 3.28%.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference Fourier maps and refined using a riding model, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

Part of the one-dimensional cationic chain of the title compound (Cl anions are not shown). Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) 2-x, y, 1/2-z; (ii) 2-x, 2-y, -z; (iii) x, 2-y, 1/2+z.]

Fig. 2.

Fig. 2.

Packing diagram of the title compound. Yellow dashed lines represent π–π interactions and green dashed lines represent hydrogen bonds.

Crystal data

[La(C6H4NO2)2(H2O)4]Cl F(000) = 960
Mr = 490.63 Dx = 1.780 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 3778 reflections
a = 8.987 (3) Å θ = 2.5–28.3°
b = 19.769 (3) Å µ = 2.52 mm1
c = 10.305 (3) Å T = 296 K
V = 1830.8 (9) Å3 Block, colorless
Z = 4 0.36 × 0.34 × 0.32 mm

Data collection

Bruker SMART 1000 CCD diffractometer 1652 independent reflections
Radiation source: fine-focus sealed tube 1442 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.464, Tmax = 0.500 k = −13→23
9336 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0232P)2 + 2.6828P] where P = (Fo2 + 2Fc2)/3
1652 reflections (Δ/σ)max = 0.001
110 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.83 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.9557 (3) 0.89408 (12) −0.0984 (2) 0.0408 (6)
La1 1.0000 1.011578 (11) 0.2500 0.02190 (10)
O1 0.8975 (3) 0.92871 (11) 0.1000 (2) 0.0377 (5)
O3 1.2552 (2) 1.04958 (10) 0.3400 (2) 0.0352 (5)
H3A 1.2917 1.0890 0.3483 0.042*
H3B 1.3240 1.0228 0.3163 0.042*
C1 0.8975 (3) 0.81153 (15) 0.0573 (3) 0.0260 (6)
C2 0.8242 (4) 0.79557 (17) 0.1717 (3) 0.0374 (8)
H2 0.7884 0.8293 0.2262 0.045*
O4 0.7951 (3) 0.95919 (14) 0.3865 (2) 0.0473 (6)
H4C 0.7803 0.9566 0.4678 0.057*
H4D 0.7123 0.9541 0.3480 0.057*
C3 0.9497 (4) 0.75920 (16) −0.0183 (3) 0.0366 (8)
H3 1.0001 0.7681 −0.0952 0.044*
N1 0.8541 (3) 0.67750 (15) 0.1297 (3) 0.0466 (8)
C5 0.9265 (5) 0.69354 (18) 0.0216 (4) 0.0500 (10)
H5 0.9633 0.6587 −0.0297 0.060*
C6 0.8060 (5) 0.7282 (2) 0.2023 (4) 0.0485 (9)
H6 0.7567 0.7176 0.2790 0.058*
C7 0.9186 (3) 0.88401 (15) 0.0168 (3) 0.0270 (7)
Cl1 0.5000 0.94091 (8) 0.2500 0.0543 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0554 (15) 0.0312 (12) 0.0358 (13) −0.0011 (11) 0.0088 (11) 0.0112 (10)
La1 0.02877 (15) 0.01764 (15) 0.01929 (14) 0.000 −0.00134 (9) 0.000
O1 0.0418 (13) 0.0273 (12) 0.0441 (13) −0.0027 (10) −0.0035 (11) −0.0106 (10)
O3 0.0358 (12) 0.0247 (11) 0.0450 (12) −0.0076 (9) 0.0005 (10) −0.0071 (10)
C1 0.0297 (16) 0.0252 (16) 0.0232 (14) −0.0039 (13) −0.0028 (12) 0.0002 (12)
C2 0.048 (2) 0.0331 (18) 0.0316 (17) −0.0037 (15) 0.0086 (15) 0.0009 (14)
O4 0.0318 (13) 0.0836 (19) 0.0265 (11) −0.0182 (12) −0.0036 (9) 0.0118 (12)
C3 0.050 (2) 0.0280 (17) 0.0322 (17) −0.0020 (15) 0.0090 (15) 0.0005 (14)
N1 0.0507 (19) 0.0318 (16) 0.057 (2) −0.0095 (14) 0.0008 (16) 0.0117 (15)
C5 0.067 (3) 0.0247 (18) 0.058 (2) −0.0007 (19) 0.007 (2) −0.0048 (17)
C6 0.053 (2) 0.047 (2) 0.045 (2) −0.0104 (18) 0.0123 (19) 0.0156 (18)
C7 0.0253 (17) 0.0245 (16) 0.0312 (16) −0.0026 (13) −0.0032 (13) 0.0012 (13)
Cl1 0.0349 (7) 0.0595 (9) 0.0687 (9) 0.000 −0.0172 (6) 0.000

Geometric parameters (Å, º)

O2—C7 1.249 (4) C2—C6 1.379 (5)
La1—O1 2.433 (2) C2—H2 0.9300
La1—O2i 2.465 (2) O4—H4C 0.8500
La1—O4 2.538 (2) O4—H4D 0.8500
La1—O3 2.585 (2) C3—C5 1.378 (5)
O1—C7 1.246 (4) C3—H3 0.9300
O3—H3A 0.8500 N1—C6 1.323 (5)
O3—H3B 0.8500 N1—C5 1.328 (5)
C1—C3 1.377 (4) C5—H5 0.9300
C1—C2 1.387 (4) C6—H6 0.9300
C1—C7 1.504 (4)
C7—O2—La1ii 140.0 (2) O3—La1—O3iii 146.21 (10)
O1—La1—O1iii 95.35 (11) C7—O1—La1 149.0 (2)
O1—La1—O2i 148.28 (8) La1—O3—H3A 130.2
O1iii—La1—O2i 99.69 (8) La1—O3—H3B 111.2
O1—La1—O2ii 99.69 (8) H3A—O3—H3B 108.5
O1iii—La1—O2ii 148.28 (8) C3—C1—C2 118.1 (3)
O2i—La1—O2ii 81.66 (11) C3—C1—C7 121.0 (3)
O1—La1—O4 78.60 (8) C2—C1—C7 120.8 (3)
O1iii—La1—O4 69.39 (8) C6—C2—C1 118.1 (3)
O2i—La1—O4 80.82 (8) C6—C2—H2 121.0
O2ii—La1—O4 141.00 (8) C1—C2—H2 121.0
O1—La1—O4iii 69.39 (8) La1—O4—H4C 133.2
O1iii—La1—O4iii 78.60 (8) La1—O4—H4D 115.2
O2i—La1—O4iii 141.00 (8) H4C—O4—H4D 108.4
O2ii—La1—O4iii 80.82 (8) C1—C3—C5 119.2 (3)
O4—La1—O4iii 131.82 (13) C1—C3—H3 120.4
O1—La1—O3 139.41 (7) C5—C3—H3 120.4
O1iii—La1—O3 68.40 (7) C6—N1—C5 117.0 (3)
O2i—La1—O3 72.31 (8) N1—C5—C3 123.4 (3)
O2ii—La1—O3 82.19 (8) N1—C5—H5 118.3
O4—La1—O3 124.28 (7) C3—C5—H5 118.3
O4iii—La1—O3 70.97 (7) N1—C6—C2 124.3 (3)
O1—La1—O3iii 68.40 (7) N1—C6—H6 117.8
O1iii—La1—O3iii 139.41 (7) C2—C6—H6 117.8
O2i—La1—O3iii 82.19 (8) O1—C7—O2 125.6 (3)
O2ii—La1—O3iii 72.31 (8) O1—C7—C1 117.7 (3)
O4—La1—O3iii 70.97 (7) O2—C7—C1 116.7 (3)
O4iii—La1—O3iii 124.28 (7)

Symmetry codes: (i) x, −y+2, z+1/2; (ii) −x+2, −y+2, −z; (iii) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N1iv 0.85 1.85 2.699 (4) 175
O3—H3B···Cl1v 0.85 2.36 3.212 (2) 175
O4—H4C···O3vi 0.85 2.01 2.860 (3) 180
O4—H4D···Cl1 0.85 2.17 3.024 (3) 180

Symmetry codes: (iv) x+1/2, y+1/2, −z+1/2; (v) x+1, y, z; (vi) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2530).

References

  1. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cai, L.-Z., Wang, M.-S., Zhou, G.-W., Guo, G.-C., Mao, J.-G. & Huang, J.-S. (2003). Acta Cryst. E59, m249–m251.
  4. Chen, W.-T. & Fukuzumi, S. (2009). Inorg. Chem. 48, 3800–3807. [DOI] [PubMed]
  5. Cui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. pp. 281–282.
  6. Kay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818–2827.
  7. Ma, L., Evans, O. R., Foxman, B. M. & Lin, W. B. (1999). Inorg. Chem. 38, 5837–5840.
  8. Ma, J.-F., Hu, N.-H. & Ni, J.-Z. (1996). Polyhedron, 15, 1797–1799.
  9. Mao, J.-G., Zhang, H.-J., Ni, J.-Z., Wang, S.-B. & Mak, T. C. W. (1998). J. Chem. Crystallogr. 17, 3999–4009.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Starynowicz, P. (1991). Acta Cryst. C47, 294–297.
  13. Starynowicz, P. (1993). Acta Cryst. C49, 1895–1897.
  14. Wu, K.-J., Cai, L.-Z., Xu, G., Zhou, G.-W. & Guo, G.-C. (2008). Acta Cryst. E64, m56. [DOI] [PMC free article] [PubMed]
  15. Zeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. & You, X.-Z. (2000). Acta Cryst. C56, e325–e326.
  16. Zhang, X., Cui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. pp. 1111–1112.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027778/hy2530sup1.cif

e-68-0m972-sup1.cif (14.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027778/hy2530Isup2.hkl

e-68-0m972-Isup2.hkl (81.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES