Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):m979–m980. doi: 10.1107/S1600536812028796

3-(3-Acetyl­anilino)-1-ferrocenylpropan-1-one

Sladjana B Novaković a,*, Dragana Stevanović b, Vladimir Divjaković c, Goran A Bogdanović a, Rastko D Vukićević b
PMCID: PMC3393229  PMID: 22807797

Abstract

The title ferrocene-containing Mannich base, [Fe(C5H5)(C16H16NO2)], crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. Mol­ecules A and B have similar conformations. The dihedral angles between the best planes of the benzene and substituted cyclo­penta­dienyl rings are 88.59 (9) and 84.39 (10)° in A and B, respectively. In the crystal, the independent mol­ecules form centrosymmetric dimers via corresponding N—H⋯O hydrogen bonds. The dimers further arrange via C—H⋯π and C—H⋯O inter­actions. There are no significant inter­actions between the A and B mol­ecules.

Related literature  

For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. (2012); Leka et al. (2012a ,b ,c ).graphic file with name e-68-0m979-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C5H5)(C16H16NO2)]

  • M r = 375.24

  • Monoclinic, Inline graphic

  • a = 22.7768 (8) Å

  • b = 7.3978 (1) Å

  • c = 22.2118 (7) Å

  • β = 109.642 (4)°

  • V = 3524.87 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 K

  • 0.14 × 0.10 × 0.08 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.947, T max = 1.000

  • 21526 measured reflections

  • 8197 independent reflections

  • 6146 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.112

  • S = 1.13

  • 8197 reflections

  • 461 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028796/bt5949sup1.cif

e-68-0m979-sup1.cif (43KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028796/bt5949Isup2.hkl

e-68-0m979-Isup2.hkl (392.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2A and Cg2B are the centroids of the C6A–C10A and C6B–C10B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1A i 0.78 (4) 2.40 (3) 3.162 (4) 166 (3)
N1B—H1NB⋯O1B ii 0.80 (4) 2.46 (3) 3.253 (4) 167 (3)
C9A—H9A⋯O2A iii 0.93 2.49 3.403 (3) 166
C12A—H12A⋯O1A iv 0.97 2.67 3.517 (4) 146
C19A—H19A⋯O1A i 0.93 2.69 3.449 (4) 139
C18B—H18B⋯O2B v 0.93 2.49 3.336 (4) 152
C7A—H7ACg2Avi 0.93 2.98 3.721 (4) 137
C7B—H7BCg2Bvii 0.93 2.96 3.781 (5) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia (project Nos. 172014, 172035 and 172034).

supplementary crystallographic information

Comment

Derivatives of ferrocene have attracted great interest due to their physical, chemical and biological properties (Togni & Hayashi, 1995). In the course of our studies of different ferrocene derivatives containing two or more heteroatoms, we have synthesized and determined the crystal structures of a series of 3-(arylamino)-1-ferrocenylpropan-1-ones (Damljanović et al. 2011, Pejović et al. 2012, Stevanović et al. 2012 Leka et al. 2012a,b,c). The present derivative 1-ferrocenyl-3-(3-acetylphenylamino)propan-1-one, crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1). The cyclopentadienyl rings (Cp) within the Fc unit of molecules A and B take a nearly eclipsed geometry; the corresponding torsion angle C1—Cg1—Cg2—C6 has a value of 2.8 and 3.2°, respectively (Cg is centroid of the corresponding Cp ring). Both molecules display a conformation similar to that of previously reported derivatives containing meta-substituted phenyl rings.

The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment are -172.0 (2)/167.2 (2), 68.4 (3)/-70.4 (3) and 76.0 (4)/-77.0 (4)° (first value corresponds to molecule A, while the second one corresponds to molecule B). Inversion related molecules arrange into AA and BB dimers via corresponding N1—H1n···O1 hydrogen bonds. The AA and BB dimers further arrange into separate chains via dissimilar C—H···O interactions. In these interactions the acetyl O2 atom engages as an acceptor. On the other hand, the C—H donors engaged in these interactions are not equivalent as the A molecules use cyclopentadienyl while B molecules use phenyl fragments (Fig. 2). The molecules of the same type also interact by relatively strong C—H···π interaction which in both cases include the unsubstituted Cp ring, C7a— H7a···Cg2ai: H···Cg 2.98 Å, H—Perp 2.91 Å, X—H···Cg 137°, (i = -x, y + 1/2, -z + 1/2) and C7b—H7b···Cg2 bii H···Cg 2.96 Å H—Perp 2.72 Å, X—H···Cg 148 °, (ii = -x + 1, y - 1/2, -z + 3/2). There are no significant interactions between the A and B molecules.

Experimental

An aza-Michael addition of arylamines to a conjugated enone, acryloylferrocene, has been achieved by ultrasonic irradiation of the mixture of these reactants and the catalyst - montmorillonite K-10. This solvent-free reaction, yielding ferrocene containing Mannich bases (3-(arylamino)-1-ferrocenylpropan-1-ones), has been performed through the use of a simple ultrasonic cleaner. The details of the synthesis are described by Pejović et al. (2012b).

Refinement

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl C atoms, respectively. The Uiso(H) values were set to 1.2 times Ueq of the corresponding aromatic and methylene C atoms. The Ueq values of the H atoms attached to methyl C atoms were set equal to 1.5 times Ueq of the parent atom. H atoms attached to N atoms were refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The interconnection of AA dimers (a) and BB dimers (b) into corresponding chains via dissimilar C—H···O interactions.

Crystal data

[Fe(C5H5)(C16H16NO2)] F(000) = 1568
Mr = 375.24 Dx = 1.414 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7645 reflections
a = 22.7768 (8) Å θ = 3.0–29.0°
b = 7.3978 (1) Å µ = 0.87 mm1
c = 22.2118 (7) Å T = 293 K
β = 109.642 (4)° Prismatic, orange
V = 3524.87 (19) Å3 0.14 × 0.10 × 0.08 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur, Sapphire3, Gemini diffractometer 8197 independent reflections
Radiation source: Enhance (Mo) X-ray Source 6146 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 16.3280 pixels mm-1 θmax = 29.0°, θmin = 3.0°
ω scans h = −29→17
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −10→10
Tmin = 0.947, Tmax = 1.000 l = −28→29
21526 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.5937P] where P = (Fo2 + 2Fc2)/3
8197 reflections (Δ/σ)max = 0.001
461 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro, (Oxford Diffraction, 2009)'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1A −0.081087 (18) 0.18406 (5) 0.305745 (18) 0.04314 (12)
O1A −0.02446 (10) 0.2106 (3) 0.48588 (10) 0.0623 (6)
O2A 0.23814 (11) 0.3642 (3) 0.37407 (12) 0.0775 (7)
N1A 0.11138 (14) 0.1132 (4) 0.50418 (14) 0.0629 (8)
C1A −0.06883 (12) 0.3385 (3) 0.38385 (13) 0.0423 (6)
C2A −0.06635 (14) 0.4463 (3) 0.33120 (14) 0.0486 (7)
H2A −0.0325 0.5151 0.3302 0.058*
C3A −0.12352 (15) 0.4306 (4) 0.28136 (16) 0.0597 (8)
H3A −0.1343 0.4872 0.2417 0.072*
C4A −0.16201 (15) 0.3133 (4) 0.30205 (17) 0.0621 (8)
H4A −0.2025 0.2795 0.2781 0.074*
C5A −0.12901 (13) 0.2562 (4) 0.36479 (15) 0.0532 (7)
H5A −0.1438 0.1786 0.3894 0.064*
C6A −0.01325 (17) −0.0078 (4) 0.32782 (16) 0.0658 (9)
H6A 0.0170 −0.0251 0.3677 0.079*
C7A −0.00816 (17) 0.1032 (5) 0.27946 (19) 0.0699 (10)
H7A 0.0263 0.1732 0.2814 0.084*
C8A −0.0624 (2) 0.0925 (6) 0.22836 (18) 0.0834 (12)
H8A −0.0709 0.1544 0.1899 0.100*
C9A −0.10267 (18) −0.0259 (6) 0.2435 (2) 0.0933 (15)
H9A −0.1426 −0.0578 0.2172 0.112*
C10A −0.0718 (2) −0.0885 (4) 0.3058 (2) 0.0819 (13)
H10A −0.0877 −0.1696 0.3283 0.098*
C11A −0.01706 (13) 0.2991 (3) 0.44233 (13) 0.0455 (6)
C12A 0.04656 (13) 0.3730 (4) 0.44832 (13) 0.0476 (7)
H12A 0.0455 0.5039 0.4507 0.057*
H12B 0.0561 0.3414 0.4103 0.057*
C13A 0.09779 (14) 0.3020 (4) 0.50651 (14) 0.0592 (8)
H13A 0.1355 0.3703 0.5117 0.071*
H13B 0.0860 0.3238 0.5440 0.071*
C14A 0.14484 (13) 0.0446 (4) 0.46782 (13) 0.0479 (7)
C15A 0.17757 (12) 0.1524 (4) 0.43880 (12) 0.0450 (6)
H15A 0.1748 0.2775 0.4413 0.054*
C16A 0.21447 (12) 0.0782 (4) 0.40605 (12) 0.0457 (6)
C17A 0.21819 (14) −0.1082 (4) 0.40162 (14) 0.0568 (8)
H17A 0.2428 −0.1597 0.3802 0.068*
C18A 0.18474 (15) −0.2168 (4) 0.42941 (15) 0.0614 (8)
H18A 0.1867 −0.3418 0.4261 0.074*
C19A 0.14905 (14) −0.1431 (4) 0.46150 (14) 0.0554 (7)
H19A 0.1270 −0.2189 0.4796 0.066*
C20A 0.24742 (13) 0.2031 (4) 0.37585 (13) 0.0517 (7)
C21A 0.29297 (16) 0.1271 (5) 0.34724 (17) 0.0735 (10)
H21A 0.2714 0.0505 0.3118 0.110*
H21B 0.3240 0.0578 0.3789 0.110*
H21C 0.3128 0.2241 0.3327 0.110*
Fe1B 0.584630 (19) 0.44297 (5) 0.692237 (17) 0.04318 (12)
O1B 0.53611 (10) 0.3022 (3) 0.51869 (9) 0.0588 (5)
O2B 0.27338 (13) 0.0162 (3) 0.62706 (13) 0.0863 (8)
N1B 0.39339 (14) 0.3325 (4) 0.50188 (13) 0.0618 (7)
C1B 0.58556 (13) 0.2491 (3) 0.62822 (12) 0.0415 (6)
C2B 0.59017 (15) 0.1705 (4) 0.68891 (13) 0.0531 (8)
H2B 0.5623 0.0889 0.6964 0.064*
C3B 0.64465 (16) 0.2398 (4) 0.73505 (15) 0.0626 (9)
H3B 0.6589 0.2115 0.7784 0.075*
C4B 0.67359 (15) 0.3584 (4) 0.70438 (15) 0.0588 (8)
H4B 0.7102 0.4221 0.7241 0.071*
C5B 0.63833 (13) 0.3650 (4) 0.63939 (13) 0.0492 (7)
H5B 0.6476 0.4333 0.6086 0.059*
C6B 0.50605 (16) 0.5941 (5) 0.6572 (2) 0.0779 (11)
H6B 0.4756 0.5806 0.6172 0.093*
C7B 0.5077 (2) 0.5053 (5) 0.7140 (3) 0.111 (2)
H7B 0.4791 0.4222 0.7192 0.134*
C8B 0.5628 (3) 0.5707 (6) 0.76194 (19) 0.0965 (16)
H8B 0.5769 0.5373 0.8048 0.116*
C9B 0.59092 (17) 0.6895 (4) 0.73422 (18) 0.0696 (10)
H9B 0.6276 0.7518 0.7550 0.084*
C10B 0.55702 (16) 0.7029 (4) 0.67149 (17) 0.0609 (8)
H10B 0.5671 0.7760 0.6423 0.073*
C11B 0.53347 (13) 0.2336 (3) 0.56780 (12) 0.0427 (6)
C12B 0.47645 (13) 0.1280 (4) 0.56710 (13) 0.0470 (7)
H12C 0.4868 0.0004 0.5715 0.056*
H12D 0.4650 0.1635 0.6037 0.056*
C13B 0.42102 (14) 0.1555 (4) 0.50708 (13) 0.0547 (8)
H13C 0.4340 0.1353 0.4703 0.066*
H13D 0.3896 0.0657 0.5059 0.066*
C14B 0.35504 (13) 0.3833 (4) 0.53600 (12) 0.0466 (7)
C15B 0.32807 (12) 0.2599 (4) 0.56590 (12) 0.0462 (7)
H15B 0.3371 0.1376 0.5648 0.055*
C16B 0.28760 (12) 0.3157 (4) 0.59755 (12) 0.0458 (6)
C17B 0.27401 (14) 0.4969 (4) 0.59914 (14) 0.0583 (8)
H17B 0.2470 0.5357 0.6200 0.070*
C18B 0.30080 (16) 0.6205 (4) 0.56956 (15) 0.0651 (9)
H18B 0.2918 0.7427 0.5708 0.078*
C19B 0.34035 (15) 0.5658 (4) 0.53854 (15) 0.0606 (8)
H19B 0.3577 0.6514 0.5189 0.073*
C20B 0.26079 (14) 0.1741 (5) 0.62884 (14) 0.0570 (8)
C21B 0.21885 (16) 0.2309 (5) 0.66479 (16) 0.0763 (10)
H21D 0.2039 0.1258 0.6805 0.114*
H21E 0.1841 0.2973 0.6368 0.114*
H21F 0.2416 0.3062 0.7001 0.114*
H1NB 0.4136 (15) 0.412 (4) 0.4938 (15) 0.067 (12)*
H1NA 0.0876 (16) 0.046 (5) 0.5099 (16) 0.069 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1A 0.0454 (2) 0.0316 (2) 0.0589 (2) 0.00040 (17) 0.02608 (19) −0.00628 (17)
O1A 0.0670 (14) 0.0692 (14) 0.0641 (13) −0.0013 (11) 0.0396 (11) 0.0046 (11)
O2A 0.0756 (17) 0.0597 (15) 0.1129 (19) 0.0065 (13) 0.0524 (14) 0.0192 (14)
N1A 0.0641 (19) 0.0639 (18) 0.0759 (18) 0.0081 (15) 0.0438 (15) 0.0074 (15)
C1A 0.0450 (16) 0.0299 (13) 0.0610 (17) 0.0024 (11) 0.0298 (13) −0.0096 (12)
C2A 0.0534 (18) 0.0280 (13) 0.0715 (18) 0.0014 (12) 0.0303 (15) 0.0003 (13)
C3A 0.060 (2) 0.0422 (17) 0.073 (2) 0.0126 (15) 0.0184 (16) 0.0042 (15)
C4A 0.0450 (18) 0.0497 (18) 0.091 (2) 0.0066 (15) 0.0228 (17) −0.0142 (17)
C5A 0.0469 (17) 0.0449 (16) 0.080 (2) 0.0004 (13) 0.0380 (16) −0.0093 (15)
C6A 0.067 (2) 0.0545 (19) 0.074 (2) 0.0249 (18) 0.0217 (18) −0.0140 (17)
C7A 0.070 (2) 0.059 (2) 0.103 (3) −0.0033 (18) 0.058 (2) −0.020 (2)
C8A 0.105 (3) 0.087 (3) 0.067 (2) 0.023 (3) 0.040 (2) −0.015 (2)
C9A 0.059 (2) 0.081 (3) 0.129 (4) 0.002 (2) 0.017 (2) −0.068 (3)
C10A 0.104 (3) 0.0265 (16) 0.147 (4) 0.0020 (18) 0.084 (3) −0.013 (2)
C11A 0.0554 (17) 0.0337 (14) 0.0595 (17) −0.0009 (13) 0.0355 (14) −0.0115 (13)
C12A 0.0508 (17) 0.0402 (15) 0.0593 (17) −0.0036 (13) 0.0283 (14) −0.0121 (13)
C13A 0.0544 (19) 0.070 (2) 0.0595 (18) −0.0013 (16) 0.0279 (15) −0.0161 (16)
C14A 0.0415 (16) 0.0521 (17) 0.0500 (15) 0.0049 (13) 0.0153 (12) 0.0026 (13)
C15A 0.0404 (15) 0.0420 (15) 0.0521 (16) 0.0053 (12) 0.0147 (12) −0.0007 (12)
C16A 0.0393 (15) 0.0503 (17) 0.0451 (15) 0.0043 (13) 0.0112 (12) −0.0005 (13)
C17A 0.058 (2) 0.0585 (19) 0.0576 (18) 0.0153 (16) 0.0246 (15) −0.0003 (15)
C18A 0.071 (2) 0.0426 (17) 0.072 (2) 0.0066 (15) 0.0260 (17) 0.0025 (15)
C19A 0.0573 (19) 0.0503 (18) 0.0631 (18) 0.0006 (15) 0.0262 (15) 0.0071 (14)
C20A 0.0394 (16) 0.061 (2) 0.0536 (17) 0.0037 (14) 0.0143 (13) 0.0045 (15)
C21A 0.065 (2) 0.085 (2) 0.086 (2) −0.0001 (19) 0.0458 (19) 0.000 (2)
Fe1B 0.0552 (3) 0.0314 (2) 0.0494 (2) 0.01005 (17) 0.02617 (19) 0.00179 (16)
O1B 0.0706 (14) 0.0640 (13) 0.0508 (11) −0.0013 (11) 0.0322 (10) 0.0074 (10)
O2B 0.108 (2) 0.0609 (15) 0.114 (2) 0.0019 (15) 0.0685 (17) −0.0018 (14)
N1B 0.0643 (19) 0.0634 (19) 0.0683 (17) 0.0170 (15) 0.0365 (14) 0.0158 (14)
C1B 0.0535 (17) 0.0294 (13) 0.0509 (15) 0.0117 (12) 0.0297 (13) 0.0010 (11)
C2B 0.075 (2) 0.0303 (14) 0.0614 (18) 0.0166 (14) 0.0330 (16) 0.0084 (13)
C3B 0.080 (2) 0.0477 (18) 0.0513 (17) 0.0283 (17) 0.0113 (16) 0.0068 (14)
C4B 0.0520 (19) 0.0482 (17) 0.073 (2) 0.0169 (15) 0.0174 (16) −0.0005 (16)
C5B 0.0515 (17) 0.0440 (16) 0.0606 (18) 0.0114 (13) 0.0300 (14) 0.0011 (13)
C6B 0.0431 (19) 0.068 (2) 0.111 (3) 0.0168 (18) 0.0103 (19) −0.039 (2)
C7B 0.123 (4) 0.0350 (18) 0.244 (6) −0.012 (2) 0.152 (4) −0.026 (3)
C8B 0.173 (5) 0.069 (3) 0.079 (3) 0.048 (3) 0.084 (3) 0.009 (2)
C9B 0.067 (2) 0.053 (2) 0.085 (3) 0.0127 (17) 0.0195 (19) −0.0221 (18)
C10B 0.073 (2) 0.0359 (16) 0.081 (2) 0.0176 (16) 0.0355 (18) 0.0045 (16)
C11B 0.0549 (17) 0.0315 (13) 0.0518 (16) 0.0119 (12) 0.0312 (13) 0.0015 (12)
C12B 0.0552 (18) 0.0378 (14) 0.0568 (16) 0.0083 (13) 0.0307 (14) 0.0018 (13)
C13B 0.0579 (19) 0.0591 (19) 0.0567 (17) 0.0085 (15) 0.0318 (15) −0.0066 (14)
C14B 0.0431 (16) 0.0531 (17) 0.0415 (14) 0.0116 (13) 0.0113 (12) 0.0025 (13)
C15B 0.0449 (16) 0.0459 (16) 0.0465 (15) 0.0111 (13) 0.0135 (12) −0.0030 (12)
C16B 0.0385 (15) 0.0538 (17) 0.0424 (14) 0.0069 (13) 0.0100 (11) −0.0091 (13)
C17B 0.0517 (19) 0.062 (2) 0.0617 (19) 0.0115 (16) 0.0203 (15) −0.0132 (16)
C18B 0.070 (2) 0.0454 (17) 0.076 (2) 0.0168 (16) 0.0198 (18) −0.0056 (16)
C19B 0.061 (2) 0.0530 (19) 0.0670 (19) 0.0085 (16) 0.0207 (16) 0.0079 (16)
C20B 0.0475 (18) 0.070 (2) 0.0546 (17) 0.0027 (16) 0.0184 (14) −0.0096 (16)
C21B 0.068 (2) 0.100 (3) 0.074 (2) 0.010 (2) 0.0410 (18) 0.001 (2)

Geometric parameters (Å, º)

Fe1A—C1A 2.017 (2) Fe1B—C8B 2.014 (3)
Fe1A—C2A 2.017 (3) Fe1B—C7B 2.022 (3)
Fe1A—C8A 2.021 (3) Fe1B—C2B 2.022 (3)
Fe1A—C7A 2.027 (3) Fe1B—C1B 2.025 (2)
Fe1A—C10A 2.027 (3) Fe1B—C10B 2.028 (3)
Fe1A—C9A 2.028 (3) Fe1B—C6B 2.031 (3)
Fe1A—C6A 2.033 (3) Fe1B—C9B 2.031 (3)
Fe1A—C5A 2.039 (3) Fe1B—C3B 2.039 (3)
Fe1A—C3A 2.050 (3) Fe1B—C5B 2.043 (3)
Fe1A—C4A 2.053 (3) Fe1B—C4B 2.050 (3)
O1A—C11A 1.226 (3) O1B—C11B 1.223 (3)
O2A—C20A 1.209 (3) O2B—C20B 1.206 (4)
N1A—C14A 1.380 (4) N1B—C14B 1.387 (4)
N1A—C13A 1.435 (4) N1B—C13B 1.441 (4)
N1A—H1NA 0.78 (3) N1B—H1NB 0.80 (3)
C1A—C5A 1.428 (4) C1B—C5B 1.429 (4)
C1A—C2A 1.432 (4) C1B—C2B 1.439 (3)
C1A—C11A 1.460 (4) C1B—C11B 1.467 (4)
C2A—C3A 1.402 (4) C2B—C3B 1.413 (4)
C2A—H2A 0.9300 C2B—H2B 0.9300
C3A—C4A 1.416 (4) C3B—C4B 1.404 (4)
C3A—H3A 0.9300 C3B—H3B 0.9300
C4A—C5A 1.408 (4) C4B—C5B 1.397 (4)
C4A—H4A 0.9300 C4B—H4B 0.9300
C5A—H5A 0.9300 C5B—H5B 0.9300
C6A—C7A 1.388 (5) C6B—C10B 1.360 (5)
C6A—C10A 1.392 (5) C6B—C7B 1.413 (6)
C6A—H6A 0.9300 C6B—H6B 0.9300
C7A—C8A 1.370 (5) C7B—C8B 1.430 (6)
C7A—H7A 0.9300 C7B—H7B 0.9300
C8A—C9A 1.389 (6) C8B—C9B 1.352 (5)
C8A—H8A 0.9300 C8B—H8B 0.9300
C9A—C10A 1.403 (5) C9B—C10B 1.351 (5)
C9A—H9A 0.9300 C9B—H9B 0.9300
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.512 (4) C11B—C12B 1.511 (4)
C12A—C13A 1.515 (4) C12B—C13B 1.510 (4)
C12A—H12A 0.9700 C12B—H12C 0.9700
C12A—H12B 0.9700 C12B—H12D 0.9700
C13A—H13A 0.9700 C13B—H13C 0.9700
C13A—H13B 0.9700 C13B—H13D 0.9700
C14A—C15A 1.389 (4) C14B—C15B 1.388 (4)
C14A—C19A 1.402 (4) C14B—C19B 1.397 (4)
C15A—C16A 1.396 (4) C15B—C16B 1.396 (3)
C15A—H15A 0.9300 C15B—H15B 0.9300
C16A—C17A 1.387 (4) C16B—C17B 1.379 (4)
C16A—C20A 1.485 (4) C16B—C20B 1.497 (4)
C17A—C18A 1.387 (4) C17B—C18B 1.382 (4)
C17A—H17A 0.9300 C17B—H17B 0.9300
C18A—C19A 1.362 (4) C18B—C19B 1.366 (4)
C18A—H18A 0.9300 C18B—H18B 0.9300
C19A—H19A 0.9300 C19B—H19B 0.9300
C20A—C21A 1.497 (4) C20B—C21B 1.497 (4)
C21A—H21A 0.9600 C21B—H21D 0.9600
C21A—H21B 0.9600 C21B—H21E 0.9600
C21A—H21C 0.9600 C21B—H21F 0.9600
C1A—Fe1A—C2A 41.59 (10) C8B—Fe1B—C7B 41.51 (18)
C1A—Fe1A—C8A 155.99 (16) C8B—Fe1B—C2B 122.03 (15)
C2A—Fe1A—C8A 119.86 (16) C7B—Fe1B—C2B 107.80 (14)
C1A—Fe1A—C7A 121.67 (13) C8B—Fe1B—C1B 159.39 (18)
C2A—Fe1A—C7A 106.81 (13) C7B—Fe1B—C1B 122.96 (17)
C8A—Fe1A—C7A 39.57 (14) C2B—Fe1B—C1B 41.66 (10)
C1A—Fe1A—C10A 125.37 (16) C8B—Fe1B—C10B 65.91 (14)
C2A—Fe1A—C10A 161.63 (17) C7B—Fe1B—C10B 67.09 (14)
C8A—Fe1A—C10A 67.38 (16) C2B—Fe1B—C10B 162.81 (14)
C7A—Fe1A—C10A 67.14 (14) C1B—Fe1B—C10B 126.00 (12)
C1A—Fe1A—C9A 162.29 (19) C8B—Fe1B—C6B 67.84 (17)
C2A—Fe1A—C9A 155.16 (19) C7B—Fe1B—C6B 40.80 (17)
C8A—Fe1A—C9A 40.11 (16) C2B—Fe1B—C6B 126.34 (14)
C7A—Fe1A—C9A 67.15 (15) C1B—Fe1B—C6B 109.68 (12)
C10A—Fe1A—C9A 40.49 (16) C10B—Fe1B—C6B 39.15 (13)
C1A—Fe1A—C6A 108.29 (12) C8B—Fe1B—C9B 39.04 (15)
C2A—Fe1A—C6A 124.23 (13) C7B—Fe1B—C9B 67.59 (15)
C8A—Fe1A—C6A 67.11 (15) C2B—Fe1B—C9B 156.34 (14)
C7A—Fe1A—C6A 39.97 (13) C1B—Fe1B—C9B 160.48 (14)
C10A—Fe1A—C6A 40.10 (14) C10B—Fe1B—C9B 38.87 (13)
C9A—Fe1A—C6A 67.67 (15) C6B—Fe1B—C9B 66.34 (13)
C1A—Fe1A—C5A 41.22 (10) C8B—Fe1B—C3B 106.71 (15)
C2A—Fe1A—C5A 69.07 (11) C7B—Fe1B—C3B 123.75 (19)
C8A—Fe1A—C5A 161.03 (16) C2B—Fe1B—C3B 40.72 (12)
C7A—Fe1A—C5A 158.43 (15) C1B—Fe1B—C3B 69.00 (11)
C10A—Fe1A—C5A 109.76 (14) C10B—Fe1B—C3B 155.95 (15)
C9A—Fe1A—C5A 125.43 (16) C6B—Fe1B—C3B 161.99 (17)
C6A—Fe1A—C5A 123.73 (14) C9B—Fe1B—C3B 120.99 (14)
C1A—Fe1A—C3A 68.90 (12) C8B—Fe1B—C5B 157.6 (2)
C2A—Fe1A—C3A 40.32 (12) C7B—Fe1B—C5B 159.5 (2)
C8A—Fe1A—C3A 106.78 (15) C2B—Fe1B—C5B 68.95 (12)
C7A—Fe1A—C3A 123.06 (14) C1B—Fe1B—C5B 41.12 (11)
C10A—Fe1A—C3A 157.63 (17) C10B—Fe1B—C5B 109.70 (12)
C9A—Fe1A—C3A 121.11 (17) C6B—Fe1B—C5B 123.78 (15)
C6A—Fe1A—C3A 159.64 (15) C9B—Fe1B—C5B 123.63 (14)
C5A—Fe1A—C3A 68.32 (13) C3B—Fe1B—C5B 67.84 (12)
C1A—Fe1A—C4A 68.50 (12) C8B—Fe1B—C4B 122.05 (18)
C2A—Fe1A—C4A 68.03 (12) C7B—Fe1B—C4B 159.4 (2)
C8A—Fe1A—C4A 124.38 (16) C2B—Fe1B—C4B 68.25 (13)
C7A—Fe1A—C4A 159.59 (15) C1B—Fe1B—C4B 68.46 (12)
C10A—Fe1A—C4A 123.70 (15) C10B—Fe1B—C4B 122.47 (14)
C9A—Fe1A—C4A 108.72 (14) C6B—Fe1B—C4B 157.43 (17)
C6A—Fe1A—C4A 159.05 (15) C9B—Fe1B—C4B 107.43 (14)
C5A—Fe1A—C4A 40.23 (12) C3B—Fe1B—C4B 40.15 (12)
C3A—Fe1A—C4A 40.36 (12) C5B—Fe1B—C4B 39.92 (11)
C14A—N1A—C13A 123.2 (3) C14B—N1B—C13B 122.7 (3)
C14A—N1A—H1NA 114 (3) C14B—N1B—H1NB 116 (2)
C13A—N1A—H1NA 117 (3) C13B—N1B—H1NB 114 (2)
C5A—C1A—C2A 107.0 (2) C5B—C1B—C2B 106.7 (2)
C5A—C1A—C11A 125.9 (3) C5B—C1B—C11B 125.5 (2)
C2A—C1A—C11A 126.6 (2) C2B—C1B—C11B 127.4 (3)
C5A—C1A—Fe1A 70.23 (15) C5B—C1B—Fe1B 70.11 (15)
C2A—C1A—Fe1A 69.22 (14) C2B—C1B—Fe1B 69.09 (14)
C11A—C1A—Fe1A 119.28 (17) C11B—C1B—Fe1B 120.10 (17)
C3A—C2A—C1A 108.5 (3) C3B—C2B—C1B 107.6 (3)
C3A—C2A—Fe1A 71.10 (16) C3B—C2B—Fe1B 70.28 (16)
C1A—C2A—Fe1A 69.19 (14) C1B—C2B—Fe1B 69.25 (14)
C3A—C2A—H2A 125.7 C3B—C2B—H2B 126.2
C1A—C2A—H2A 125.7 C1B—C2B—H2B 126.2
Fe1A—C2A—H2A 125.5 Fe1B—C2B—H2B 125.8
C2A—C3A—C4A 107.8 (3) C4B—C3B—C2B 108.4 (3)
C2A—C3A—Fe1A 68.58 (15) C4B—C3B—Fe1B 70.33 (16)
C4A—C3A—Fe1A 69.95 (17) C2B—C3B—Fe1B 69.00 (16)
C2A—C3A—H3A 126.1 C4B—C3B—H3B 125.8
C4A—C3A—H3A 126.1 C2B—C3B—H3B 125.8
Fe1A—C3A—H3A 127.0 Fe1B—C3B—H3B 126.5
C5A—C4A—C3A 108.8 (3) C5B—C4B—C3B 108.8 (3)
C5A—C4A—Fe1A 69.34 (16) C5B—C4B—Fe1B 69.76 (16)
C3A—C4A—Fe1A 69.69 (17) C3B—C4B—Fe1B 69.52 (18)
C5A—C4A—H4A 125.6 C5B—C4B—H4B 125.6
C3A—C4A—H4A 125.6 C3B—C4B—H4B 125.6
Fe1A—C4A—H4A 127.0 Fe1B—C4B—H4B 126.7
C4A—C5A—C1A 107.8 (3) C4B—C5B—C1B 108.4 (3)
C4A—C5A—Fe1A 70.43 (17) C4B—C5B—Fe1B 70.32 (16)
C1A—C5A—Fe1A 68.54 (14) C1B—C5B—Fe1B 68.77 (14)
C4A—C5A—H5A 126.1 C4B—C5B—H5B 125.8
C1A—C5A—H5A 126.1 C1B—C5B—H5B 125.8
Fe1A—C5A—H5A 126.5 Fe1B—C5B—H5B 126.7
C7A—C6A—C10A 107.5 (3) C10B—C6B—C7B 107.6 (3)
C7A—C6A—Fe1A 69.79 (18) C10B—C6B—Fe1B 70.31 (18)
C10A—C6A—Fe1A 69.74 (18) C7B—C6B—Fe1B 69.3 (2)
C7A—C6A—H6A 126.2 C10B—C6B—H6B 126.2
C10A—C6A—H6A 126.2 C7B—C6B—H6B 126.2
Fe1A—C6A—H6A 125.8 Fe1B—C6B—H6B 125.8
C8A—C7A—C6A 108.7 (3) C6B—C7B—C8B 105.1 (3)
C8A—C7A—Fe1A 70.0 (2) C6B—C7B—Fe1B 69.92 (19)
C6A—C7A—Fe1A 70.24 (17) C8B—C7B—Fe1B 68.9 (2)
C8A—C7A—H7A 125.7 C6B—C7B—H7B 127.5
C6A—C7A—H7A 125.7 C8B—C7B—H7B 127.5
Fe1A—C7A—H7A 125.7 Fe1B—C7B—H7B 125.3
C7A—C8A—C9A 108.7 (4) C9B—C8B—C7B 108.2 (4)
C7A—C8A—Fe1A 70.45 (19) C9B—C8B—Fe1B 71.19 (19)
C9A—C8A—Fe1A 70.2 (2) C7B—C8B—Fe1B 69.6 (2)
C7A—C8A—H8A 125.6 C9B—C8B—H8B 125.9
C9A—C8A—H8A 125.6 C7B—C8B—H8B 125.9
Fe1A—C8A—H8A 125.3 Fe1B—C8B—H8B 125.0
C8A—C9A—C10A 107.1 (3) C10B—C9B—C8B 108.9 (4)
C8A—C9A—Fe1A 69.7 (2) C10B—C9B—Fe1B 70.42 (18)
C10A—C9A—Fe1A 69.75 (19) C8B—C9B—Fe1B 69.8 (2)
C8A—C9A—H9A 126.4 C10B—C9B—H9B 125.6
C10A—C9A—H9A 126.4 C8B—C9B—H9B 125.6
Fe1A—C9A—H9A 125.7 Fe1B—C9B—H9B 125.8
C6A—C10A—C9A 108.0 (3) C9B—C10B—C6B 110.2 (3)
C6A—C10A—Fe1A 70.17 (18) C9B—C10B—Fe1B 70.71 (18)
C9A—C10A—Fe1A 69.76 (19) C6B—C10B—Fe1B 70.54 (18)
C6A—C10A—H10A 126.0 C9B—C10B—H10B 124.9
C9A—C10A—H10A 126.0 C6B—C10B—H10B 124.9
Fe1A—C10A—H10A 125.6 Fe1B—C10B—H10B 125.4
O1A—C11A—C1A 121.6 (3) O1B—C11B—C1B 121.1 (3)
O1A—C11A—C12A 120.4 (3) O1B—C11B—C12B 120.3 (3)
C1A—C11A—C12A 118.0 (2) C1B—C11B—C12B 118.5 (2)
C11A—C12A—C13A 113.0 (2) C13B—C12B—C11B 113.6 (2)
C11A—C12A—H12A 109.0 C13B—C12B—H12C 108.9
C13A—C12A—H12A 109.0 C11B—C12B—H12C 108.9
C11A—C12A—H12B 109.0 C13B—C12B—H12D 108.9
C13A—C12A—H12B 109.0 C11B—C12B—H12D 108.9
H12A—C12A—H12B 107.8 H12C—C12B—H12D 107.7
N1A—C13A—C12A 114.9 (3) N1B—C13B—C12B 114.0 (2)
N1A—C13A—H13A 108.6 N1B—C13B—H13C 108.8
C12A—C13A—H13A 108.6 C12B—C13B—H13C 108.8
N1A—C13A—H13B 108.6 N1B—C13B—H13D 108.8
C12A—C13A—H13B 108.6 C12B—C13B—H13D 108.8
H13A—C13A—H13B 107.5 H13C—C13B—H13D 107.7
N1A—C14A—C15A 123.2 (3) N1B—C14B—C15B 123.0 (3)
N1A—C14A—C19A 119.5 (3) N1B—C14B—C19B 119.2 (3)
C15A—C14A—C19A 117.2 (3) C15B—C14B—C19B 117.8 (3)
C14A—C15A—C16A 121.8 (3) C14B—C15B—C16B 121.3 (3)
C14A—C15A—H15A 119.1 C14B—C15B—H15B 119.3
C16A—C15A—H15A 119.1 C16B—C15B—H15B 119.3
C17A—C16A—C15A 119.3 (3) C17B—C16B—C15B 119.5 (3)
C17A—C16A—C20A 122.3 (3) C17B—C16B—C20B 122.6 (3)
C15A—C16A—C20A 118.4 (3) C15B—C16B—C20B 117.9 (3)
C16A—C17A—C18A 119.2 (3) C16B—C17B—C18B 119.5 (3)
C16A—C17A—H17A 120.4 C16B—C17B—H17B 120.3
C18A—C17A—H17A 120.4 C18B—C17B—H17B 120.3
C19A—C18A—C17A 121.0 (3) C19B—C18B—C17B 121.0 (3)
C19A—C18A—H18A 119.5 C19B—C18B—H18B 119.5
C17A—C18A—H18A 119.5 C17B—C18B—H18B 119.5
C18A—C19A—C14A 121.5 (3) C18B—C19B—C14B 120.9 (3)
C18A—C19A—H19A 119.3 C18B—C19B—H19B 119.5
C14A—C19A—H19A 119.3 C14B—C19B—H19B 119.5
O2A—C20A—C16A 121.3 (3) O2B—C20B—C16B 121.6 (3)
O2A—C20A—C21A 119.7 (3) O2B—C20B—C21B 119.4 (3)
C16A—C20A—C21A 119.1 (3) C16B—C20B—C21B 119.0 (3)
C20A—C21A—H21A 109.5 C20B—C21B—H21D 109.5
C20A—C21A—H21B 109.5 C20B—C21B—H21E 109.5
H21A—C21A—H21B 109.5 H21D—C21B—H21E 109.5
C20A—C21A—H21C 109.5 C20B—C21B—H21F 109.5
H21A—C21A—H21C 109.5 H21D—C21B—H21F 109.5
H21B—C21A—H21C 109.5 H21E—C21B—H21F 109.5

Hydrogen-bond geometry (Å, º)

Cg2A and Cg2B are the centroids of the C6A–C10A and C6B–C10B rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1A—H1NA···O1Ai 0.78 (4) 2.40 (3) 3.162 (4) 166 (3)
N1B—H1NB···O1Bii 0.80 (4) 2.46 (3) 3.253 (4) 167 (3)
C9A—H9A···O2Aiii 0.93 2.49 3.403 (3) 166
C12A—H12A···O1Aiv 0.97 2.67 3.517 (4) 146
C19A—H19A···O1Ai 0.93 2.69 3.449 (4) 139
C18B—H18B···O2Bv 0.93 2.49 3.336 (4) 152
C7A—H7A···Cg2Avi 0.93 2.98 3.721 (4) 137
C7B—H7B···Cg2Bvii 0.93 2.96 3.781 (5) 148

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) x, y+1, z; (vi) −x, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5949).

References

  1. Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703–3713.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Leka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012c). Acta Cryst. E68, m231. [DOI] [PMC free article] [PubMed]
  5. Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229. [DOI] [PMC free article] [PubMed]
  6. Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  10. Pejović, A., Stevanović, D. I., Damljanović, I., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, T., Radulović, N. & Vukićević, R. D. (2012). Helv. Chim. Acta Accepted.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Stevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37–m40. [DOI] [PubMed]
  14. Togni, A. & Hayashi, T. (1995). In Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science New York: VCH.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028796/bt5949sup1.cif

e-68-0m979-sup1.cif (43KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028796/bt5949Isup2.hkl

e-68-0m979-Isup2.hkl (392.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES