Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):m982. doi: 10.1107/S1600536812028231

(Methanol-κO)(methano­lato-κO)oxido[N-(2-oxidobenzyl­idene)isoleucinato-κ3 O,N,O′]vanadium(V)

Chengyuan Wang a,*, Zhenghua Guo b, Jianfang Dong b, Lianzhi Li b
PMCID: PMC3393231  PMID: 22807799

Abstract

In the title complex, [V(C13H15NO3)O(CH3O)(CH3OH)], the VV atom is six-coordinated by a tridentate O,N,O′-donor ligand, derived from the condensation of salicyl­aldehyde and l-isoleucine, a vanadyl O atom, a methano­late O atom and a methanol O atom in a distorted octa­hedral geometry. The asymmetric unit contains two complex mol­ecules. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds connect the mol­ecules into a one-dimensional chain along [100].

Related literature  

For background to vanadium compounds, see: Horn et al. (2004); Thompson et al. (1999); Wikksky et al. (2001). For related structures of vanadium complexes derived from amino acid Schiff base ligands and with a coordination number of six for vanadium, see: Bian & Li (2011); Cao et al. (2011); Chen et al. (2004).graphic file with name e-68-0m982-scheme1.jpg

Experimental  

Crystal data  

  • [V(C13H15NO3)O(CH3O)(CH4O)]

  • M r = 363.28

  • Orthorhombic, Inline graphic

  • a = 6.6148 (9) Å

  • b = 18.463 (2) Å

  • c = 29.286 (3) Å

  • V = 3576.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 298 K

  • 0.26 × 0.11 × 0.08 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.864, T max = 0.955

  • 18864 measured reflections

  • 6295 independent reflections

  • 3229 reflections with I > 2σ(I)

  • R int = 0.174

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.092

  • wR(F 2) = 0.215

  • S = 1.04

  • 6295 reflections

  • 423 parameters

  • 1046 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983), 2690 Friedel pairs

  • Flack parameter: 0.09 (5)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028231/hy2555sup1.cif

e-68-0m982-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028231/hy2555Isup2.hkl

e-68-0m982-Isup2.hkl (308.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.98 2.52 3.388 (12) 148
C7—H7⋯O4i 0.93 2.48 3.395 (12) 170
C17—H17⋯O12i 0.98 2.39 3.328 (12) 159
O6—H6⋯O8 0.82 1.89 2.688 (8) 165
O11—H11⋯O2 0.82 1.86 2.668 (8) 170

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The strong interest in vanadium compounds arises from the presence of vanadium in several metalloenzymes, their use as metallopharmaceutical agents and their catalytic abilities (Horn et al., 2004). Compared with other transition metal complexes, less vanadium complexes have been synthesized and characterized (Thompson et al., 1999; Wikksky et al., 2001). We report herein the synthesis and crystal structure of a new oxovanadium(V) complex with a tridentate Schiff base ligand derived from the condensation of salicylaldehyde and L-isoleucine.

As shown in Fig. 1, the asymmetric unit of the title compound contains two independent molecules. Each VV ion is six-coordinated by a tridentate O,N,O-donor ligand, a vanadyl O atom, a methanolate O atom and a methanol O atom, forming a distorted octahedral geometry. In one of the complex molecules, O1, N1, O3 atoms of the Schiff base ligand and O5 atom of the methanolate define the equatorial plane and the terminal oxido O4 and the methanol O6 are at the axial positions. The V1 atom lies 0.308 (3) Å above the equatorial plane towards O4. The V2 atom deviates 0.297 (3) Å from the equatorial plane, formed by O7, N2, O9 and O12, towards O10. The axial O6 and O11 atoms are involved in long V—O distances [V1—O6 and V2—O11 = 2.345 (6) and 2.330 (6) Å], which is similar to the reported vanadium(V) complexes (Bian & Li, 2011; Cao et al., 2011; Chen et al., 2004). In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds connect the molecules into a one-dimensional structure along [100] (Table 1, Fig. 2).

Experimental

L-Isoleucine (1 mmol, 131.2 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) with stirring and added successively to a methanol solution (5 ml) of salicylaldehyde (1 mmol, 0.11 ml). The mixture was then stirred at 333 K for 2 h. Subsequently, an aqueous solution (2 ml) of vanadyl sulfate hydrate (1 mmol, 225.4 mg) was added dropwise and stirred for 2 h continuously. Then the resultant solution was filtered and the filtrate was held at room temperature for several days, whereupon brown blocky crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98 (CH), 0.97 (CH2) and 0.96 (CH3) Å and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C, O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The one-dimensional structure of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[V(C13H15NO3)O(CH3O)(CH4O)] F(000) = 1520
Mr = 363.28 Dx = 1.349 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2166 reflections
a = 6.6148 (9) Å θ = 2.6–25.2°
b = 18.463 (2) Å µ = 0.58 mm1
c = 29.286 (3) Å T = 298 K
V = 3576.7 (7) Å3 Block, brown
Z = 8 0.26 × 0.11 × 0.08 mm

Data collection

Bruker SMART 1000 CCD diffractometer 6295 independent reflections
Radiation source: fine-focus sealed tube 3229 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.174
φ and ω scans θmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.864, Tmax = 0.955 k = −12→21
18864 measured reflections l = −34→34

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092 H-atom parameters constrained
wR(F2) = 0.215 w = 1/[σ2(Fo2) + (0.0752P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.007
6295 reflections Δρmax = 0.39 e Å3
423 parameters Δρmin = −0.41 e Å3
1046 restraints Absolute structure: Flack (1983), 2690 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.09 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
V1 0.6186 (2) 0.58076 (9) 0.08740 (5) 0.0456 (4)
V2 0.6024 (2) 0.68203 (8) 0.30480 (5) 0.0455 (4)
N1 0.9207 (11) 0.6096 (4) 0.0724 (2) 0.0360 (17)
N2 0.8986 (11) 0.6526 (3) 0.3246 (2) 0.0369 (16)
O1 0.6870 (9) 0.6492 (3) 0.1357 (2) 0.0532 (12)
O2 0.9033 (11) 0.7236 (3) 0.17086 (19) 0.0581 (12)
O3 0.6656 (9) 0.4999 (3) 0.05076 (19) 0.0554 (13)
O4 0.5227 (10) 0.6343 (3) 0.0500 (2) 0.0575 (14)
O5 0.4003 (11) 0.5519 (3) 0.11735 (19) 0.0573 (14)
O6 0.7934 (9) 0.5063 (3) 0.1388 (2) 0.0545 (13)
H6 0.8105 0.5218 0.1648 0.065*
O7 0.6786 (9) 0.6122 (3) 0.25799 (19) 0.0526 (12)
O8 0.9174 (10) 0.5451 (3) 0.2227 (2) 0.0605 (13)
O9 0.6394 (11) 0.7641 (3) 0.34196 (19) 0.0596 (13)
O10 0.4947 (10) 0.6297 (3) 0.3407 (2) 0.0575 (14)
O11 0.7984 (9) 0.7540 (3) 0.25673 (19) 0.0547 (13)
H11 0.8258 0.7399 0.2309 0.066*
O12 0.3896 (8) 0.7086 (3) 0.27030 (18) 0.0568 (13)
C1 0.8593 (16) 0.6819 (5) 0.1394 (3) 0.0525 (15)
C2 1.0115 (14) 0.6683 (5) 0.1006 (3) 0.0488 (15)
H2 1.1374 0.6501 0.1140 0.059*
C3 1.0599 (15) 0.7389 (5) 0.0734 (3) 0.0545 (17)
H3 1.1291 0.7232 0.0455 0.065*
C4 1.2096 (16) 0.7875 (5) 0.0984 (3) 0.0583 (19)
H4A 1.1409 0.8101 0.1240 0.070*
H4B 1.3172 0.7576 0.1107 0.070*
C5 1.3008 (16) 0.8451 (5) 0.0698 (3) 0.068 (2)
H5A 1.3959 0.8239 0.0489 0.103*
H5B 1.3691 0.8795 0.0890 0.103*
H5C 1.1964 0.8693 0.0528 0.103*
C6 0.8720 (17) 0.7769 (5) 0.0578 (3) 0.0608 (17)
H6A 0.8152 0.8037 0.0828 0.091*
H6B 0.7757 0.7418 0.0472 0.091*
H6C 0.9048 0.8095 0.0334 0.091*
C7 1.0345 (15) 0.5792 (5) 0.0418 (3) 0.0517 (15)
H7 1.1677 0.5950 0.0400 0.062*
C8 0.9732 (15) 0.5228 (5) 0.0103 (3) 0.0486 (16)
C9 0.7908 (15) 0.4889 (5) 0.0143 (3) 0.0534 (16)
C10 0.7324 (17) 0.4356 (5) −0.0177 (3) 0.0582 (18)
H10 0.6086 0.4120 −0.0153 0.070*
C11 0.8681 (17) 0.4195 (5) −0.0533 (3) 0.0600 (18)
H11A 0.8332 0.3845 −0.0746 0.072*
C12 1.0428 (15) 0.4528 (5) −0.0570 (3) 0.0548 (18)
H12A 1.1263 0.4411 −0.0815 0.066*
C13 1.1091 (17) 0.5055 (5) −0.0256 (3) 0.0549 (17)
H13 1.2348 0.5277 −0.0282 0.066*
C14 0.3652 (17) 0.5267 (5) 0.1638 (3) 0.066 (2)
H14A 0.3936 0.5653 0.1848 0.099*
H14B 0.4521 0.4863 0.1701 0.099*
H14C 0.2267 0.5121 0.1670 0.099*
C15 0.8635 (18) 0.4359 (5) 0.1361 (3) 0.073 (2)
H15A 0.9531 0.4265 0.1612 0.109*
H15B 0.9349 0.4294 0.1079 0.109*
H15C 0.7513 0.4030 0.1374 0.109*
C16 0.8581 (16) 0.5828 (5) 0.2552 (3) 0.0513 (14)
C17 1.0050 (15) 0.5991 (5) 0.2949 (3) 0.0518 (15)
H17 1.1290 0.6209 0.2828 0.062*
C18 1.0586 (14) 0.5289 (5) 0.3221 (3) 0.0563 (17)
H18 1.1187 0.5441 0.3512 0.068*
C19 1.2219 (16) 0.4839 (5) 0.2959 (3) 0.0633 (19)
H19A 1.1597 0.4628 0.2690 0.076*
H19B 1.3272 0.5166 0.2856 0.076*
C20 1.3212 (16) 0.4223 (5) 0.3243 (4) 0.074 (2)
H20A 1.3860 0.4425 0.3507 0.111*
H20B 1.4197 0.3977 0.3058 0.111*
H20C 1.2191 0.3885 0.3338 0.111*
C21 0.8721 (17) 0.4819 (5) 0.3335 (3) 0.0662 (17)
H21A 0.8137 0.4639 0.3058 0.099*
H21B 0.7742 0.5108 0.3495 0.099*
H21C 0.9126 0.4420 0.3524 0.099*
C22 1.0021 (16) 0.6793 (5) 0.3590 (3) 0.0547 (15)
H22 1.1333 0.6629 0.3639 0.066*
C23 0.9192 (17) 0.7337 (5) 0.3899 (3) 0.0560 (16)
C24 0.7400 (17) 0.7719 (5) 0.3813 (3) 0.0570 (16)
C25 0.6718 (17) 0.8226 (6) 0.4131 (3) 0.0658 (18)
H25 0.5537 0.8485 0.4076 0.079*
C26 0.7817 (17) 0.8347 (6) 0.4538 (3) 0.0662 (19)
H26 0.7359 0.8688 0.4748 0.079*
C27 0.9519 (17) 0.7975 (5) 0.4623 (3) 0.064 (2)
H27 1.0196 0.8051 0.4897 0.077*
C28 1.0326 (17) 0.7461 (6) 0.4303 (3) 0.0658 (19)
H28 1.1537 0.7220 0.4357 0.079*
C29 0.9195 (16) 0.8146 (5) 0.2678 (3) 0.0646 (19)
H29A 0.8386 0.8502 0.2832 0.097*
H29B 0.9736 0.8352 0.2403 0.097*
H29C 1.0284 0.7997 0.2873 0.097*
C30 0.3799 (17) 0.7283 (5) 0.2223 (3) 0.0633 (19)
H30A 0.2421 0.7263 0.2121 0.095*
H30B 0.4601 0.6951 0.2047 0.095*
H30C 0.4310 0.7765 0.2183 0.095*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
V1 0.0333 (8) 0.0662 (10) 0.0373 (8) −0.0008 (9) −0.0012 (8) −0.0034 (8)
V2 0.0409 (9) 0.0609 (10) 0.0346 (8) −0.0015 (9) 0.0004 (8) 0.0037 (8)
N1 0.036 (4) 0.046 (4) 0.026 (3) 0.000 (4) −0.008 (3) −0.001 (3)
N2 0.037 (4) 0.032 (3) 0.042 (4) 0.009 (4) 0.004 (4) 0.003 (3)
O1 0.051 (2) 0.067 (2) 0.041 (2) 0.002 (2) 0.000 (2) −0.002 (2)
O2 0.064 (3) 0.071 (2) 0.040 (2) 0.000 (2) 0.004 (2) −0.008 (2)
O3 0.055 (3) 0.067 (3) 0.044 (2) −0.005 (2) 0.002 (2) −0.007 (2)
O4 0.053 (3) 0.073 (3) 0.046 (3) −0.005 (2) −0.007 (2) 0.008 (2)
O5 0.044 (3) 0.078 (3) 0.050 (3) −0.006 (3) −0.002 (3) 0.000 (3)
O6 0.058 (3) 0.063 (2) 0.043 (2) 0.002 (2) −0.001 (2) −0.002 (2)
O7 0.052 (2) 0.065 (2) 0.040 (2) 0.005 (2) −0.005 (2) −0.003 (2)
O8 0.065 (3) 0.070 (3) 0.047 (2) 0.010 (3) −0.004 (2) −0.008 (2)
O9 0.067 (3) 0.066 (3) 0.045 (2) 0.002 (3) −0.001 (2) −0.007 (2)
O10 0.053 (3) 0.071 (3) 0.048 (3) 0.002 (3) 0.007 (2) 0.006 (2)
O11 0.062 (3) 0.064 (3) 0.038 (2) −0.006 (2) 0.003 (2) −0.005 (2)
O12 0.047 (3) 0.077 (3) 0.046 (3) 0.001 (3) −0.004 (2) 0.005 (3)
C1 0.057 (3) 0.062 (3) 0.038 (3) −0.001 (3) −0.002 (3) −0.002 (3)
C2 0.049 (3) 0.060 (3) 0.037 (3) −0.002 (3) 0.001 (3) −0.001 (3)
C3 0.060 (3) 0.062 (3) 0.041 (3) −0.004 (3) 0.007 (3) −0.002 (3)
C4 0.066 (4) 0.062 (4) 0.047 (4) −0.007 (3) 0.007 (3) −0.003 (3)
C5 0.075 (5) 0.073 (5) 0.057 (4) −0.018 (4) 0.006 (4) −0.003 (4)
C6 0.064 (3) 0.070 (3) 0.049 (3) −0.005 (3) 0.006 (3) 0.002 (3)
C7 0.054 (3) 0.061 (3) 0.039 (3) 0.003 (3) 0.001 (3) −0.001 (3)
C8 0.053 (3) 0.060 (3) 0.033 (3) −0.001 (3) 0.003 (3) −0.002 (3)
C9 0.058 (3) 0.066 (3) 0.035 (3) 0.000 (3) 0.001 (3) −0.006 (3)
C10 0.064 (4) 0.067 (4) 0.043 (3) −0.001 (3) 0.000 (3) −0.006 (3)
C11 0.070 (4) 0.068 (4) 0.042 (3) 0.003 (4) 0.000 (3) −0.011 (3)
C12 0.067 (4) 0.066 (4) 0.031 (3) 0.006 (3) 0.003 (3) −0.013 (3)
C13 0.060 (3) 0.066 (3) 0.039 (3) 0.002 (3) 0.005 (3) −0.005 (3)
C14 0.060 (4) 0.082 (4) 0.056 (4) −0.001 (4) 0.011 (4) 0.005 (4)
C15 0.076 (4) 0.082 (4) 0.061 (4) 0.012 (4) −0.004 (4) −0.003 (4)
C16 0.056 (3) 0.059 (3) 0.039 (3) 0.004 (3) −0.001 (3) −0.002 (3)
C17 0.053 (3) 0.060 (3) 0.043 (3) 0.003 (3) −0.003 (3) −0.004 (3)
C18 0.059 (3) 0.063 (3) 0.047 (3) 0.006 (3) −0.009 (3) −0.002 (3)
C19 0.065 (4) 0.062 (4) 0.063 (4) 0.009 (3) −0.006 (3) −0.004 (3)
C20 0.074 (5) 0.069 (5) 0.079 (5) 0.004 (4) −0.010 (4) 0.000 (4)
C21 0.068 (3) 0.069 (3) 0.062 (3) 0.009 (3) −0.002 (3) 0.005 (3)
C22 0.060 (3) 0.060 (3) 0.044 (3) 0.000 (3) −0.002 (3) −0.007 (3)
C23 0.064 (3) 0.062 (3) 0.042 (3) −0.006 (3) −0.002 (3) −0.010 (3)
C24 0.067 (3) 0.065 (3) 0.039 (3) −0.003 (3) 0.005 (3) −0.007 (3)
C25 0.076 (4) 0.073 (4) 0.048 (3) 0.000 (3) 0.005 (3) −0.010 (3)
C26 0.077 (4) 0.074 (4) 0.047 (3) −0.003 (4) 0.004 (3) −0.013 (4)
C27 0.079 (4) 0.069 (4) 0.045 (3) −0.006 (4) 0.000 (3) −0.015 (3)
C28 0.077 (4) 0.072 (4) 0.048 (3) 0.000 (3) −0.003 (3) −0.013 (3)
C29 0.071 (4) 0.072 (4) 0.051 (4) −0.007 (4) 0.001 (4) −0.002 (4)
C30 0.060 (4) 0.079 (4) 0.050 (4) 0.007 (4) −0.002 (4) 0.003 (3)

Geometric parameters (Å, º)

V1—O4 1.606 (6) C9—C10 1.413 (12)
V1—O5 1.772 (7) C10—C11 1.407 (13)
V1—O3 1.865 (6) C10—H10 0.9300
V1—O1 1.950 (6) C11—C12 1.313 (13)
V1—N1 2.114 (7) C11—H11A 0.9300
V1—O6 2.345 (6) C12—C13 1.410 (12)
V2—O10 1.596 (6) C12—H12A 0.9300
V2—O12 1.801 (4) C13—H13 0.9300
V2—O9 1.881 (6) C14—H14A 0.9600
V2—O7 1.948 (6) C14—H14B 0.9600
V2—N2 2.114 (8) C14—H14C 0.9600
V2—O11 2.330 (6) C15—H15A 0.9600
N1—C7 1.298 (10) C15—H15B 0.9600
N1—C2 1.490 (10) C15—H15C 0.9600
N2—C22 1.314 (11) C16—C17 1.543 (12)
N2—C17 1.492 (10) C17—C18 1.564 (12)
O1—C1 1.294 (11) C17—H17 0.9800
O2—C1 1.236 (10) C18—C19 1.564 (12)
O3—C9 1.366 (10) C18—C21 1.544 (14)
O5—C14 1.455 (10) C18—H18 0.9800
O6—C15 1.382 (10) C19—C20 1.555 (12)
O6—H6 0.8200 C19—H19A 0.9700
O7—C16 1.308 (11) C19—H19B 0.9700
O8—C16 1.242 (9) C20—H20A 0.9600
O9—C24 1.339 (11) C20—H20B 0.9600
O11—C29 1.414 (10) C20—H20C 0.9600
O11—H11 0.8200 C21—H21A 0.9600
O12—C30 1.454 (9) C21—H21B 0.9600
C1—C2 1.538 (12) C21—H21C 0.9600
C2—C3 1.562 (12) C22—C23 1.459 (12)
C2—H2 0.9800 C22—H22 0.9300
C3—C6 1.498 (13) C23—C24 1.402 (14)
C3—C4 1.524 (12) C23—C28 1.418 (13)
C3—H3 0.9800 C24—C25 1.396 (13)
C4—C5 1.483 (12) C25—C26 1.413 (13)
C4—H4A 0.9700 C25—H25 0.9300
C4—H4B 0.9700 C26—C27 1.343 (14)
C5—H5A 0.9600 C26—H26 0.9300
C5—H5B 0.9600 C27—C28 1.437 (13)
C5—H5C 0.9600 C27—H27 0.9300
C6—H6A 0.9600 C28—H28 0.9300
C6—H6B 0.9600 C29—H29A 0.9600
C6—H6C 0.9600 C29—H29B 0.9600
C7—C8 1.449 (12) C29—H29C 0.9600
C7—H7 0.9300 C30—H30A 0.9600
C8—C9 1.364 (12) C30—H30B 0.9600
C8—C13 1.419 (12) C30—H30C 0.9600
O4—V1—O5 101.6 (3) C9—C10—C11 117.6 (10)
O4—V1—O3 99.6 (3) C9—C10—H10 121.2
O5—V1—O3 100.3 (3) C11—C10—H10 121.2
O4—V1—O1 100.8 (3) C12—C11—C10 121.6 (9)
O5—V1—O1 91.5 (3) C12—C11—H11A 119.2
O3—V1—O1 153.8 (3) C10—C11—H11A 119.2
O4—V1—N1 94.4 (3) C11—C12—C13 122.8 (9)
O5—V1—N1 161.7 (3) C11—C12—H12A 118.6
O3—V1—N1 85.7 (3) C13—C12—H12A 118.6
O1—V1—N1 76.6 (2) C8—C13—C12 116.2 (10)
O4—V1—O6 173.7 (3) C8—C13—H13 121.9
O5—V1—O6 84.7 (3) C12—C13—H13 121.9
O3—V1—O6 79.5 (2) O5—C14—H14A 109.5
O1—V1—O6 78.4 (2) O5—C14—H14B 109.5
N1—V1—O6 79.4 (2) H14A—C14—H14B 109.5
O10—V2—O12 100.7 (3) O5—C14—H14C 109.5
O10—V2—O9 99.4 (3) H14A—C14—H14C 109.5
O12—V2—O9 101.9 (3) H14B—C14—H14C 109.5
O10—V2—O7 100.3 (3) O6—C15—H15A 109.5
O12—V2—O7 89.3 (3) O6—C15—H15B 109.5
O9—V2—O7 155.0 (3) H15A—C15—H15B 109.5
O10—V2—N2 94.4 (3) O6—C15—H15C 109.5
O12—V2—N2 161.5 (3) H15A—C15—H15C 109.5
O9—V2—N2 85.9 (3) H15B—C15—H15C 109.5
O7—V2—N2 77.5 (3) O8—C16—O7 124.5 (9)
O10—V2—O11 172.7 (3) O8—C16—C17 119.1 (9)
O12—V2—O11 86.6 (3) O7—C16—C17 116.3 (8)
O9—V2—O11 79.5 (2) N2—C17—C16 105.7 (7)
O7—V2—O11 78.9 (2) N2—C17—C18 110.9 (7)
N2—V2—O11 78.3 (2) C16—C17—C18 111.4 (7)
C7—N1—C2 117.7 (7) N2—C17—H17 109.6
C7—N1—V1 125.6 (6) C16—C17—H17 109.6
C2—N1—V1 116.7 (5) C18—C17—H17 109.6
C22—N2—C17 116.7 (8) C19—C18—C21 111.1 (7)
C22—N2—V2 126.6 (6) C19—C18—C17 110.3 (8)
C17—N2—V2 116.5 (5) C21—C18—C17 113.3 (8)
C1—O1—V1 124.6 (6) C19—C18—H18 107.3
C9—O3—V1 132.0 (6) C21—C18—H18 107.3
C14—O5—V1 133.5 (6) C17—C18—H18 107.3
C15—O6—V1 132.8 (6) C20—C19—C18 114.8 (8)
C15—O6—H6 109.6 C20—C19—H19A 108.6
V1—O6—H6 117.4 C18—C19—H19A 108.6
C16—O7—V2 123.6 (6) C20—C19—H19B 108.6
C24—O9—V2 130.5 (6) C18—C19—H19B 108.6
C29—O11—V2 128.9 (5) H19A—C19—H19B 107.6
C29—O11—H11 109.7 C19—C20—H20A 109.5
V2—O11—H11 119.9 C19—C20—H20B 109.5
C30—O12—V2 130.2 (6) H20A—C20—H20B 109.5
O2—C1—O1 124.1 (9) C19—C20—H20C 109.5
O2—C1—C2 119.9 (9) H20A—C20—H20C 109.5
O1—C1—C2 116.0 (8) H20B—C20—H20C 109.5
N1—C2—C1 105.3 (7) C18—C21—H21A 109.5
N1—C2—C3 114.0 (7) C18—C21—H21B 109.5
C1—C2—C3 112.1 (7) H21A—C21—H21B 109.5
N1—C2—H2 108.4 C18—C21—H21C 109.5
C1—C2—H2 108.4 H21A—C21—H21C 109.5
C3—C2—H2 108.4 H21B—C21—H21C 109.5
C6—C3—C4 114.2 (8) N2—C22—C23 122.6 (9)
C6—C3—C2 112.1 (8) N2—C22—H22 118.7
C4—C3—C2 112.3 (7) C23—C22—H22 118.7
C6—C3—H3 105.8 C24—C23—C28 121.0 (9)
C4—C3—H3 105.8 C24—C23—C22 123.6 (9)
C2—C3—H3 105.8 C28—C23—C22 115.4 (9)
C5—C4—C3 114.5 (8) O9—C24—C25 119.1 (10)
C5—C4—H4A 108.6 O9—C24—C23 121.4 (9)
C3—C4—H4A 108.6 C25—C24—C23 119.4 (10)
C5—C4—H4B 108.6 C24—C25—C26 120.2 (11)
C3—C4—H4B 108.6 C24—C25—H25 119.9
H4A—C4—H4B 107.6 C26—C25—H25 119.9
C4—C5—H5A 109.5 C27—C26—C25 120.4 (10)
C4—C5—H5B 109.5 C27—C26—H26 119.8
H5A—C5—H5B 109.5 C25—C26—H26 119.8
C4—C5—H5C 109.5 C26—C27—C28 121.9 (10)
H5A—C5—H5C 109.5 C26—C27—H27 119.0
H5B—C5—H5C 109.5 C28—C27—H27 119.0
C3—C6—H6A 109.5 C23—C28—C27 117.0 (10)
C3—C6—H6B 109.5 C23—C28—H28 121.5
H6A—C6—H6B 109.5 C27—C28—H28 121.5
C3—C6—H6C 109.5 O11—C29—H29A 109.5
H6A—C6—H6C 109.5 O11—C29—H29B 109.5
H6B—C6—H6C 109.5 H29A—C29—H29B 109.5
N1—C7—C8 126.0 (9) O11—C29—H29C 109.5
N1—C7—H7 117.0 H29A—C29—H29C 109.5
C8—C7—H7 117.0 H29B—C29—H29C 109.5
C9—C8—C13 121.4 (9) O12—C30—H30A 109.5
C9—C8—C7 121.4 (9) O12—C30—H30B 109.5
C13—C8—C7 117.1 (9) H30A—C30—H30B 109.5
O3—C9—C8 122.4 (8) O12—C30—H30C 109.5
O3—C9—C10 117.1 (9) H30A—C30—H30C 109.5
C8—C9—C10 120.3 (9) H30B—C30—H30C 109.5
C1—C2—C3—C4 78.7 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O5i 0.98 2.52 3.388 (12) 148
C7—H7···O4i 0.93 2.48 3.395 (12) 170
C17—H17···O12i 0.98 2.39 3.328 (12) 159
O6—H6···O8 0.82 1.89 2.688 (8) 165
O11—H11···O2 0.82 1.86 2.668 (8) 170

Symmetry code: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2555).

References

  1. Bian, L. & Li, L. (2011). Acta Cryst. E67, m274. [DOI] [PMC free article] [PubMed]
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cao, Y.-Z., Zhao, H.-Y., Bai, F.-Y., Xing, Y.-H., Wei, D.-M., Niu, S.-Y. & Shi, Z. (2011). Inorg. Chim. Acta, 368, 223–230.
  5. Chen, C.-T., Lin, J.-S., Kuo, J.-H., Weng, S.-S., Cuo, T.-S., Lin, Y.-W., Cheng, C.-C., Huang, Y.-C., Yu, J.-K. & Chou, P.-T. (2004). Org. Lett. 6, 4471–4474. [DOI] [PubMed]
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Horn, A., Filgueiras, C. A. L., Wardell, J. L., Herbst, M. H., Vugman, N. V., Santos, P. S., Lopes, J. G. S. & Howie, R. A. (2004). Inorg. Chim. Acta, 357, 4240–4246.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571. [DOI] [PubMed]
  11. Wikksky, G. R., Goldfine, A. B., Kostyniak, P. J., McNeill, J. H., Yang, L. Q., Khan, H. R. & Crans, D. C. (2001). J. Inorg. Biochem. 85, 33–42. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028231/hy2555sup1.cif

e-68-0m982-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028231/hy2555Isup2.hkl

e-68-0m982-Isup2.hkl (308.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES