Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):m983. doi: 10.1107/S160053681202586X

[Bis(pyridin-2-yl) selenide-κ2 N,N′]tetra­chloridotin(IV)

Gunay Z Mammadova a,*, Zhanna V Matsulevich b, Vladimir K Osmanov b, Alexander V Borisov b, Victor N Khrustalev c
PMCID: PMC3393232  PMID: 22807800

Abstract

The title compound, [SnCl4(C10H8N2Se)], was obtained by the reaction of 2,2′-dipyridyl diselenide with tin tetra­chloride. The SnIV ion is coordinated by two N atoms [Sn—N = 2.266 (2) and 2.274 (2) Å] from the bis­(2-pyrid­yl)selenide ligand and four chloride anions [Sn—Cl = 2.3717 (6)–2.3939 (6) Å] in a distorted octa­hedral geometry. The central six-membered chelate ring has a boat conformation with the Se and Sn atoms deviating by 0.692 (3) and 0.855 (3) Å, respectively, from the mean plane through the remaining four ring atoms. The pyridine rings are inclined to each other by a dihedral angle of 49.62 (8)°. The crystal packing exhibits short inter­molecular Se⋯Cl contacts [3.5417 (7) and 3.5648 (7) Å], weak C—H⋯Cl hydrogen bonds and π–π stacking inter­actions between the pyridine rings with a centroid–centroid distance of 3.683 (3) Å.

Related literature  

For the crystal structure of the 2,2′-dipyridyl-selenide ligand, see: Dunne et al. (1995). For the crystal structures of related compounds, see: Tresoldi et al. (1992); Kondo et al. (1995); Blake et al. (2002); Teles et al. (2006); Zhao et al. (2007); Wriedt et al. (2008a ,b ,c ).graphic file with name e-68-0m983-scheme1.jpg

Experimental  

Crystal data  

  • [SnCl4(C10H8N2Se)]

  • M r = 495.63

  • Monoclinic, Inline graphic

  • a = 8.0835 (4) Å

  • b = 12.2153 (5) Å

  • c = 14.4710 (6) Å

  • β = 101.208 (1)°

  • V = 1401.65 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.16 mm−1

  • T = 100 K

  • 0.30 × 0.24 × 0.15 mm

Data collection  

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan [SADABS; Sheldrick, 1998) T min = 0.306, T max = 0.511

  • 16245 measured reflections

  • 4096 independent reflections

  • 3723 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.058

  • S = 1.00

  • 4096 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −1.10 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202586X/cv5309sup1.cif

e-68-0m983-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202586X/cv5309Isup2.hkl

e-68-0m983-Isup2.hkl (200.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl3i 0.95 2.79 3.3965 (18) 122
C8—H8⋯Cl2ii 0.95 2.83 3.3126 (18) 113

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

supplementary crystallographic information

Comment

2,2'-Dipyridyl sulfide plays prominent role as useful ligand in coordination chemistry (Tresoldi et al., 1992; Kondo et al., 1995; Blake et al., 2002; Teles et al., 2006; Zhao et al., 2007; Wriedt et al., 2008a, 2008b, 2008c). The important structural feature of these complexes is the practically unchangeable bond angle at sulfur atom. On the other hand, the most labile geometrical parameters in them are the dihedral angle between two pyridine rings as well as the deviation of metal atom from the mean plane of the central six-membered chelate ring passed through the two nitrogen and two carbon atoms due to the different coordination environment. It is interesting to note that 2,2'-dipyridyl selenide is also known (Dunne et al., 1995), however, no structurally characterized metal complexes with this ligand were reported till now.

This article is dedicated to the first structural characterization of metal complex with 2,2'-dipyridyl selenide ligand - [bis(2-pyridyl)selenide-k2N,N')]tetrachlorido-tin(IV), C10H8Cl4N2SeSn (I), which was obtained by the reaction of 2,2'-dipyridyl diselenide with tin tetrachloride (Figure 1).

The molecule of I possesses overall intrinsic Cs (m) symmetry (Figure 2). The tin ion is coordinated by two N atoms [Sn—N 2.266 (2), 2.274 (2) Å] from bis(2-pyridyl)selenide ligand and four chloride anions [Sn—Cl 2.3717 (6)–2.3939 (6) Å] in a distorted octahedral geometry. The central six-membered chelate ring has a boat conformation with the Se and Sn atoms deviating from the mean plane passed through the rest four atoms of the ring at 0.692 (3) and 0.855 (3) Å, respectively. Two pyridine rings are inclined to each other with a dihedral angle of 49.62 (8)°. Remarkably, the value of the bond angle at selenium atom in I (101.51 (10)°) is almost equal to that in the free 2,2'-dipyridyl selenide ligand (101.9 (2)°) (Dunne et al., 1995).

In the crystal, the molecules of I form the chains along the a axis by the attractive intermolecular Se1···Cl2i [3.5417 (7) Å] and Se1···Cl4i [3.5648 (7) Å] interactions. The chains are further linked into a three-dimensional framework by weak C—H···Cl hydrogen bonds (Table 1) and π···π stacking interactions between the pyridine rings with a centroid-centroid distance of 3.683 (3) Å. Symmetry code: (i) x - 1, y, z.

Experimental

A solution of SnCl4 (0.13 g, 0.5 mmol) in CH2Cl2 (25 ml) was added to a solution of 2,2'-dipyridyl diselenide (0.16 g, 0.5 mmol) in CH2Cl2 (25 ml) with stirring at room temperature. After 10 min, solvent was evaporated in vacuo. An attempt to re-crystallization of the solid residue from CH3CN led to formation of the powder Se which was separated by filtration of hot solution. The filtrate was concentrated in vacuo. The solid was re-crystallized from CH3CN to give I as yellow crystals. Yield is 82%. M.p. = 541–543 K. 1H NMR (DMSO-d6, 300 MHz, 302 K): δ = 8.48 (d, 2H, J = 4.8), 7.70 (t, 2H, J = 7.8), 7.55 (d, 2H, J = 7.8), 7.28 (dd, 2H, J = 7.8, J = 4.8). Anal. Calcd for C10H8Cl4N2SeSn: C, 24.23; H, 1.63; N, 5.65. Found: C, 24.14;H, 1.59; N, 5.57.

Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

Reaction of 2,2'-dipyridyl diselenide with tin tetrachloride.

Fig. 2.

Fig. 2.

The molecular structure of I showing the atomic numbering and 50% probability displacement ellipsoids.

Crystal data

[SnCl4(C10H8N2Se)] F(000) = 936
Mr = 495.63 Dx = 2.349 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9615 reflections
a = 8.0835 (4) Å θ = 2.2–30.0°
b = 12.2153 (5) Å µ = 5.16 mm1
c = 14.4710 (6) Å T = 100 K
β = 101.208 (1)° Prism, yellow
V = 1401.65 (11) Å3 0.30 × 0.24 × 0.15 mm
Z = 4

Data collection

Bruker SMART 1K CCD diffractometer 4096 independent reflections
Radiation source: fine-focus sealed tube 3723 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan [SADABS; Sheldrick, 1998) h = −11→11
Tmin = 0.306, Tmax = 0.511 k = −17→17
16245 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.018P)2 + 5.2P] where P = (Fo2 + 2Fc2)/3
4096 reflections (Δ/σ)max = 0.001
163 parameters Δρmax = 1.64 e Å3
0 restraints Δρmin = −1.10 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.381830 (19) 0.755376 (12) 0.120929 (11) 0.01034 (5)
Se1 −0.08948 (3) 0.76213 (2) 0.108418 (18) 0.01534 (6)
Cl1 0.46143 (7) 0.84715 (5) −0.00939 (4) 0.01648 (11)
Cl2 0.59551 (7) 0.84559 (5) 0.23278 (4) 0.01729 (11)
Cl3 0.27580 (8) 0.67096 (5) 0.24510 (4) 0.01741 (11)
Cl4 0.54619 (7) 0.59645 (5) 0.10454 (4) 0.01745 (11)
N1 0.2061 (3) 0.89921 (17) 0.12452 (14) 0.0129 (4)
N2 0.1674 (3) 0.68416 (17) 0.01238 (14) 0.0131 (4)
C1 0.0371 (3) 0.8955 (2) 0.11795 (17) 0.0145 (4)
C2 −0.0569 (3) 0.9903 (2) 0.12213 (18) 0.0177 (5)
H2 −0.1758 0.9862 0.1167 0.021*
C3 0.0241 (3) 1.0905 (2) 0.13423 (18) 0.0182 (5)
H3 −0.0382 1.1556 0.1387 0.022*
C4 0.1969 (3) 1.0950 (2) 0.13974 (18) 0.0184 (5)
H4 0.2551 1.1629 0.1477 0.022*
C5 0.2831 (3) 0.9981 (2) 0.13332 (17) 0.0156 (4)
H5 0.4011 1.0012 0.1352 0.019*
C6 0.0019 (3) 0.68436 (19) 0.01536 (17) 0.0134 (4)
C7 −0.1159 (3) 0.6267 (2) −0.04941 (18) 0.0167 (5)
H7 −0.2316 0.6271 −0.0450 0.020*
C8 −0.0625 (3) 0.5688 (2) −0.12034 (18) 0.0187 (5)
H8 −0.1401 0.5266 −0.1639 0.022*
C9 0.1063 (3) 0.5734 (2) −0.12678 (17) 0.0176 (5)
H9 0.1451 0.5369 −0.1765 0.021*
C10 0.2175 (3) 0.6317 (2) −0.06004 (17) 0.0153 (4)
H10 0.3328 0.6351 −0.0651 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.00923 (7) 0.01100 (8) 0.01039 (8) 0.00012 (5) 0.00091 (5) −0.00026 (5)
Se1 0.01033 (11) 0.01823 (12) 0.01802 (12) −0.00126 (8) 0.00412 (9) −0.00212 (9)
Cl1 0.0171 (3) 0.0176 (3) 0.0157 (3) −0.0012 (2) 0.0055 (2) 0.0024 (2)
Cl2 0.0152 (2) 0.0166 (3) 0.0178 (3) −0.0017 (2) −0.0023 (2) −0.0027 (2)
Cl3 0.0206 (3) 0.0184 (3) 0.0138 (2) −0.0021 (2) 0.0049 (2) 0.0021 (2)
Cl4 0.0161 (3) 0.0151 (3) 0.0203 (3) 0.0045 (2) 0.0014 (2) −0.0015 (2)
N1 0.0133 (9) 0.0124 (9) 0.0131 (9) 0.0010 (7) 0.0025 (7) 0.0002 (7)
N2 0.0120 (9) 0.0135 (9) 0.0132 (9) 0.0004 (7) 0.0012 (7) −0.0006 (7)
C1 0.0154 (10) 0.0161 (11) 0.0120 (10) 0.0006 (8) 0.0028 (8) 0.0000 (8)
C2 0.0177 (11) 0.0197 (12) 0.0168 (11) 0.0035 (9) 0.0058 (9) 0.0009 (9)
C3 0.0261 (13) 0.0138 (11) 0.0165 (11) 0.0055 (9) 0.0087 (10) 0.0033 (9)
C4 0.0250 (13) 0.0122 (10) 0.0184 (11) 0.0015 (9) 0.0053 (10) −0.0007 (9)
C5 0.0160 (11) 0.0142 (10) 0.0169 (11) 0.0004 (8) 0.0038 (9) 0.0016 (9)
C6 0.0130 (10) 0.0112 (10) 0.0157 (11) 0.0003 (8) 0.0018 (8) 0.0012 (8)
C7 0.0138 (10) 0.0155 (11) 0.0187 (11) −0.0013 (8) −0.0018 (9) 0.0017 (9)
C8 0.0206 (12) 0.0142 (11) 0.0174 (11) 0.0022 (9) −0.0061 (9) 0.0004 (9)
C9 0.0226 (12) 0.0159 (11) 0.0127 (11) 0.0031 (9) −0.0007 (9) −0.0016 (8)
C10 0.0154 (10) 0.0166 (11) 0.0138 (10) 0.0030 (8) 0.0024 (8) −0.0021 (8)

Geometric parameters (Å, º)

Sn1—N1 2.266 (2) C2—H2 0.9500
Sn1—N2 2.274 (2) C3—C4 1.385 (4)
Sn1—Cl3 2.3717 (6) C3—H3 0.9500
Sn1—Cl1 2.3873 (6) C4—C5 1.385 (3)
Sn1—Cl4 2.3901 (6) C4—H4 0.9500
Sn1—Cl2 2.3939 (6) C5—H5 0.9500
Se1—C6 1.910 (2) C6—C7 1.391 (3)
Se1—C1 1.914 (2) C7—C8 1.383 (4)
N1—C1 1.351 (3) C7—H7 0.9500
N1—C5 1.353 (3) C8—C9 1.387 (4)
N2—C6 1.347 (3) C8—H8 0.9500
N2—C10 1.356 (3) C9—C10 1.382 (3)
C1—C2 1.393 (3) C9—H9 0.9500
C2—C3 1.383 (4) C10—H10 0.9500
N1—Sn1—N2 85.14 (7) C3—C2—H2 120.2
N1—Sn1—Cl3 89.95 (5) C1—C2—H2 120.2
N2—Sn1—Cl3 91.02 (5) C2—C3—C4 119.3 (2)
N1—Sn1—Cl1 85.44 (5) C2—C3—H3 120.4
N2—Sn1—Cl1 85.43 (5) C4—C3—H3 120.4
Cl3—Sn1—Cl1 174.40 (2) C3—C4—C5 118.5 (2)
N1—Sn1—Cl4 174.23 (5) C3—C4—H4 120.7
N2—Sn1—Cl4 89.11 (5) C5—C4—H4 120.7
Cl3—Sn1—Cl4 90.68 (2) N1—C5—C4 122.7 (2)
Cl1—Sn1—Cl4 93.59 (2) N1—C5—H5 118.6
N1—Sn1—Cl2 90.05 (5) C4—C5—H5 118.6
N2—Sn1—Cl2 174.98 (5) N2—C6—C7 122.1 (2)
Cl3—Sn1—Cl2 90.42 (2) N2—C6—Se1 123.11 (18)
Cl1—Sn1—Cl2 92.76 (2) C7—C6—Se1 114.76 (18)
Cl4—Sn1—Cl2 95.68 (2) C8—C7—C6 119.2 (2)
C6—Se1—C1 101.51 (10) C8—C7—H7 120.4
C1—N1—C5 118.5 (2) C6—C7—H7 120.4
C1—N1—Sn1 127.01 (16) C7—C8—C9 118.8 (2)
C5—N1—Sn1 114.52 (16) C7—C8—H8 120.6
C6—N2—C10 118.3 (2) C9—C8—H8 120.6
C6—N2—Sn1 127.28 (16) C10—C9—C8 119.2 (2)
C10—N2—Sn1 114.38 (16) C10—C9—H9 120.4
N1—C1—C2 121.4 (2) C8—C9—H9 120.4
N1—C1—Se1 123.52 (18) N2—C10—C9 122.2 (2)
C2—C1—Se1 114.99 (18) N2—C10—H10 118.9
C3—C2—C1 119.5 (2) C9—C10—H10 118.9
N2—Sn1—N1—C1 37.1 (2) C6—Se1—C1—C2 136.94 (19)
Cl3—Sn1—N1—C1 −53.95 (19) N1—C1—C2—C3 −0.7 (4)
Cl1—Sn1—N1—C1 122.9 (2) Se1—C1—C2—C3 176.52 (19)
Cl2—Sn1—N1—C1 −144.38 (19) C1—C2—C3—C4 1.5 (4)
N2—Sn1—N1—C5 −142.22 (17) C2—C3—C4—C5 −0.3 (4)
Cl3—Sn1—N1—C5 126.76 (17) C1—N1—C5—C4 2.7 (4)
Cl1—Sn1—N1—C5 −56.43 (16) Sn1—N1—C5—C4 −177.9 (2)
Cl2—Sn1—N1—C5 36.33 (17) C3—C4—C5—N1 −1.9 (4)
N1—Sn1—N2—C6 −42.8 (2) C10—N2—C6—C7 4.4 (3)
Cl3—Sn1—N2—C6 47.1 (2) Sn1—N2—C6—C7 −172.03 (18)
Cl1—Sn1—N2—C6 −128.6 (2) C10—N2—C6—Se1 −176.05 (18)
Cl4—Sn1—N2—C6 137.7 (2) Sn1—N2—C6—Se1 7.5 (3)
N1—Sn1—N2—C10 140.65 (18) C1—Se1—C6—N2 40.4 (2)
Cl3—Sn1—N2—C10 −129.48 (17) C1—Se1—C6—C7 −140.06 (19)
Cl1—Sn1—N2—C10 54.85 (17) N2—C6—C7—C8 −1.2 (4)
Cl4—Sn1—N2—C10 −38.82 (17) Se1—C6—C7—C8 179.23 (19)
C5—N1—C1—C2 −1.4 (4) C6—C7—C8—C9 −2.4 (4)
Sn1—N1—C1—C2 179.31 (17) C7—C8—C9—C10 2.7 (4)
C5—N1—C1—Se1 −178.36 (18) C6—N2—C10—C9 −4.1 (4)
Sn1—N1—C1—Se1 2.4 (3) Sn1—N2—C10—C9 172.81 (19)
C6—Se1—C1—N1 −45.9 (2) C8—C9—C10—N2 0.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···Cl3i 0.95 2.79 3.3965 (18) 122
C8—H8···Cl2ii 0.95 2.83 3.3126 (18) 113
C8—H8···Cl3iii 0.95 2.81 3.6870 (19) 154

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x−1, −y+3/2, z−1/2; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5309).

References

  1. Blake, A. J., George, M. W., Hubberstey, P., Garcia, R. L. & Wilson, C. (2002). Acta Cryst. E58, m96–m98.
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1995). Acta Cryst. C51, 1454–1457.
  4. Kondo, M., Kawata, S., Kitagawa, S., Kiso, H. & Munakata, M. (1995). Acta Cryst. C51, 567–569.
  5. Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Teles, W. M., Marinho, M. V., Yoshida, M. I., Speziali, N. L., Krambrock, K., Pinheiro, C. B., Pinhal, N. M., Leitão, A. A. & Machado, F. C. (2006). Inorg. Chim. Acta, 359, 4613–4618.
  8. Tresoldi, G., Rotondo, E., Piraino, P., Lanfranchi, M. & Tiripicchio, A. (1992). Inorg. Chim. Acta, 194, 233–241.
  9. Wriedt, M., Jess, I. & Näther, C. (2008a). Acta Cryst. E64, m10. [DOI] [PMC free article] [PubMed]
  10. Wriedt, M., Jess, I. & Näther, C. (2008b). Acta Cryst. E64, m11. [DOI] [PMC free article] [PubMed]
  11. Wriedt, M., Jess, I. & Näther, C. (2008c). Acta Cryst. E64, m315. [DOI] [PMC free article] [PubMed]
  12. Zhao, Q.-H., Mu, X.-M. & Fang, R.-B. (2007). Pol. J. Chem. 81, 1369–1373.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202586X/cv5309sup1.cif

e-68-0m983-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202586X/cv5309Isup2.hkl

e-68-0m983-Isup2.hkl (200.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES