Abstract
The complete molecule of the title complex, [Cu2(C13H19N2O2)2(N3)2], is generated by the application of a centre of inversion. The central Cu2N2 core is a rhombus as the μ2-azide ligands bridge in an asymmetric fashion. Each CuII atom is also coordinated by a monoanionic tridentate Schiff base ligand via the anticipated oxide O, imine N and amine N atoms. The resulting N4O coordination geometry is based on a square pyramid. No specific intermolecular interactions are noted in the crystal packing, but the amine H atoms form intramolecular N—H⋯O(oxide)/N(azide) hydrogen bonds.
Related literature
For background to azido derivatives of tridentate Schiff base copper(II) structures, see: Adhikary & Koner (2010 ▶). For a related structure, see: Ghaemi et al. (2012 ▶). For additional structural analysis, see: Addison et al. (1984 ▶).
Experimental
Crystal data
[Cu2(C13H19N2O2)2(N3)2]
M r = 681.76
Monoclinic,
a = 9.1733 (5) Å
b = 12.2369 (5) Å
c = 13.0988 (6) Å
β = 98.203 (5)°
V = 1455.33 (12) Å3
Z = 2
Mo Kα radiation
μ = 1.51 mm−1
T = 100 K
0.20 × 0.15 × 0.10 mm
Data collection
Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010 ▶) T min = 0.674, T max = 1.000
5747 measured reflections
3314 independent reflections
2628 reflections with I > 2σ(I)
R int = 0.034
Refinement
R[F 2 > 2σ(F 2)] = 0.039
wR(F 2) = 0.105
S = 1.06
3314 reflections
198 parameters
2 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.54 e Å−3
Δρmin = −0.52 e Å−3
Data collection: CrysAlis PRO (Agilent, 2010 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028954/sj5249sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028954/sj5249Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Cu—O2 | 1.9047 (18) |
| Cu—N1 | 1.960 (2) |
| Cu—N2 | 2.001 (2) |
| Cu—N3 | 2.023 (2) |
| Cu—N3i | 2.641 (2) |
Symmetry code: (i)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H1N⋯O2i | 0.87 (1) | 2.35 (2) | 2.956 (3) | 127 (2) |
| N2—H2N⋯N3 | 0.88 (1) | 2.36 (3) | 2.752 (3) | 107 (3) |
Symmetry code: (i)
.
Acknowledgments
The authors gratefully acknowledge practical support of this study by the Islamic Azad University, Saveh Branch, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).
supplementary crystallographic information
Comment
Azido-bridged copper(II) complexes continue to attract attention in relation to investigations of small molecule activation of copper-containing proteins and for new magnetic materials (Adhikary & Koner, 2010). Recently, the crystal structure of a related NiII complex was described in which the Schiff base ligand was shown to coordinate in two distinct modes, i.e. a tridentate mode towards one NiII atom and in a pentadentate mode, bridging two NiII atoms (Ghaemi et al., 2012).
In the centrosymmetric binuclear complex (I), Fig. 1, the CuII atoms are bridged by one end of each of two µ2-azido ligands to generate an Ni2N2 core with the shape of a rhombus as the bridge is asymmetric, Table 1. The coordination geometry for the CuII atom is completed by the oxido-O, imine-O and amino-N donor atoms derived from a tridentate uninegative Schiff base ligand. The N4O donor set defines a coordination geometry close to square pyramidal. This is quantified by the value of τ = 0.12 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The configuration is stabilized by an intramolecular N—H···O(oxido) and N—H···N(azido) hydrogen bonds, Table 2. Globally, molecules stack in columns aligned along the a axis, Fig. 2, without specific intermolecular interactions between them.
Experimental
A mixture of 2,2-dimethylpropylenediamine (0.234 g, 2.3 mmol) was added to a clear solution of Cu(NO3)2.3H2O (0.50 g, 2.07 mmol) dissolved in methanol (25 ml), which immediately produced an intense-blue solution. The solution was then heated to boiling and a methanolic solution of 2-hydroxy-3-methoxybenzaldehyde (0.273 g, 1.8 mmol) was added drop-wise over 2 h under refluxing conditions. Reflux was continued for another 45 min. Then an excess sodium azide (0.5 g, 7.7 mmol) dissolved in water (2 ml) was added. The precipitate was filtered and dissolved in methanol. Brown crystals were formed within a few days from the methanolic solution. Anal. Calc. for C26H38Cu2N10O4: C, 45.81; H, 5.62; N, 20.55. Found: C, 45.77; H, 5.57; N, 20.66%. IR (KBr) [ν, cm-1]: νas(N3) 2035 versus, ν(C═N) 1621 s, ν(C═C) 1540 s, ν(C—O) 1224 m. M.pt: 476–478. Yield: 60%.
Refinement
Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located from a difference map and refined with N—H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N).
Figures
Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
Fig. 2.
A view in projection down the a axis of the unit-cell contents of (I).
Crystal data
| [Cu2(C13H19N2O2)2(N3)2] | F(000) = 708 |
| Mr = 681.76 | Dx = 1.556 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 2122 reflections |
| a = 9.1733 (5) Å | θ = 2.5–27.5° |
| b = 12.2369 (5) Å | µ = 1.51 mm−1 |
| c = 13.0988 (6) Å | T = 100 K |
| β = 98.203 (5)° | Prism, brown |
| V = 1455.33 (12) Å3 | 0.20 × 0.15 × 0.10 mm |
| Z = 2 |
Data collection
| Agilent SuperNova Dual diffractometer with an Atlas detector | 3314 independent reflections |
| Radiation source: SuperNova (Mo) X-ray Source | 2628 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.034 |
| Detector resolution: 10.4041 pixels mm-1 | θmax = 27.6°, θmin = 2.8° |
| ω scan | h = −8→11 |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −15→10 |
| Tmin = 0.674, Tmax = 1.000 | l = −14→17 |
| 5747 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0429P)2 + 0.1866P] where P = (Fo2 + 2Fc2)/3 |
| 3314 reflections | (Δ/σ)max = 0.001 |
| 198 parameters | Δρmax = 0.54 e Å−3 |
| 2 restraints | Δρmin = −0.52 e Å−3 |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu | 0.35165 (3) | 0.49481 (2) | 0.56108 (2) | 0.01599 (12) | |
| O1 | 0.1585 (2) | 0.52540 (15) | 0.22861 (14) | 0.0225 (4) | |
| O2 | 0.2389 (2) | 0.50500 (12) | 0.42756 (14) | 0.0172 (4) | |
| N1 | 0.2087 (2) | 0.57697 (16) | 0.62846 (16) | 0.0171 (4) | |
| N2 | 0.5049 (3) | 0.48980 (18) | 0.68604 (18) | 0.0185 (5) | |
| H1N | 0.572 (2) | 0.5342 (18) | 0.670 (2) | 0.016 (7)* | |
| H2N | 0.539 (4) | 0.4236 (13) | 0.679 (3) | 0.056 (11)* | |
| N3 | 0.4612 (2) | 0.36868 (17) | 0.50727 (15) | 0.0191 (5) | |
| N4 | 0.3900 (2) | 0.29635 (18) | 0.46239 (16) | 0.0202 (5) | |
| N5 | 0.3257 (3) | 0.2250 (2) | 0.4194 (2) | 0.0331 (6) | |
| C1 | 0.1093 (3) | 0.5311 (3) | 0.1204 (2) | 0.0287 (6) | |
| H1A | 0.1670 | 0.4805 | 0.0842 | 0.043* | |
| H1B | 0.1222 | 0.6058 | 0.0960 | 0.043* | |
| H1C | 0.0049 | 0.5111 | 0.1066 | 0.043* | |
| C2 | 0.0871 (3) | 0.5912 (2) | 0.29121 (19) | 0.0184 (5) | |
| C3 | −0.0234 (3) | 0.6633 (2) | 0.2566 (2) | 0.0217 (6) | |
| H3 | −0.0517 | 0.6728 | 0.1845 | 0.026* | |
| C4 | −0.0950 (3) | 0.7229 (2) | 0.3256 (2) | 0.0264 (6) | |
| H4 | −0.1717 | 0.7723 | 0.3006 | 0.032* | |
| C5 | −0.0539 (3) | 0.7096 (2) | 0.4296 (2) | 0.0237 (6) | |
| H5 | −0.1035 | 0.7492 | 0.4767 | 0.028* | |
| C6 | 0.0620 (3) | 0.6374 (2) | 0.4675 (2) | 0.0184 (5) | |
| C7 | 0.1344 (3) | 0.5761 (2) | 0.39860 (19) | 0.0168 (5) | |
| C8 | 0.0970 (3) | 0.6270 (2) | 0.5777 (2) | 0.0186 (5) | |
| H8 | 0.0307 | 0.6606 | 0.6176 | 0.022* | |
| C9 | 0.2165 (3) | 0.5744 (2) | 0.74125 (19) | 0.0190 (5) | |
| H9A | 0.1890 | 0.5003 | 0.7621 | 0.023* | |
| H9B | 0.1427 | 0.6261 | 0.7615 | 0.023* | |
| C10 | 0.3675 (3) | 0.6033 (2) | 0.80083 (19) | 0.0183 (5) | |
| C11 | 0.4764 (3) | 0.5101 (2) | 0.7928 (2) | 0.0205 (6) | |
| H11A | 0.5707 | 0.5277 | 0.8364 | 0.025* | |
| H11B | 0.4372 | 0.4425 | 0.8202 | 0.025* | |
| C12 | 0.3474 (3) | 0.6122 (2) | 0.9145 (2) | 0.0287 (6) | |
| H12A | 0.3124 | 0.5421 | 0.9380 | 0.043* | |
| H12B | 0.2750 | 0.6693 | 0.9226 | 0.043* | |
| H12C | 0.4418 | 0.6308 | 0.9558 | 0.043* | |
| C13 | 0.4229 (3) | 0.7114 (2) | 0.7623 (2) | 0.0248 (6) | |
| H13A | 0.5206 | 0.7277 | 0.8000 | 0.037* | |
| H13B | 0.3544 | 0.7701 | 0.7737 | 0.037* | |
| H13C | 0.4294 | 0.7056 | 0.6884 | 0.037* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu | 0.01581 (19) | 0.01867 (19) | 0.01328 (18) | 0.00302 (11) | 0.00137 (14) | −0.00186 (11) |
| O1 | 0.0205 (9) | 0.0314 (10) | 0.0153 (9) | 0.0031 (8) | 0.0016 (8) | 0.0004 (8) |
| O2 | 0.0148 (9) | 0.0211 (9) | 0.0148 (9) | 0.0036 (7) | −0.0008 (7) | −0.0003 (7) |
| N1 | 0.0155 (10) | 0.0178 (10) | 0.0185 (10) | −0.0036 (8) | 0.0042 (9) | −0.0038 (9) |
| N2 | 0.0188 (12) | 0.0232 (12) | 0.0135 (11) | 0.0058 (9) | 0.0018 (9) | −0.0015 (9) |
| N3 | 0.0215 (11) | 0.0181 (10) | 0.0179 (11) | 0.0026 (9) | 0.0035 (9) | −0.0026 (9) |
| N4 | 0.0222 (11) | 0.0223 (11) | 0.0165 (10) | 0.0073 (9) | 0.0041 (9) | −0.0012 (10) |
| N5 | 0.0269 (13) | 0.0330 (13) | 0.0390 (15) | −0.0034 (11) | 0.0035 (12) | −0.0176 (12) |
| C1 | 0.0240 (14) | 0.0469 (17) | 0.0138 (13) | −0.0002 (13) | −0.0018 (11) | 0.0008 (13) |
| C2 | 0.0137 (12) | 0.0193 (12) | 0.0220 (13) | −0.0041 (10) | 0.0023 (10) | 0.0013 (11) |
| C3 | 0.0202 (13) | 0.0198 (12) | 0.0237 (13) | −0.0041 (10) | −0.0019 (11) | 0.0063 (11) |
| C4 | 0.0195 (13) | 0.0213 (13) | 0.0360 (16) | 0.0019 (11) | −0.0048 (12) | 0.0053 (12) |
| C5 | 0.0188 (13) | 0.0197 (12) | 0.0319 (15) | 0.0014 (10) | 0.0017 (12) | −0.0015 (12) |
| C6 | 0.0157 (12) | 0.0164 (11) | 0.0228 (13) | −0.0020 (10) | 0.0019 (11) | −0.0025 (11) |
| C7 | 0.0127 (11) | 0.0148 (11) | 0.0227 (13) | −0.0040 (9) | 0.0015 (10) | 0.0000 (10) |
| C8 | 0.0176 (12) | 0.0160 (12) | 0.0226 (13) | −0.0023 (10) | 0.0046 (11) | −0.0057 (11) |
| C9 | 0.0186 (12) | 0.0241 (13) | 0.0149 (12) | −0.0015 (11) | 0.0046 (10) | −0.0028 (11) |
| C10 | 0.0204 (13) | 0.0192 (12) | 0.0155 (12) | −0.0023 (10) | 0.0032 (10) | −0.0022 (10) |
| C11 | 0.0214 (14) | 0.0264 (14) | 0.0136 (13) | 0.0009 (10) | 0.0021 (11) | 0.0006 (10) |
| C12 | 0.0289 (15) | 0.0392 (16) | 0.0190 (13) | −0.0011 (13) | 0.0071 (12) | −0.0093 (13) |
| C13 | 0.0234 (14) | 0.0208 (13) | 0.0303 (15) | −0.0049 (11) | 0.0039 (12) | −0.0052 (12) |
Geometric parameters (Å, º)
| Cu—O2 | 1.9047 (18) | C4—C5 | 1.370 (4) |
| Cu—N1 | 1.960 (2) | C4—H4 | 0.9500 |
| Cu—N2 | 2.001 (2) | C5—C6 | 1.417 (4) |
| Cu—N3 | 2.023 (2) | C5—H5 | 0.9500 |
| Cu—N3i | 2.641 (2) | C6—C7 | 1.410 (3) |
| O1—C2 | 1.380 (3) | C6—C8 | 1.440 (3) |
| O1—C1 | 1.427 (3) | C8—H8 | 0.9500 |
| O2—C7 | 1.310 (3) | C9—C10 | 1.532 (3) |
| N1—C8 | 1.293 (3) | C9—H9A | 0.9900 |
| N1—C9 | 1.469 (3) | C9—H9B | 0.9900 |
| N2—C11 | 1.480 (3) | C10—C13 | 1.528 (3) |
| N2—H1N | 0.869 (10) | C10—C11 | 1.529 (4) |
| N2—H2N | 0.877 (10) | C10—C12 | 1.530 (3) |
| N3—N4 | 1.203 (3) | C11—H11A | 0.9900 |
| N4—N5 | 1.154 (3) | C11—H11B | 0.9900 |
| C1—H1A | 0.9800 | C12—H12A | 0.9800 |
| C1—H1B | 0.9800 | C12—H12B | 0.9800 |
| C1—H1C | 0.9800 | C12—H12C | 0.9800 |
| C2—C3 | 1.371 (3) | C13—H13A | 0.9800 |
| C2—C7 | 1.424 (3) | C13—H13B | 0.9800 |
| C3—C4 | 1.397 (4) | C13—H13C | 0.9800 |
| C3—H3 | 0.9500 | ||
| O2—Cu—N1 | 93.97 (8) | C6—C5—H5 | 119.7 |
| O2—Cu—N2 | 168.34 (9) | C7—C6—C5 | 120.4 (2) |
| N1—Cu—N2 | 94.85 (9) | C7—C6—C8 | 122.5 (2) |
| O2—Cu—N3 | 87.81 (8) | C5—C6—C8 | 117.1 (2) |
| N1—Cu—N3 | 161.12 (9) | O2—C7—C6 | 124.0 (2) |
| N2—Cu—N3 | 86.30 (9) | O2—C7—C2 | 118.7 (2) |
| O2—Cu—N3i | 86.64 (7) | C6—C7—C2 | 117.3 (2) |
| N1—Cu—N3i | 109.71 (7) | N1—C8—C6 | 127.2 (2) |
| N2—Cu—N3i | 83.22 (8) | N1—C8—H8 | 116.4 |
| N3—Cu—N3i | 89.15 (8) | C6—C8—H8 | 116.4 |
| C2—O1—C1 | 116.9 (2) | N1—C9—C10 | 114.7 (2) |
| C7—O2—Cu | 126.05 (16) | N1—C9—H9A | 108.6 |
| C8—N1—C9 | 116.6 (2) | C10—C9—H9A | 108.6 |
| C8—N1—Cu | 122.94 (17) | N1—C9—H9B | 108.6 |
| C9—N1—Cu | 120.14 (16) | C10—C9—H9B | 108.6 |
| C11—N2—Cu | 124.71 (18) | H9A—C9—H9B | 107.6 |
| C11—N2—H1N | 110.5 (18) | C13—C10—C11 | 111.8 (2) |
| Cu—N2—H1N | 102.8 (18) | C13—C10—C12 | 110.6 (2) |
| C11—N2—H2N | 111 (2) | C11—C10—C12 | 106.9 (2) |
| Cu—N2—H2N | 99 (2) | C13—C10—C9 | 110.5 (2) |
| H1N—N2—H2N | 106 (3) | C11—C10—C9 | 110.2 (2) |
| N4—N3—Cu | 117.98 (17) | C12—C10—C9 | 106.6 (2) |
| N5—N4—N3 | 177.8 (3) | N2—C11—C10 | 113.3 (2) |
| O1—C1—H1A | 109.5 | N2—C11—H11A | 108.9 |
| O1—C1—H1B | 109.5 | C10—C11—H11A | 108.9 |
| H1A—C1—H1B | 109.5 | N2—C11—H11B | 108.9 |
| O1—C1—H1C | 109.5 | C10—C11—H11B | 108.9 |
| H1A—C1—H1C | 109.5 | H11A—C11—H11B | 107.7 |
| H1B—C1—H1C | 109.5 | C10—C12—H12A | 109.5 |
| C3—C2—O1 | 124.8 (2) | C10—C12—H12B | 109.5 |
| C3—C2—C7 | 121.1 (2) | H12A—C12—H12B | 109.5 |
| O1—C2—C7 | 114.1 (2) | C10—C12—H12C | 109.5 |
| C2—C3—C4 | 121.1 (2) | H12A—C12—H12C | 109.5 |
| C2—C3—H3 | 119.5 | H12B—C12—H12C | 109.5 |
| C4—C3—H3 | 119.5 | C10—C13—H13A | 109.5 |
| C5—C4—C3 | 119.5 (2) | C10—C13—H13B | 109.5 |
| C5—C4—H4 | 120.2 | H13A—C13—H13B | 109.5 |
| C3—C4—H4 | 120.2 | C10—C13—H13C | 109.5 |
| C4—C5—C6 | 120.6 (3) | H13A—C13—H13C | 109.5 |
| C4—C5—H5 | 119.7 | H13B—C13—H13C | 109.5 |
| N1—Cu—O2—C7 | 19.51 (19) | C4—C5—C6—C7 | −1.5 (4) |
| N2—Cu—O2—C7 | −119.6 (4) | C4—C5—C6—C8 | −179.2 (2) |
| N3—Cu—O2—C7 | −179.31 (19) | Cu—O2—C7—C6 | −17.6 (3) |
| N3i—Cu—O2—C7 | −90.04 (19) | Cu—O2—C7—C2 | 164.15 (17) |
| O2—Cu—N1—C8 | −8.9 (2) | C5—C6—C7—O2 | −177.6 (2) |
| N2—Cu—N1—C8 | 163.5 (2) | C8—C6—C7—O2 | −0.1 (4) |
| N3—Cu—N1—C8 | −103.8 (3) | C5—C6—C7—C2 | 0.7 (3) |
| N3i—Cu—N1—C8 | 78.9 (2) | C8—C6—C7—C2 | 178.2 (2) |
| O2—Cu—N1—C9 | 164.68 (17) | C3—C2—C7—O2 | 179.0 (2) |
| N2—Cu—N1—C9 | −22.95 (18) | O1—C2—C7—O2 | 0.9 (3) |
| N3—Cu—N1—C9 | 69.8 (3) | C3—C2—C7—C6 | 0.6 (3) |
| N3i—Cu—N1—C9 | −107.47 (17) | O1—C2—C7—C6 | −177.5 (2) |
| O2—Cu—N2—C11 | 156.8 (3) | C9—N1—C8—C6 | −177.6 (2) |
| N1—Cu—N2—C11 | 17.8 (2) | Cu—N1—C8—C6 | −3.8 (4) |
| N3—Cu—N2—C11 | −143.3 (2) | C7—C6—C8—N1 | 11.6 (4) |
| N3i—Cu—N2—C11 | 127.1 (2) | C5—C6—C8—N1 | −170.8 (2) |
| O2—Cu—N3—N4 | −49.87 (19) | C8—N1—C9—C10 | −133.4 (2) |
| N1—Cu—N3—N4 | 46.0 (4) | Cu—N1—C9—C10 | 52.6 (3) |
| N2—Cu—N3—N4 | 140.2 (2) | N1—C9—C10—C13 | 51.7 (3) |
| N3i—Cu—N3—N4 | −136.5 (2) | N1—C9—C10—C11 | −72.3 (3) |
| C1—O1—C2—C3 | −2.2 (4) | N1—C9—C10—C12 | 172.0 (2) |
| C1—O1—C2—C7 | 175.8 (2) | Cu—N2—C11—C10 | −39.6 (3) |
| O1—C2—C3—C4 | 176.8 (2) | C13—C10—C11—N2 | −60.1 (3) |
| C7—C2—C3—C4 | −1.1 (4) | C12—C10—C11—N2 | 178.8 (2) |
| C2—C3—C4—C5 | 0.3 (4) | C9—C10—C11—N2 | 63.3 (3) |
| C3—C4—C5—C6 | 1.0 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H1N···O2i | 0.87 (1) | 2.35 (2) | 2.956 (3) | 127 (2) |
| N2—H2N···N3 | 0.88 (1) | 2.36 (3) | 2.752 (3) | 107 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5249).
References
- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Adhikary, C. & Koner, S. (2010). Coord. Chem. Rev. 254, 2933–2958.
- Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ghaemi, A., Rayati, S., Fayyazi, K., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst E68, [LH5496]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028954/sj5249sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028954/sj5249Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


