Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):m993–m994. doi: 10.1107/S1600536812028954

Di-μ-azido-κ4 N:N-bis­({2-[(3-amino-2,2-dimethyl­prop­yl)imino­meth­yl]-6-meth­oxy­phenolato-1κ3 N,N′,O 1}copper(II))

Akbar Ghaemi a,, Saeed Rayati b, Kazem Fayyazi a, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3393238  PMID: 22807806

Abstract

The complete mol­ecule of the title complex, [Cu2(C13H19N2O2)2(N3)2], is generated by the application of a centre of inversion. The central Cu2N2 core is a rhombus as the μ2-azide ligands bridge in an asymmetric fashion. Each CuII atom is also coordinated by a monoanionic tridentate Schiff base ligand via the anti­cipated oxide O, imine N and amine N atoms. The resulting N4O coordination geometry is based on a square pyramid. No specific inter­molecular inter­actions are noted in the crystal packing, but the amine H atoms form intra­molecular N—H⋯O(oxide)/N(azide) hydrogen bonds.

Related literature  

For background to azido derivatives of tridentate Schiff base copper(II) structures, see: Adhikary & Koner (2010). For a related structure, see: Ghaemi et al. (2012). For additional structural analysis, see: Addison et al. (1984).graphic file with name e-68-0m993-scheme1.jpg

Experimental  

Crystal data  

  • [Cu2(C13H19N2O2)2(N3)2]

  • M r = 681.76

  • Monoclinic, Inline graphic

  • a = 9.1733 (5) Å

  • b = 12.2369 (5) Å

  • c = 13.0988 (6) Å

  • β = 98.203 (5)°

  • V = 1455.33 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.674, T max = 1.000

  • 5747 measured reflections

  • 3314 independent reflections

  • 2628 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.105

  • S = 1.06

  • 3314 reflections

  • 198 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028954/sj5249sup1.cif

e-68-0m993-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028954/sj5249Isup2.hkl

e-68-0m993-Isup2.hkl (159.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu—O2 1.9047 (18)
Cu—N1 1.960 (2)
Cu—N2 2.001 (2)
Cu—N3 2.023 (2)
Cu—N3i 2.641 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2i 0.87 (1) 2.35 (2) 2.956 (3) 127 (2)
N2—H2N⋯N3 0.88 (1) 2.36 (3) 2.752 (3) 107 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge practical support of this study by the Islamic Azad University, Saveh Branch, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

Azido-bridged copper(II) complexes continue to attract attention in relation to investigations of small molecule activation of copper-containing proteins and for new magnetic materials (Adhikary & Koner, 2010). Recently, the crystal structure of a related NiII complex was described in which the Schiff base ligand was shown to coordinate in two distinct modes, i.e. a tridentate mode towards one NiII atom and in a pentadentate mode, bridging two NiII atoms (Ghaemi et al., 2012).

In the centrosymmetric binuclear complex (I), Fig. 1, the CuII atoms are bridged by one end of each of two µ2-azido ligands to generate an Ni2N2 core with the shape of a rhombus as the bridge is asymmetric, Table 1. The coordination geometry for the CuII atom is completed by the oxido-O, imine-O and amino-N donor atoms derived from a tridentate uninegative Schiff base ligand. The N4O donor set defines a coordination geometry close to square pyramidal. This is quantified by the value of τ = 0.12 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The configuration is stabilized by an intramolecular N—H···O(oxido) and NH···N(azido) hydrogen bonds, Table 2. Globally, molecules stack in columns aligned along the a axis, Fig. 2, without specific intermolecular interactions between them.

Experimental

A mixture of 2,2-dimethylpropylenediamine (0.234 g, 2.3 mmol) was added to a clear solution of Cu(NO3)2.3H2O (0.50 g, 2.07 mmol) dissolved in methanol (25 ml), which immediately produced an intense-blue solution. The solution was then heated to boiling and a methanolic solution of 2-hydroxy-3-methoxybenzaldehyde (0.273 g, 1.8 mmol) was added drop-wise over 2 h under refluxing conditions. Reflux was continued for another 45 min. Then an excess sodium azide (0.5 g, 7.7 mmol) dissolved in water (2 ml) was added. The precipitate was filtered and dissolved in methanol. Brown crystals were formed within a few days from the methanolic solution. Anal. Calc. for C26H38Cu2N10O4: C, 45.81; H, 5.62; N, 20.55. Found: C, 45.77; H, 5.57; N, 20.66%. IR (KBr) [ν, cm-1]: νas(N3) 2035 versus, ν(C═N) 1621 s, ν(C═C) 1540 s, ν(C—O) 1224 m. M.pt: 476–478. Yield: 60%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located from a difference map and refined with N—H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents of (I).

Crystal data

[Cu2(C13H19N2O2)2(N3)2] F(000) = 708
Mr = 681.76 Dx = 1.556 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2122 reflections
a = 9.1733 (5) Å θ = 2.5–27.5°
b = 12.2369 (5) Å µ = 1.51 mm1
c = 13.0988 (6) Å T = 100 K
β = 98.203 (5)° Prism, brown
V = 1455.33 (12) Å3 0.20 × 0.15 × 0.10 mm
Z = 2

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3314 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2628 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.8°
ω scan h = −8→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −15→10
Tmin = 0.674, Tmax = 1.000 l = −14→17
5747 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.1866P] where P = (Fo2 + 2Fc2)/3
3314 reflections (Δ/σ)max = 0.001
198 parameters Δρmax = 0.54 e Å3
2 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.35165 (3) 0.49481 (2) 0.56108 (2) 0.01599 (12)
O1 0.1585 (2) 0.52540 (15) 0.22861 (14) 0.0225 (4)
O2 0.2389 (2) 0.50500 (12) 0.42756 (14) 0.0172 (4)
N1 0.2087 (2) 0.57697 (16) 0.62846 (16) 0.0171 (4)
N2 0.5049 (3) 0.48980 (18) 0.68604 (18) 0.0185 (5)
H1N 0.572 (2) 0.5342 (18) 0.670 (2) 0.016 (7)*
H2N 0.539 (4) 0.4236 (13) 0.679 (3) 0.056 (11)*
N3 0.4612 (2) 0.36868 (17) 0.50727 (15) 0.0191 (5)
N4 0.3900 (2) 0.29635 (18) 0.46239 (16) 0.0202 (5)
N5 0.3257 (3) 0.2250 (2) 0.4194 (2) 0.0331 (6)
C1 0.1093 (3) 0.5311 (3) 0.1204 (2) 0.0287 (6)
H1A 0.1670 0.4805 0.0842 0.043*
H1B 0.1222 0.6058 0.0960 0.043*
H1C 0.0049 0.5111 0.1066 0.043*
C2 0.0871 (3) 0.5912 (2) 0.29121 (19) 0.0184 (5)
C3 −0.0234 (3) 0.6633 (2) 0.2566 (2) 0.0217 (6)
H3 −0.0517 0.6728 0.1845 0.026*
C4 −0.0950 (3) 0.7229 (2) 0.3256 (2) 0.0264 (6)
H4 −0.1717 0.7723 0.3006 0.032*
C5 −0.0539 (3) 0.7096 (2) 0.4296 (2) 0.0237 (6)
H5 −0.1035 0.7492 0.4767 0.028*
C6 0.0620 (3) 0.6374 (2) 0.4675 (2) 0.0184 (5)
C7 0.1344 (3) 0.5761 (2) 0.39860 (19) 0.0168 (5)
C8 0.0970 (3) 0.6270 (2) 0.5777 (2) 0.0186 (5)
H8 0.0307 0.6606 0.6176 0.022*
C9 0.2165 (3) 0.5744 (2) 0.74125 (19) 0.0190 (5)
H9A 0.1890 0.5003 0.7621 0.023*
H9B 0.1427 0.6261 0.7615 0.023*
C10 0.3675 (3) 0.6033 (2) 0.80083 (19) 0.0183 (5)
C11 0.4764 (3) 0.5101 (2) 0.7928 (2) 0.0205 (6)
H11A 0.5707 0.5277 0.8364 0.025*
H11B 0.4372 0.4425 0.8202 0.025*
C12 0.3474 (3) 0.6122 (2) 0.9145 (2) 0.0287 (6)
H12A 0.3124 0.5421 0.9380 0.043*
H12B 0.2750 0.6693 0.9226 0.043*
H12C 0.4418 0.6308 0.9558 0.043*
C13 0.4229 (3) 0.7114 (2) 0.7623 (2) 0.0248 (6)
H13A 0.5206 0.7277 0.8000 0.037*
H13B 0.3544 0.7701 0.7737 0.037*
H13C 0.4294 0.7056 0.6884 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.01581 (19) 0.01867 (19) 0.01328 (18) 0.00302 (11) 0.00137 (14) −0.00186 (11)
O1 0.0205 (9) 0.0314 (10) 0.0153 (9) 0.0031 (8) 0.0016 (8) 0.0004 (8)
O2 0.0148 (9) 0.0211 (9) 0.0148 (9) 0.0036 (7) −0.0008 (7) −0.0003 (7)
N1 0.0155 (10) 0.0178 (10) 0.0185 (10) −0.0036 (8) 0.0042 (9) −0.0038 (9)
N2 0.0188 (12) 0.0232 (12) 0.0135 (11) 0.0058 (9) 0.0018 (9) −0.0015 (9)
N3 0.0215 (11) 0.0181 (10) 0.0179 (11) 0.0026 (9) 0.0035 (9) −0.0026 (9)
N4 0.0222 (11) 0.0223 (11) 0.0165 (10) 0.0073 (9) 0.0041 (9) −0.0012 (10)
N5 0.0269 (13) 0.0330 (13) 0.0390 (15) −0.0034 (11) 0.0035 (12) −0.0176 (12)
C1 0.0240 (14) 0.0469 (17) 0.0138 (13) −0.0002 (13) −0.0018 (11) 0.0008 (13)
C2 0.0137 (12) 0.0193 (12) 0.0220 (13) −0.0041 (10) 0.0023 (10) 0.0013 (11)
C3 0.0202 (13) 0.0198 (12) 0.0237 (13) −0.0041 (10) −0.0019 (11) 0.0063 (11)
C4 0.0195 (13) 0.0213 (13) 0.0360 (16) 0.0019 (11) −0.0048 (12) 0.0053 (12)
C5 0.0188 (13) 0.0197 (12) 0.0319 (15) 0.0014 (10) 0.0017 (12) −0.0015 (12)
C6 0.0157 (12) 0.0164 (11) 0.0228 (13) −0.0020 (10) 0.0019 (11) −0.0025 (11)
C7 0.0127 (11) 0.0148 (11) 0.0227 (13) −0.0040 (9) 0.0015 (10) 0.0000 (10)
C8 0.0176 (12) 0.0160 (12) 0.0226 (13) −0.0023 (10) 0.0046 (11) −0.0057 (11)
C9 0.0186 (12) 0.0241 (13) 0.0149 (12) −0.0015 (11) 0.0046 (10) −0.0028 (11)
C10 0.0204 (13) 0.0192 (12) 0.0155 (12) −0.0023 (10) 0.0032 (10) −0.0022 (10)
C11 0.0214 (14) 0.0264 (14) 0.0136 (13) 0.0009 (10) 0.0021 (11) 0.0006 (10)
C12 0.0289 (15) 0.0392 (16) 0.0190 (13) −0.0011 (13) 0.0071 (12) −0.0093 (13)
C13 0.0234 (14) 0.0208 (13) 0.0303 (15) −0.0049 (11) 0.0039 (12) −0.0052 (12)

Geometric parameters (Å, º)

Cu—O2 1.9047 (18) C4—C5 1.370 (4)
Cu—N1 1.960 (2) C4—H4 0.9500
Cu—N2 2.001 (2) C5—C6 1.417 (4)
Cu—N3 2.023 (2) C5—H5 0.9500
Cu—N3i 2.641 (2) C6—C7 1.410 (3)
O1—C2 1.380 (3) C6—C8 1.440 (3)
O1—C1 1.427 (3) C8—H8 0.9500
O2—C7 1.310 (3) C9—C10 1.532 (3)
N1—C8 1.293 (3) C9—H9A 0.9900
N1—C9 1.469 (3) C9—H9B 0.9900
N2—C11 1.480 (3) C10—C13 1.528 (3)
N2—H1N 0.869 (10) C10—C11 1.529 (4)
N2—H2N 0.877 (10) C10—C12 1.530 (3)
N3—N4 1.203 (3) C11—H11A 0.9900
N4—N5 1.154 (3) C11—H11B 0.9900
C1—H1A 0.9800 C12—H12A 0.9800
C1—H1B 0.9800 C12—H12B 0.9800
C1—H1C 0.9800 C12—H12C 0.9800
C2—C3 1.371 (3) C13—H13A 0.9800
C2—C7 1.424 (3) C13—H13B 0.9800
C3—C4 1.397 (4) C13—H13C 0.9800
C3—H3 0.9500
O2—Cu—N1 93.97 (8) C6—C5—H5 119.7
O2—Cu—N2 168.34 (9) C7—C6—C5 120.4 (2)
N1—Cu—N2 94.85 (9) C7—C6—C8 122.5 (2)
O2—Cu—N3 87.81 (8) C5—C6—C8 117.1 (2)
N1—Cu—N3 161.12 (9) O2—C7—C6 124.0 (2)
N2—Cu—N3 86.30 (9) O2—C7—C2 118.7 (2)
O2—Cu—N3i 86.64 (7) C6—C7—C2 117.3 (2)
N1—Cu—N3i 109.71 (7) N1—C8—C6 127.2 (2)
N2—Cu—N3i 83.22 (8) N1—C8—H8 116.4
N3—Cu—N3i 89.15 (8) C6—C8—H8 116.4
C2—O1—C1 116.9 (2) N1—C9—C10 114.7 (2)
C7—O2—Cu 126.05 (16) N1—C9—H9A 108.6
C8—N1—C9 116.6 (2) C10—C9—H9A 108.6
C8—N1—Cu 122.94 (17) N1—C9—H9B 108.6
C9—N1—Cu 120.14 (16) C10—C9—H9B 108.6
C11—N2—Cu 124.71 (18) H9A—C9—H9B 107.6
C11—N2—H1N 110.5 (18) C13—C10—C11 111.8 (2)
Cu—N2—H1N 102.8 (18) C13—C10—C12 110.6 (2)
C11—N2—H2N 111 (2) C11—C10—C12 106.9 (2)
Cu—N2—H2N 99 (2) C13—C10—C9 110.5 (2)
H1N—N2—H2N 106 (3) C11—C10—C9 110.2 (2)
N4—N3—Cu 117.98 (17) C12—C10—C9 106.6 (2)
N5—N4—N3 177.8 (3) N2—C11—C10 113.3 (2)
O1—C1—H1A 109.5 N2—C11—H11A 108.9
O1—C1—H1B 109.5 C10—C11—H11A 108.9
H1A—C1—H1B 109.5 N2—C11—H11B 108.9
O1—C1—H1C 109.5 C10—C11—H11B 108.9
H1A—C1—H1C 109.5 H11A—C11—H11B 107.7
H1B—C1—H1C 109.5 C10—C12—H12A 109.5
C3—C2—O1 124.8 (2) C10—C12—H12B 109.5
C3—C2—C7 121.1 (2) H12A—C12—H12B 109.5
O1—C2—C7 114.1 (2) C10—C12—H12C 109.5
C2—C3—C4 121.1 (2) H12A—C12—H12C 109.5
C2—C3—H3 119.5 H12B—C12—H12C 109.5
C4—C3—H3 119.5 C10—C13—H13A 109.5
C5—C4—C3 119.5 (2) C10—C13—H13B 109.5
C5—C4—H4 120.2 H13A—C13—H13B 109.5
C3—C4—H4 120.2 C10—C13—H13C 109.5
C4—C5—C6 120.6 (3) H13A—C13—H13C 109.5
C4—C5—H5 119.7 H13B—C13—H13C 109.5
N1—Cu—O2—C7 19.51 (19) C4—C5—C6—C7 −1.5 (4)
N2—Cu—O2—C7 −119.6 (4) C4—C5—C6—C8 −179.2 (2)
N3—Cu—O2—C7 −179.31 (19) Cu—O2—C7—C6 −17.6 (3)
N3i—Cu—O2—C7 −90.04 (19) Cu—O2—C7—C2 164.15 (17)
O2—Cu—N1—C8 −8.9 (2) C5—C6—C7—O2 −177.6 (2)
N2—Cu—N1—C8 163.5 (2) C8—C6—C7—O2 −0.1 (4)
N3—Cu—N1—C8 −103.8 (3) C5—C6—C7—C2 0.7 (3)
N3i—Cu—N1—C8 78.9 (2) C8—C6—C7—C2 178.2 (2)
O2—Cu—N1—C9 164.68 (17) C3—C2—C7—O2 179.0 (2)
N2—Cu—N1—C9 −22.95 (18) O1—C2—C7—O2 0.9 (3)
N3—Cu—N1—C9 69.8 (3) C3—C2—C7—C6 0.6 (3)
N3i—Cu—N1—C9 −107.47 (17) O1—C2—C7—C6 −177.5 (2)
O2—Cu—N2—C11 156.8 (3) C9—N1—C8—C6 −177.6 (2)
N1—Cu—N2—C11 17.8 (2) Cu—N1—C8—C6 −3.8 (4)
N3—Cu—N2—C11 −143.3 (2) C7—C6—C8—N1 11.6 (4)
N3i—Cu—N2—C11 127.1 (2) C5—C6—C8—N1 −170.8 (2)
O2—Cu—N3—N4 −49.87 (19) C8—N1—C9—C10 −133.4 (2)
N1—Cu—N3—N4 46.0 (4) Cu—N1—C9—C10 52.6 (3)
N2—Cu—N3—N4 140.2 (2) N1—C9—C10—C13 51.7 (3)
N3i—Cu—N3—N4 −136.5 (2) N1—C9—C10—C11 −72.3 (3)
C1—O1—C2—C3 −2.2 (4) N1—C9—C10—C12 172.0 (2)
C1—O1—C2—C7 175.8 (2) Cu—N2—C11—C10 −39.6 (3)
O1—C2—C3—C4 176.8 (2) C13—C10—C11—N2 −60.1 (3)
C7—C2—C3—C4 −1.1 (4) C12—C10—C11—N2 178.8 (2)
C2—C3—C4—C5 0.3 (4) C9—C10—C11—N2 63.3 (3)
C3—C4—C5—C6 1.0 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N···O2i 0.87 (1) 2.35 (2) 2.956 (3) 127 (2)
N2—H2N···N3 0.88 (1) 2.36 (3) 2.752 (3) 107 (3)

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5249).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Adhikary, C. & Koner, S. (2010). Coord. Chem. Rev. 254, 2933–2958.
  3. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Ghaemi, A., Rayati, S., Fayyazi, K., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst E68, [LH5496]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028954/sj5249sup1.cif

e-68-0m993-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028954/sj5249Isup2.hkl

e-68-0m993-Isup2.hkl (159.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES