Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):m1001–m1002. doi: 10.1107/S160053681202884X

[4-Bromo-N-(pyridin-2-yl­methyl­idene)aniline-κ2 N,N′]iodido(triphenyl­phosphane-κP)copper(I)

Aliakbar Dehno Khalaji a, Bahram Bahramian b, Khadijeh Jafari b, Karla Fejfarová c,*, Michal Dušek c
PMCID: PMC3393242  PMID: 22807702

Abstract

In the title compound, [CuI(C12H9BrN2)(C18H15P)], the CuI ion is bonded to one I atom, one triphenyl­phosphane P atom and two N atoms of the diimine ligand in a distorted tetra­hedral geometry. The Schiff base acts as a chelating ligand and coordinates to the CuI atom via two N atoms. In the diimine ligand, the dihedral angle between the pyridine and bromo­phenyl rings is 19.2 (2)°. In the crystal, mol­ecules are connected by π–π stacking inter­actions between inversion-related pyridine rings [centroid–centroid distance = 3.404 (3) Å].

Related literature  

For related structures and their applications, see: Dehghanpour et al. (2006, 2008); Saha et al. (2010, 2011a ,b ); Habibi et al. (2007); Morshedi et al. (2009); Al-Fayez et al. (2007); Kickelbick et al. (2003); Massa et al. (2009); Chen et al. (2012); Roy et al. (2011). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-m1001-scheme1.jpg

Experimental  

Crystal data  

  • [CuI(C12H9BrN2)(C18H15P)]

  • M r = 713.9

  • Monoclinic, Inline graphic

  • a = 10.3141 (5) Å

  • b = 34.7124 (16) Å

  • c = 8.3792 (4) Å

  • β = 114.321 (6)°

  • V = 2733.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.47 mm−1

  • T = 120 K

  • 0.49 × 0.04 × 0.03 mm

Data collection  

  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.914, T max = 1.000

  • 14996 measured reflections

  • 5893 independent reflections

  • 4325 reflections with I > 3σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 3σ(F 2)] = 0.038

  • wR(F 2) = 0.110

  • S = 1.19

  • 5893 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202884X/pk2426sup1.cif

e-68-m1001-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202884X/pk2426Isup2.hkl

e-68-m1001-Isup2.hkl (259.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

I1—Cu1 2.6386 (7)
Cu1—P1 2.2065 (15)
Cu1—N1 2.119 (5)
Cu1—N2 2.080 (4)

Acknowledgments

We acknowledge Golestan University and Shahrood University of Technology for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

supplementary crystallographic information

Comment

The coordination chemistry of copper(I) complexes with bidentate diimine ligands, such as bipyridine and phenanthroline, has received much attention over the last decade due to the many applications of these complexes (Dehghanpour et al., 2006; Saha et al., 2010, 2011a, 2011b; Habibi et al., 2007). Effort has been devoted to design and synthesis of new Schiff base ligands to control the geometry and properties of copper(I) complexes (Morshedi et al., 2009). Most of the studies have been on tetrahedral copper(I) complexes of the type [Cu(LL)2]+ and Cu(LL)P2]+ where LL is a diimine and P is a phosphane (Massa et al., 2009; Dehghanpour et al., 2008; Chen et al., 2012; Roy et al., 2011). Although reports of copper(I) complexes are numerous, limited work has been done on mixed ligand copper(I) complexes of the type [Cu(Schiff base)PX] (X= Cl, Br, I) (Dehghanpour et al., 2006; Saha et al., 2010, 2011a, 2011b; Habibi et al., 2007; Morshedi et al., 2009; Al-Fayez et al., 2007; Kickelbick et al., 2003). This study is a part of our ongoing efforts to synthesize and characterize copper(I) complexes with bidentate Schiff base ligands.

The molecular structure with the atom-numbering scheme is presented in Fig. 1, and the bond lengths (Allen et al., 1987) and angles are generally normal. The copper(I) is coordinated by two nitrogen atoms of the bidentate Schiff-base ligand, one P atom of triphenylphosphane and one I atom. Although a tetrahedral geometry might be expected for a four coordinate copper(I) centre, the geometry around the copper(I) ion is distorted by the restricting bite angle N1—Cu1—N2 [79.3 (2)°] of the chelating Schiff-base ligand.

Experimental

To a stirring solution of 190 mg (1 mmol) CuI in 5 ml of acetonitrile was added dropwise 263 mg (1 mmol) of triphenylphosphane in 5 ml acetonitrile. The mixture was stirred for 30 min and then 261 mg (1 mmol) of ligand, 4-bromophenylpyridine-2-ylmethyleneamine, in 10 ml acetonitrile was added and stirred for an additional 20 min. The volume of the solvent was reduced under vacuum to about 5 ml. The diffusion of diethyl ether vapor into the concentration solution gave dark red crystals. The crystals were filtered off and washed with Et2O. Yield: 65%. Anal. Calc. for C30H24N2CuPBrI: C, 50.48; H, 3.38; N, 3.93%. Found: C, 50.55; H, 3.51; N, 3.78%.

Refinement

All hydrogen atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[CuI(C12H9BrN2)(C18H15P)] F(000) = 1400
Mr = 713.9 Dx = 1.734 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybc Cell parameters from 5306 reflections
a = 10.3141 (5) Å θ = 2.9–27.0°
b = 34.7124 (16) Å µ = 3.47 mm1
c = 8.3792 (4) Å T = 120 K
β = 114.321 (6)° Needle, red
V = 2733.7 (3) Å3 0.49 × 0.04 × 0.03 mm
Z = 4

Data collection

Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector 5893 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4325 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 10.4 pixels mm-1 θmax = 27.2°, θmin = 2.9°
Rotation method data acquisition using ω scans h = −12→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −44→43
Tmin = 0.914, Tmax = 1.000 l = −10→10
14996 measured reflections

Refinement

Refinement on F2 96 constraints
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.110 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.19 (Δ/σ)max = 0.028
5893 reflections Δρmax = 0.70 e Å3
325 parameters Δρmin = −0.65 e Å3
0 restraints

Special details

Experimental. CrysAlisPro (Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.78044 (3) 0.068800 (9) 0.72718 (4) 0.02639 (13)
Cu1 0.59846 (6) 0.079263 (17) 0.39909 (7) 0.0238 (2)
Br1 1.00314 (6) 0.252746 (15) 0.34867 (7) 0.0330 (2)
P1 0.41099 (13) 0.11517 (4) 0.35881 (16) 0.0221 (4)
N1 0.7265 (4) 0.09533 (11) 0.2668 (5) 0.0210 (14)
N2 0.6081 (4) 0.02740 (12) 0.2802 (5) 0.0239 (15)
C1 0.7562 (5) 0.06704 (13) 0.1899 (6) 0.0246 (18)
C2 0.6948 (5) 0.02930 (14) 0.1929 (6) 0.0249 (17)
C3 0.7260 (5) −0.00216 (14) 0.1148 (6) 0.0277 (18)
C4 0.6666 (5) −0.03762 (15) 0.1227 (6) 0.032 (2)
C5 0.5758 (5) −0.03981 (15) 0.2079 (6) 0.0315 (19)
C6 0.5512 (5) −0.00660 (14) 0.2856 (6) 0.0275 (18)
C7 0.7877 (5) 0.13217 (14) 0.2721 (6) 0.0229 (17)
C8 0.8508 (5) 0.14430 (14) 0.1607 (6) 0.029 (2)
C9 0.9133 (5) 0.18024 (15) 0.1828 (6) 0.030 (2)
C10 0.9110 (5) 0.20401 (14) 0.3131 (6) 0.0259 (18)
C11 0.8463 (5) 0.19317 (14) 0.4213 (6) 0.0292 (19)
C12 0.7854 (5) 0.15713 (14) 0.4002 (6) 0.0257 (18)
C13 0.4456 (5) 0.16036 (14) 0.4825 (6) 0.0247 (18)
C14 0.5628 (5) 0.16325 (14) 0.6392 (6) 0.0270 (19)
C15 0.5972 (5) 0.19795 (15) 0.7293 (7) 0.033 (2)
C16 0.5145 (6) 0.23034 (15) 0.6643 (7) 0.035 (2)
C17 0.3958 (6) 0.22751 (15) 0.5099 (7) 0.037 (2)
C18 0.3608 (6) 0.19342 (14) 0.4189 (7) 0.033 (2)
C19 0.3142 (5) 0.13315 (13) 0.1366 (6) 0.0246 (18)
C20 0.3927 (5) 0.15205 (14) 0.0564 (6) 0.0274 (19)
C21 0.3251 (5) 0.16944 (14) −0.1052 (6) 0.029 (2)
C22 0.1783 (5) 0.16791 (14) −0.1889 (6) 0.031 (2)
C23 0.1010 (5) 0.14853 (14) −0.1132 (6) 0.0285 (19)
C24 0.1677 (5) 0.13116 (14) 0.0487 (6) 0.0271 (19)
C25 0.2723 (5) 0.09130 (14) 0.4047 (6) 0.0235 (17)
C26 0.2011 (5) 0.10822 (14) 0.4975 (6) 0.0248 (18)
C27 0.0987 (5) 0.08829 (14) 0.5314 (6) 0.0255 (18)
C28 0.0620 (5) 0.05149 (14) 0.4687 (6) 0.0265 (18)
C29 0.1315 (5) 0.03393 (15) 0.3733 (6) 0.030 (2)
C30 0.2352 (5) 0.05376 (14) 0.3424 (6) 0.0263 (19)
H1 0.81789 0.070579 0.131067 0.0295*
H3 0.787927 0.000399 0.055749 0.0332*
H4 0.687643 −0.060078 0.070836 0.0387*
H5 0.53086 −0.063714 0.212969 0.0378*
H6 0.490079 −0.008491 0.346082 0.033*
H8 0.85054 0.127607 0.069147 0.0346*
H9 0.95784 0.188549 0.108178 0.0365*
H11 0.843766 0.210414 0.509557 0.0351*
H12 0.740691 0.149188 0.475133 0.0308*
H14 0.621452 0.141025 0.686939 0.0324*
H15 0.679671 0.199445 0.838399 0.0399*
H16 0.539722 0.254385 0.726113 0.0422*
H17 0.33634 0.249691 0.46463 0.0447*
H18 0.277444 0.192115 0.310656 0.0391*
H20 0.494659 0.152842 0.114923 0.0329*
H21 0.379189 0.182424 −0.158621 0.0346*
H22 0.129947 0.180362 −0.300197 0.0375*
H23 −0.000701 0.147118 −0.173989 0.0341*
H24 0.112699 0.117791 0.099932 0.0325*
H26 0.223603 0.134233 0.538479 0.0297*
H27 0.05353 0.100187 0.598676 0.0306*
H28 −0.010308 0.037787 0.48966 0.0318*
H29 0.106618 0.008169 0.329775 0.0359*
H30 0.282097 0.041643 0.277593 0.0315*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.03169 (19) 0.02779 (19) 0.02021 (17) 0.00070 (14) 0.01123 (14) −0.00064 (12)
Cu1 0.0255 (3) 0.0265 (3) 0.0224 (3) 0.0003 (3) 0.0128 (3) −0.0009 (2)
Br1 0.0418 (3) 0.0281 (3) 0.0311 (3) −0.0068 (2) 0.0171 (3) −0.0001 (2)
P1 0.0252 (6) 0.0227 (6) 0.0213 (6) −0.0001 (5) 0.0125 (5) −0.0004 (5)
N1 0.022 (2) 0.025 (2) 0.0164 (19) 0.0010 (17) 0.0088 (17) −0.0026 (15)
N2 0.025 (2) 0.028 (2) 0.0180 (19) 0.0004 (18) 0.0078 (17) 0.0006 (16)
C1 0.024 (2) 0.032 (3) 0.020 (2) 0.006 (2) 0.012 (2) 0.0057 (19)
C2 0.024 (2) 0.032 (3) 0.015 (2) 0.001 (2) 0.004 (2) 0.0013 (19)
C3 0.031 (3) 0.030 (3) 0.022 (2) 0.003 (2) 0.010 (2) −0.001 (2)
C4 0.045 (3) 0.028 (3) 0.020 (2) 0.005 (2) 0.010 (2) −0.004 (2)
C5 0.033 (3) 0.026 (3) 0.027 (3) −0.002 (2) 0.004 (2) 0.001 (2)
C6 0.027 (3) 0.029 (3) 0.021 (2) −0.003 (2) 0.005 (2) 0.0006 (19)
C7 0.022 (2) 0.028 (3) 0.019 (2) 0.001 (2) 0.009 (2) 0.0023 (19)
C8 0.040 (3) 0.029 (3) 0.022 (3) 0.001 (2) 0.018 (2) −0.002 (2)
C9 0.035 (3) 0.035 (3) 0.027 (3) 0.000 (2) 0.019 (2) 0.002 (2)
C10 0.028 (3) 0.026 (3) 0.022 (2) −0.001 (2) 0.008 (2) 0.0009 (19)
C11 0.037 (3) 0.030 (3) 0.023 (2) −0.002 (2) 0.016 (2) −0.005 (2)
C12 0.029 (3) 0.030 (3) 0.022 (2) −0.002 (2) 0.013 (2) −0.0013 (19)
C13 0.029 (3) 0.026 (3) 0.024 (2) −0.003 (2) 0.016 (2) −0.0022 (19)
C14 0.030 (3) 0.028 (3) 0.028 (3) 0.001 (2) 0.017 (2) −0.002 (2)
C15 0.031 (3) 0.039 (3) 0.031 (3) −0.005 (2) 0.013 (2) −0.007 (2)
C16 0.043 (3) 0.023 (3) 0.045 (3) −0.003 (2) 0.024 (3) −0.008 (2)
C17 0.043 (3) 0.022 (3) 0.047 (3) 0.000 (2) 0.018 (3) −0.004 (2)
C18 0.036 (3) 0.028 (3) 0.034 (3) −0.001 (2) 0.016 (3) −0.001 (2)
C19 0.035 (3) 0.019 (2) 0.024 (2) 0.002 (2) 0.015 (2) −0.0018 (18)
C20 0.027 (3) 0.028 (3) 0.030 (3) −0.002 (2) 0.014 (2) 0.004 (2)
C21 0.038 (3) 0.026 (3) 0.030 (3) 0.004 (2) 0.021 (2) 0.003 (2)
C22 0.043 (3) 0.031 (3) 0.020 (2) 0.010 (2) 0.012 (2) 0.002 (2)
C23 0.029 (3) 0.031 (3) 0.025 (3) 0.001 (2) 0.010 (2) −0.004 (2)
C24 0.032 (3) 0.028 (3) 0.025 (3) 0.001 (2) 0.015 (2) −0.002 (2)
C25 0.025 (2) 0.027 (3) 0.019 (2) −0.002 (2) 0.009 (2) 0.0028 (18)
C26 0.029 (3) 0.024 (3) 0.022 (2) 0.000 (2) 0.011 (2) 0.0003 (18)
C27 0.025 (2) 0.031 (3) 0.024 (2) 0.002 (2) 0.013 (2) −0.001 (2)
C28 0.023 (2) 0.031 (3) 0.025 (2) −0.005 (2) 0.009 (2) 0.003 (2)
C29 0.035 (3) 0.023 (3) 0.032 (3) 0.001 (2) 0.013 (2) −0.003 (2)
C30 0.029 (3) 0.026 (3) 0.026 (3) 0.002 (2) 0.014 (2) −0.003 (2)

Geometric parameters (Å, º)

I1—Cu1 2.6386 (7) C13—C18 1.408 (7)
Cu1—P1 2.2065 (15) C14—C15 1.388 (7)
Cu1—N1 2.119 (5) C14—H14 0.96
Cu1—N2 2.080 (4) C15—C16 1.380 (7)
Br1—C10 1.903 (5) C15—H15 0.96
P1—C13 1.832 (5) C16—C17 1.370 (7)
P1—C19 1.823 (4) C16—H16 0.96
P1—C25 1.826 (6) C17—C18 1.373 (7)
N1—C1 1.279 (7) C17—H17 0.96
N1—C7 1.419 (6) C18—H18 0.96
N2—C2 1.371 (7) C19—C20 1.409 (8)
N2—C6 1.327 (6) C19—C24 1.384 (7)
C1—C2 1.460 (7) C20—C21 1.381 (6)
C1—H1 0.96 C20—H20 0.96
C2—C3 1.377 (7) C21—C22 1.383 (7)
C3—C4 1.388 (7) C21—H21 0.96
C3—H3 0.96 C22—C23 1.382 (9)
C4—C5 1.394 (9) C22—H22 0.96
C4—H4 0.96 C23—C24 1.381 (6)
C5—C6 1.398 (8) C23—H23 0.96
C5—H5 0.96 C24—H24 0.96
C6—H6 0.96 C25—C26 1.399 (8)
C7—C8 1.405 (8) C25—C30 1.397 (7)
C7—C12 1.387 (7) C26—C27 1.386 (8)
C8—C9 1.381 (7) C26—H26 0.96
C8—H8 0.96 C27—C28 1.374 (7)
C9—C10 1.377 (8) C27—H27 0.96
C9—H9 0.96 C28—C29 1.413 (8)
C10—C11 1.381 (8) C28—H28 0.96
C11—C12 1.378 (7) C29—C30 1.384 (8)
C11—H11 0.96 C29—H29 0.96
C12—H12 0.96 C30—H30 0.96
C13—C14 1.374 (6)
I1—Cu1—P1 116.08 (4) P1—C13—C14 119.5 (4)
I1—Cu1—N1 104.61 (8) P1—C13—C18 122.6 (3)
I1—Cu1—N2 103.06 (9) C14—C13—C18 117.8 (4)
P1—Cu1—N1 117.84 (11) C13—C14—C15 120.7 (4)
P1—Cu1—N2 128.86 (10) C13—C14—H14 119.66
N1—Cu1—N2 79.31 (17) C15—C14—H14 119.6609
Cu1—P1—C13 116.28 (16) C14—C15—C16 121.0 (4)
Cu1—P1—C19 115.2 (2) C14—C15—H15 119.5162
Cu1—P1—C25 115.14 (16) C16—C15—H15 119.5164
C13—P1—C19 100.5 (2) C15—C16—C17 118.7 (5)
C13—P1—C25 104.8 (3) C15—C16—H16 120.6387
C19—P1—C25 102.9 (2) C17—C16—H16 120.6398
Cu1—N1—C1 113.1 (3) C16—C17—C18 121.0 (5)
Cu1—N1—C7 125.9 (3) C16—C17—H17 119.5157
C1—N1—C7 120.8 (5) C18—C17—H17 119.5157
Cu1—N2—C2 112.6 (3) C13—C18—C17 120.8 (4)
Cu1—N2—C6 130.1 (4) C13—C18—H18 119.5977
C2—N2—C6 117.1 (4) C17—C18—H18 119.598
N1—C1—C2 119.0 (5) P1—C19—C20 117.8 (3)
N1—C1—H1 120.4965 P1—C19—C24 123.0 (4)
C2—C1—H1 120.4972 C20—C19—C24 119.1 (4)
N2—C2—C1 115.8 (5) C19—C20—C21 120.9 (5)
N2—C2—C3 123.1 (5) C19—C20—H20 119.5623
C1—C2—C3 121.1 (5) C21—C20—H20 119.5601
C2—C3—C4 119.1 (6) C20—C21—C22 119.1 (5)
C2—C3—H3 120.4409 C20—C21—H21 120.4332
C4—C3—H3 120.442 C22—C21—H21 120.4324
C3—C4—C5 118.4 (5) C21—C22—C23 120.3 (4)
C3—C4—H4 120.8107 C21—C22—H22 119.8737
C5—C4—H4 120.8119 C23—C22—H22 119.8726
C4—C5—C6 118.9 (5) C22—C23—C24 121.0 (5)
C4—C5—H5 120.5658 C22—C23—H23 119.4855
C6—C5—H5 120.566 C24—C23—H23 119.4861
N2—C6—C5 123.4 (6) C19—C24—C23 119.6 (5)
N2—C6—H6 118.315 C19—C24—H24 120.2034
C5—C6—H6 118.317 C23—C24—H24 120.2026
N1—C7—C8 124.8 (4) P1—C25—C26 124.2 (4)
N1—C7—C12 116.0 (5) P1—C25—C30 117.5 (4)
C8—C7—C12 119.2 (5) C26—C25—C30 118.3 (5)
C7—C8—C9 120.0 (5) C25—C26—C27 121.5 (4)
C7—C8—H8 120.0129 C25—C26—H26 119.2398
C9—C8—H8 120.0148 C27—C26—H26 119.2411
C8—C9—C10 119.2 (6) C26—C27—C28 119.9 (5)
C8—C9—H9 120.3841 C26—C27—H27 120.0454
C10—C9—H9 120.3841 C28—C27—H27 120.0454
Br1—C10—C9 119.1 (4) C27—C28—C29 119.6 (5)
Br1—C10—C11 119.0 (4) C27—C28—H28 120.2082
C9—C10—C11 121.9 (5) C29—C28—H28 120.2108
C10—C11—C12 118.7 (5) C28—C29—C30 120.2 (5)
C10—C11—H11 120.6268 C28—C29—H29 119.904
C12—C11—H11 120.6295 C30—C29—H29 119.9041
C7—C12—C11 120.9 (5) C25—C30—C29 120.5 (5)
C7—C12—H12 119.5252 C25—C30—H30 119.7526
C11—C12—H12 119.5264 C29—C30—H30 119.7517

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2426).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al-Fayez, S., Abdel-Rahman, L. H., Shemsi, A. M., Seddigi, Z. S. & Fettouhi, M. (2007). J. Chem. Crystallogr. 37, 517–521.
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  6. Chen, J.-L., Cao, X.-F., Gu, W., Su, B.-T., Zhang, F., Wen, H.-R. & Hong, R. (2012). Inorg. Chem. Commun. 15, 65–68.
  7. Dehghanpour, S., Fotouhi, L., Mohammadpour Amini, M., Khavasi, H. R., Jahani, K., Nouroozi, F. & Zamanifar, E. (2008). J. Coord. Chem. 61, 455–463.
  8. Dehghanpour, S., Mahmoudkhani, A. H. & Amirnasr, M. (2006). Struct. Chem. 17, 255–262.
  9. Habibi, M. H., Montazerozohori, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Anal. Sci. 23, x45–x46.
  10. Kickelbick, G., Amirnasr, M., Khalaji, A. D. & Dehghanpour, S. (2003). Aust. J. Chem. 56, 323–328.
  11. Massa, W., Dehghanpour, S. & Jahani, K. (2009). Inorg. Chim. Acta, 362, 2872–2878.
  12. Morshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Khalaji, A. D. (2009). Polyhedron, 28, 167–171.
  13. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  14. Roy, S., Mondal, T. K., Mitra, P., Torres, E. L. & Sinha, S. (2011). Polyhedron, 30, 913–922.
  15. Saha, G., Datta, P., Sarkar, K. K., Saha, R., Mostafa, G. & Sinha, C. (2011a). Polyhedron, 30, 614–623.
  16. Saha, G., Sarkar, K. K., Datta, P., Raghavaiah, P. & Sinha, C. (2010). Polyhedron, 29, 2098–2104.
  17. Saha, G., Sarkar, K. K., Mondal, T. K. & Sinha, C. (2011b). Inorg. Chim. Acta, 387, 240–247.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202884X/pk2426sup1.cif

e-68-m1001-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202884X/pk2426Isup2.hkl

e-68-m1001-Isup2.hkl (259.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES