Abstract
In the cation of the title compound, [Cu(C2H8N2)2(CH3OH)2](C8H4O4)·2CH3OH, the CuII atom lies on an inversion centre. The four N atoms of two ethylenediamine ligands around the CuII atom form the equatorial plane, while two methanol O atoms in the axial positions complete a Jahn–Teller distorted octahedral coordination. The benzene-1,4-dicarboxylate anion is centrosymmetric. In the crystal, C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds link the cations, the anions and the methanol solvent molecules.
Related literature
For the role of copper compounds in biology, see: Kovala-Demertzi et al. (1997 ▶). For background to copper coordination polymers with carboxylate ligands, see: Eddaoudi et al. (2001 ▶); Wen et al. (2005 ▶). For related structures with copper(II) and carboxylate anions, see: Al-Hashemi et al. (2010a
▶,b
▶).
Experimental
Crystal data
[Cu(C2H8N2)2(CH4O)2](C8H4O4)·2CH4O
M r = 476.04
Monoclinic,
a = 7.3075 (15) Å
b = 12.416 (3) Å
c = 12.551 (3) Å
β = 92.43 (3)°
V = 1137.7 (5) Å3
Z = 2
Mo Kα radiation
μ = 1.01 mm−1
T = 120 K
0.30 × 0.25 × 0.20 mm
Data collection
Stoe IPDS-2T diffractometer
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002 ▶) T min = 0.752, T max = 0.824
7838 measured reflections
3038 independent reflections
2347 reflections with I > 2σ(I)
R int = 0.048
Refinement
R[F 2 > 2σ(F 2)] = 0.041
wR(F 2) = 0.085
S = 1.03
3038 reflections
159 parameters
2 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.34 e Å−3
Δρmin = −0.31 e Å−3
Data collection: X-AREA (Stoe & Cie, 2002 ▶); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028942/hy2562sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028942/hy2562Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1C⋯O2 | 0.82 (3) | 2.27 (3) | 3.075 (3) | 167 (3) |
| N1—H1D⋯O3i | 0.84 (3) | 2.20 (3) | 3.009 (2) | 162 (3) |
| N2—H2C⋯O3 | 0.86 (2) | 2.12 (3) | 2.976 (2) | 169 (3) |
| N2—H2D⋯O1i | 0.92 (2) | 2.18 (3) | 3.065 (3) | 160 (2) |
| O3—H3A⋯O2 | 0.79 (2) | 1.89 (2) | 2.675 (2) | 172 (3) |
| O4—H4A⋯O1ii | 0.78 (2) | 1.85 (2) | 2.628 (2) | 171 (3) |
| C7—H7C⋯O4iii | 0.98 | 2.53 | 3.320 (3) | 138 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
We are grateful to Shahid Beheshti University for financial support.
supplementary crystallographic information
Comment
Copper plays a role in a number of biological processes with therapeutically administered drugs (Kovala-Demertzi et al., 1997). Coordination chemistry of Cu(II) complexes is important as building-blocks to construct novel coordination architectures (Wen et al., 2005). Carboxylate anions are widely used in the synthesis of coordination polymers (Eddaoudi et al., 2001). In the recent years, we reported the synthesis and crystal structures of Cu(II) carboxylate complexes (Al-Hashemi et al., 2010a,b). In order to expand this field, the title compound has been synthesized and its crystal structure is reported herein.
The asymmetric unit of the title compound (Fig. 1) consists a half of CuII ion, one ethylenediamine (en), one coordinated methanol, one uncoordinated methanol and a half of benzene-1,4-dicarboxylate anion. The CuII atom in the [Cu(en)2(CH3OH)2]2+ cation lies on an inversion centre. The four N atoms of the en ligands in the equatorial plane around the CuII atom form a slightly distorted square-planar arrangement, while the slightly distorted Jahn-Teller octahedral coordination is completed by two methanol O atoms in the axial positions. In the crystal, intermolecular C—H···O, N—H···O and O—H···O hydrogen bonds (Table 1) link the cations, the anions and the methanol solvent molecules (Fig. 2), which are effective in the stabilization of the structure.
Experimental
Benzene-1,4-dicarboxylic acid (0.10 g, 0.59 mmol) was dissolved in 6 ml methanol and 3.9 ml ethylenediamine (0.30 mol L-1 in methanol). Then CuCl2.2H2O (0.10 g, 0.59 mmol) was added to the solution and the reaction mixture was stirred. After 10 min 2-methylimidazol (0.10 g, 1.18 mmol) was added to the stirred solution. The resulting violet solution stirred at 313 K for 25 min. This solution was left to evaporate slowly at room temperature. After one week, violet block crystals of the title compound were isolated (yield: 0.20 g, 70.2%).
Refinement
H atoms bonded to O and N atoms were found in a difference Fourier map and refined isotropically. H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).
Figures
Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (a) 1-x, 2-y, 1-z; (b) -x, 1-y, 1-z.]
Fig. 2.
The packing diagram of the title compound showing hydrogen bonds as blue dashed lines.
Crystal data
| [Cu(C2H8N2)2(CH4O)2](C8H4O4)·2CH4O | F(000) = 506 |
| Mr = 476.04 | Dx = 1.390 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 3038 reflections |
| a = 7.3075 (15) Å | θ = 3.2–29.1° |
| b = 12.416 (3) Å | µ = 1.01 mm−1 |
| c = 12.551 (3) Å | T = 120 K |
| β = 92.43 (3)° | Block, violet |
| V = 1137.7 (5) Å3 | 0.30 × 0.25 × 0.20 mm |
| Z = 2 |
Data collection
| Stoe IPDS-2T diffractometer | 3038 independent reflections |
| Radiation source: fine-focus sealed tube | 2347 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.048 |
| ω scans | θmax = 29.1°, θmin = 3.2° |
| Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002) | h = −9→10 |
| Tmin = 0.752, Tmax = 0.824 | k = −17→15 |
| 7838 measured reflections | l = −17→13 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0404P)2 + 0.2093P] where P = (Fo2 + 2Fc2)/3 |
| 3038 reflections | (Δ/σ)max = 0.001 |
| 159 parameters | Δρmax = 0.34 e Å−3 |
| 2 restraints | Δρmin = −0.31 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.0000 | 0.5000 | 0.5000 | 0.01297 (9) | |
| O1 | 0.7634 (2) | 0.76878 (13) | 0.41449 (15) | 0.0307 (4) | |
| O2 | 0.4701 (2) | 0.71851 (12) | 0.40999 (14) | 0.0272 (4) | |
| O3 | 0.49935 (19) | 0.51748 (11) | 0.33602 (12) | 0.0186 (3) | |
| O4 | −0.0673 (2) | 0.60364 (12) | 0.33221 (13) | 0.0214 (3) | |
| N1 | 0.1952 (2) | 0.60613 (15) | 0.55183 (16) | 0.0171 (3) | |
| N2 | 0.1712 (2) | 0.40775 (14) | 0.41747 (15) | 0.0168 (3) | |
| C1 | 0.1084 (3) | 0.69471 (18) | 0.6108 (2) | 0.0239 (5) | |
| H1A | 0.0700 | 0.7530 | 0.5609 | 0.029* | |
| H1B | 0.1969 | 0.7249 | 0.6648 | 0.029* | |
| C2 | 0.0570 (3) | 0.35020 (18) | 0.33503 (19) | 0.0231 (4) | |
| H2A | 0.1279 | 0.2910 | 0.3037 | 0.028* | |
| H2B | 0.0174 | 0.4004 | 0.2772 | 0.028* | |
| C3 | 0.5963 (3) | 0.78604 (16) | 0.42582 (17) | 0.0192 (4) | |
| C4 | 0.5456 (3) | 0.89742 (16) | 0.46348 (16) | 0.0164 (4) | |
| C5 | 0.3620 (3) | 0.92725 (17) | 0.47038 (17) | 0.0172 (4) | |
| H5 | 0.2676 | 0.8778 | 0.4502 | 0.021* | |
| C6 | 0.6820 (3) | 0.97086 (16) | 0.49332 (17) | 0.0173 (4) | |
| H6 | 0.8069 | 0.9510 | 0.4888 | 0.021* | |
| C7 | 0.5385 (3) | 0.5129 (2) | 0.22584 (18) | 0.0257 (5) | |
| H7A | 0.4517 | 0.5586 | 0.1849 | 0.039* | |
| H7B | 0.5272 | 0.4384 | 0.2006 | 0.039* | |
| H7C | 0.6635 | 0.5386 | 0.2162 | 0.039* | |
| C8 | 0.0619 (3) | 0.6480 (2) | 0.2634 (2) | 0.0299 (5) | |
| H8A | −0.0026 | 0.6885 | 0.2062 | 0.045* | |
| H8B | 0.1329 | 0.5898 | 0.2324 | 0.045* | |
| H8C | 0.1446 | 0.6964 | 0.3040 | 0.045* | |
| H3A | 0.500 (4) | 0.5781 (16) | 0.355 (2) | 0.036 (8)* | |
| H4A | −0.127 (4) | 0.6514 (19) | 0.353 (2) | 0.040 (9)* | |
| H1C | 0.258 (4) | 0.632 (2) | 0.506 (2) | 0.025 (7)* | |
| H2C | 0.256 (3) | 0.445 (2) | 0.389 (2) | 0.026 (7)* | |
| H1D | 0.266 (4) | 0.573 (2) | 0.596 (2) | 0.029 (7)* | |
| H2D | 0.220 (3) | 0.358 (2) | 0.465 (2) | 0.026 (7)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.01172 (14) | 0.01237 (14) | 0.01498 (16) | 0.00083 (14) | 0.00256 (10) | −0.00271 (16) |
| O1 | 0.0276 (8) | 0.0218 (8) | 0.0430 (11) | 0.0109 (6) | 0.0046 (7) | −0.0054 (8) |
| O2 | 0.0341 (8) | 0.0163 (7) | 0.0319 (9) | −0.0010 (6) | 0.0104 (7) | −0.0046 (7) |
| O3 | 0.0202 (6) | 0.0142 (8) | 0.0216 (7) | −0.0017 (5) | 0.0041 (5) | −0.0032 (6) |
| O4 | 0.0197 (7) | 0.0191 (7) | 0.0261 (8) | 0.0041 (6) | 0.0064 (6) | −0.0008 (7) |
| N1 | 0.0154 (8) | 0.0178 (8) | 0.0180 (9) | 0.0000 (6) | 0.0009 (7) | −0.0001 (7) |
| N2 | 0.0179 (8) | 0.0154 (8) | 0.0175 (9) | 0.0011 (6) | 0.0037 (7) | −0.0013 (7) |
| C1 | 0.0232 (10) | 0.0184 (10) | 0.0306 (12) | −0.0037 (8) | 0.0043 (9) | −0.0086 (9) |
| C2 | 0.0278 (11) | 0.0210 (10) | 0.0208 (11) | −0.0013 (8) | 0.0071 (8) | −0.0074 (9) |
| C3 | 0.0267 (10) | 0.0167 (9) | 0.0145 (10) | 0.0065 (8) | 0.0031 (7) | 0.0025 (8) |
| C4 | 0.0221 (9) | 0.0154 (9) | 0.0120 (9) | 0.0038 (7) | 0.0035 (7) | 0.0036 (8) |
| C5 | 0.0198 (9) | 0.0168 (9) | 0.0152 (10) | 0.0007 (7) | 0.0014 (7) | −0.0007 (8) |
| C6 | 0.0179 (9) | 0.0199 (10) | 0.0140 (9) | 0.0044 (7) | 0.0019 (7) | 0.0018 (7) |
| C7 | 0.0260 (9) | 0.0297 (13) | 0.0215 (10) | −0.0006 (9) | 0.0006 (7) | −0.0047 (10) |
| C8 | 0.0245 (11) | 0.0382 (13) | 0.0274 (13) | 0.0068 (9) | 0.0077 (9) | 0.0074 (11) |
Geometric parameters (Å, º)
| Cu1—N2 | 2.0150 (17) | C1—H1B | 0.9900 |
| Cu1—N1 | 2.0286 (18) | C2—C1i | 1.518 (3) |
| Cu1—O4 | 2.4990 (17) | C2—H2A | 0.9900 |
| O1—C3 | 1.254 (3) | C2—H2B | 0.9900 |
| O2—C3 | 1.256 (3) | C3—C4 | 1.513 (3) |
| O3—C7 | 1.425 (3) | C4—C6 | 1.391 (3) |
| O3—H3A | 0.79 (2) | C4—C5 | 1.397 (3) |
| O4—C8 | 1.418 (3) | C5—C6ii | 1.387 (3) |
| O4—H4A | 0.78 (2) | C5—H5 | 0.9500 |
| N1—C1 | 1.483 (3) | C6—C5ii | 1.387 (3) |
| N1—H1C | 0.82 (3) | C6—H6 | 0.9500 |
| N1—H1D | 0.84 (3) | C7—H7A | 0.9800 |
| N2—C2 | 1.485 (3) | C7—H7B | 0.9800 |
| N2—H2C | 0.86 (2) | C7—H7C | 0.9800 |
| N2—H2D | 0.92 (2) | C8—H8A | 0.9800 |
| C1—C2i | 1.518 (3) | C8—H8B | 0.9800 |
| C1—H1A | 0.9900 | C8—H8C | 0.9800 |
| N2—Cu1—N2i | 180.0 | N2—C2—H2A | 110.2 |
| N2—Cu1—N1 | 95.19 (7) | C1i—C2—H2A | 110.2 |
| N2i—Cu1—N1 | 84.81 (7) | N2—C2—H2B | 110.2 |
| N1i—Cu1—N1 | 180.0 | C1i—C2—H2B | 110.2 |
| O4—Cu1—N1 | 92.66 (7) | H2A—C2—H2B | 108.5 |
| O4—Cu1—N1i | 87.34 (7) | O1—C3—O2 | 125.47 (19) |
| O4—Cu1—N2 | 87.92 (7) | O1—C3—C4 | 116.41 (19) |
| O4—Cu1—N2i | 92.08 (7) | O2—C3—C4 | 118.12 (18) |
| C7—O3—H3A | 109 (2) | C6—C4—C5 | 119.24 (18) |
| C8—O4—H4A | 107 (2) | C6—C4—C3 | 120.07 (18) |
| C1—N1—Cu1 | 109.39 (12) | C5—C4—C3 | 120.69 (18) |
| C1—N1—H1C | 109.0 (19) | C6ii—C5—C4 | 119.91 (18) |
| Cu1—N1—H1C | 116.0 (19) | C6ii—C5—H5 | 120.0 |
| C1—N1—H1D | 107 (2) | C4—C5—H5 | 120.0 |
| Cu1—N1—H1D | 107.2 (19) | C5ii—C6—C4 | 120.86 (18) |
| H1C—N1—H1D | 108 (3) | C5ii—C6—H6 | 119.6 |
| C2—N2—Cu1 | 106.80 (12) | C4—C6—H6 | 119.6 |
| C2—N2—H2C | 111.4 (18) | O3—C7—H7A | 109.5 |
| Cu1—N2—H2C | 112.3 (19) | O3—C7—H7B | 109.5 |
| C2—N2—H2D | 108.3 (17) | H7A—C7—H7B | 109.5 |
| Cu1—N2—H2D | 106.7 (17) | O3—C7—H7C | 109.5 |
| H2C—N2—H2D | 111 (2) | H7A—C7—H7C | 109.5 |
| N1—C1—C2i | 108.47 (17) | H7B—C7—H7C | 109.5 |
| N1—C1—H1A | 110.0 | O4—C8—H8A | 109.5 |
| C2i—C1—H1A | 110.0 | O4—C8—H8B | 109.5 |
| N1—C1—H1B | 110.0 | H8A—C8—H8B | 109.5 |
| C2i—C1—H1B | 110.0 | O4—C8—H8C | 109.5 |
| H1A—C1—H1B | 108.4 | H8A—C8—H8C | 109.5 |
| N2—C2—C1i | 107.42 (18) | H8B—C8—H8C | 109.5 |
| N2—Cu1—N1—C1 | 175.14 (15) | O2—C3—C4—C6 | 172.9 (2) |
| N2i—Cu1—N1—C1 | −4.86 (15) | O1—C3—C4—C5 | 174.9 (2) |
| N1i—Cu1—N2—C2 | 23.15 (14) | O2—C3—C4—C5 | −6.1 (3) |
| N1—Cu1—N2—C2 | −156.85 (14) | C6—C4—C5—C6ii | 0.0 (3) |
| Cu1—N1—C1—C2i | 31.5 (2) | C3—C4—C5—C6ii | 178.98 (19) |
| Cu1—N2—C2—C1i | −46.2 (2) | C5—C4—C6—C5ii | 0.0 (3) |
| O1—C3—C4—C6 | −6.2 (3) | C3—C4—C6—C5ii | −178.99 (19) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1C···O2 | 0.82 (3) | 2.27 (3) | 3.075 (3) | 167 (3) |
| N1—H1D···O3iii | 0.84 (3) | 2.20 (3) | 3.009 (2) | 162 (3) |
| N2—H2C···O3 | 0.86 (2) | 2.12 (3) | 2.976 (2) | 169 (3) |
| N2—H2D···O1iii | 0.92 (2) | 2.18 (3) | 3.065 (3) | 160 (2) |
| O3—H3A···O2 | 0.79 (2) | 1.89 (2) | 2.675 (2) | 172 (3) |
| O4—H4A···O1iv | 0.78 (2) | 1.85 (2) | 2.628 (2) | 171 (3) |
| C7—H7C···O4v | 0.98 | 2.53 | 3.320 (3) | 138 |
Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2562).
References
- Al-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010a). J. Coord. Chem. 63, 3207–3217.
- Al-Hashemi, R., Safari, N., Amani, S., Amani, V. & Khavasi, H. R. (2010b). Polyhedron, 29, 2409–2416.
- Eddaoudi, M., Moler, D. V., Li, H., Chen, B., Reineke, T. M., O’Keefe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.
- Wen, Y.-H., Cheng, J.-K., Feng, Y.-L., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2005). Inorg. Chim. Acta, 358, 3347–3354.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028942/hy2562sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028942/hy2562Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


