Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):m1012. doi: 10.1107/S1600536812028942

Bis(ethyl­enediamine-κ2 N,N′)bis­(methanol-κO)copper(II) benzene-1,4-dicarboxyl­ate methanol disolvate

Abolfazl Abbaszadeh a, Nasser Safari a,*, Vahid Amani a, Behrouz Notash a
PMCID: PMC3393248  PMID: 22807708

Abstract

In the cation of the title compound, [Cu(C2H8N2)2(CH3OH)2](C8H4O4)·2CH3OH, the CuII atom lies on an inversion centre. The four N atoms of two ethyl­enediamine ligands around the CuII atom form the equatorial plane, while two methanol O atoms in the axial positions complete a Jahn–Teller distorted octa­hedral coordination. The benzene-1,4-dicarboxyl­ate anion is centrosymmetric. In the crystal, C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds link the cations, the anions and the methanol solvent mol­ecules.

Related literature  

For the role of copper compounds in biology, see: Kovala-Demertzi et al. (1997). For background to copper coordination polymers with carboxyl­ate ligands, see: Eddaoudi et al. (2001); Wen et al. (2005). For related structures with copper(II) and carboxyl­ate anions, see: Al-Hashemi et al. (2010a ,b ).graphic file with name e-68-m1012-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C2H8N2)2(CH4O)2](C8H4O4)·2CH4O

  • M r = 476.04

  • Monoclinic, Inline graphic

  • a = 7.3075 (15) Å

  • b = 12.416 (3) Å

  • c = 12.551 (3) Å

  • β = 92.43 (3)°

  • V = 1137.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 120 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Stoe IPDS-2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002) T min = 0.752, T max = 0.824

  • 7838 measured reflections

  • 3038 independent reflections

  • 2347 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.085

  • S = 1.03

  • 3038 reflections

  • 159 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028942/hy2562sup1.cif

e-68-m1012-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028942/hy2562Isup2.hkl

e-68-m1012-Isup2.hkl (149.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2 0.82 (3) 2.27 (3) 3.075 (3) 167 (3)
N1—H1D⋯O3i 0.84 (3) 2.20 (3) 3.009 (2) 162 (3)
N2—H2C⋯O3 0.86 (2) 2.12 (3) 2.976 (2) 169 (3)
N2—H2D⋯O1i 0.92 (2) 2.18 (3) 3.065 (3) 160 (2)
O3—H3A⋯O2 0.79 (2) 1.89 (2) 2.675 (2) 172 (3)
O4—H4A⋯O1ii 0.78 (2) 1.85 (2) 2.628 (2) 171 (3)
C7—H7C⋯O4iii 0.98 2.53 3.320 (3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to Shahid Beheshti University for financial support.

supplementary crystallographic information

Comment

Copper plays a role in a number of biological processes with therapeutically administered drugs (Kovala-Demertzi et al., 1997). Coordination chemistry of Cu(II) complexes is important as building-blocks to construct novel coordination architectures (Wen et al., 2005). Carboxylate anions are widely used in the synthesis of coordination polymers (Eddaoudi et al., 2001). In the recent years, we reported the synthesis and crystal structures of Cu(II) carboxylate complexes (Al-Hashemi et al., 2010a,b). In order to expand this field, the title compound has been synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists a half of CuII ion, one ethylenediamine (en), one coordinated methanol, one uncoordinated methanol and a half of benzene-1,4-dicarboxylate anion. The CuII atom in the [Cu(en)2(CH3OH)2]2+ cation lies on an inversion centre. The four N atoms of the en ligands in the equatorial plane around the CuII atom form a slightly distorted square-planar arrangement, while the slightly distorted Jahn-Teller octahedral coordination is completed by two methanol O atoms in the axial positions. In the crystal, intermolecular C—H···O, N—H···O and O—H···O hydrogen bonds (Table 1) link the cations, the anions and the methanol solvent molecules (Fig. 2), which are effective in the stabilization of the structure.

Experimental

Benzene-1,4-dicarboxylic acid (0.10 g, 0.59 mmol) was dissolved in 6 ml methanol and 3.9 ml ethylenediamine (0.30 mol L-1 in methanol). Then CuCl2.2H2O (0.10 g, 0.59 mmol) was added to the solution and the reaction mixture was stirred. After 10 min 2-methylimidazol (0.10 g, 1.18 mmol) was added to the stirred solution. The resulting violet solution stirred at 313 K for 25 min. This solution was left to evaporate slowly at room temperature. After one week, violet block crystals of the title compound were isolated (yield: 0.20 g, 70.2%).

Refinement

H atoms bonded to O and N atoms were found in a difference Fourier map and refined isotropically. H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (a) 1-x, 2-y, 1-z; (b) -x, 1-y, 1-z.]

Fig. 2.

Fig. 2.

The packing diagram of the title compound showing hydrogen bonds as blue dashed lines.

Crystal data

[Cu(C2H8N2)2(CH4O)2](C8H4O4)·2CH4O F(000) = 506
Mr = 476.04 Dx = 1.390 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3038 reflections
a = 7.3075 (15) Å θ = 3.2–29.1°
b = 12.416 (3) Å µ = 1.01 mm1
c = 12.551 (3) Å T = 120 K
β = 92.43 (3)° Block, violet
V = 1137.7 (5) Å3 0.30 × 0.25 × 0.20 mm
Z = 2

Data collection

Stoe IPDS-2T diffractometer 3038 independent reflections
Radiation source: fine-focus sealed tube 2347 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
ω scans θmax = 29.1°, θmin = 3.2°
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002) h = −9→10
Tmin = 0.752, Tmax = 0.824 k = −17→15
7838 measured reflections l = −17→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.2093P] where P = (Fo2 + 2Fc2)/3
3038 reflections (Δ/σ)max = 0.001
159 parameters Δρmax = 0.34 e Å3
2 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.0000 0.5000 0.5000 0.01297 (9)
O1 0.7634 (2) 0.76878 (13) 0.41449 (15) 0.0307 (4)
O2 0.4701 (2) 0.71851 (12) 0.40999 (14) 0.0272 (4)
O3 0.49935 (19) 0.51748 (11) 0.33602 (12) 0.0186 (3)
O4 −0.0673 (2) 0.60364 (12) 0.33221 (13) 0.0214 (3)
N1 0.1952 (2) 0.60613 (15) 0.55183 (16) 0.0171 (3)
N2 0.1712 (2) 0.40775 (14) 0.41747 (15) 0.0168 (3)
C1 0.1084 (3) 0.69471 (18) 0.6108 (2) 0.0239 (5)
H1A 0.0700 0.7530 0.5609 0.029*
H1B 0.1969 0.7249 0.6648 0.029*
C2 0.0570 (3) 0.35020 (18) 0.33503 (19) 0.0231 (4)
H2A 0.1279 0.2910 0.3037 0.028*
H2B 0.0174 0.4004 0.2772 0.028*
C3 0.5963 (3) 0.78604 (16) 0.42582 (17) 0.0192 (4)
C4 0.5456 (3) 0.89742 (16) 0.46348 (16) 0.0164 (4)
C5 0.3620 (3) 0.92725 (17) 0.47038 (17) 0.0172 (4)
H5 0.2676 0.8778 0.4502 0.021*
C6 0.6820 (3) 0.97086 (16) 0.49332 (17) 0.0173 (4)
H6 0.8069 0.9510 0.4888 0.021*
C7 0.5385 (3) 0.5129 (2) 0.22584 (18) 0.0257 (5)
H7A 0.4517 0.5586 0.1849 0.039*
H7B 0.5272 0.4384 0.2006 0.039*
H7C 0.6635 0.5386 0.2162 0.039*
C8 0.0619 (3) 0.6480 (2) 0.2634 (2) 0.0299 (5)
H8A −0.0026 0.6885 0.2062 0.045*
H8B 0.1329 0.5898 0.2324 0.045*
H8C 0.1446 0.6964 0.3040 0.045*
H3A 0.500 (4) 0.5781 (16) 0.355 (2) 0.036 (8)*
H4A −0.127 (4) 0.6514 (19) 0.353 (2) 0.040 (9)*
H1C 0.258 (4) 0.632 (2) 0.506 (2) 0.025 (7)*
H2C 0.256 (3) 0.445 (2) 0.389 (2) 0.026 (7)*
H1D 0.266 (4) 0.573 (2) 0.596 (2) 0.029 (7)*
H2D 0.220 (3) 0.358 (2) 0.465 (2) 0.026 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01172 (14) 0.01237 (14) 0.01498 (16) 0.00083 (14) 0.00256 (10) −0.00271 (16)
O1 0.0276 (8) 0.0218 (8) 0.0430 (11) 0.0109 (6) 0.0046 (7) −0.0054 (8)
O2 0.0341 (8) 0.0163 (7) 0.0319 (9) −0.0010 (6) 0.0104 (7) −0.0046 (7)
O3 0.0202 (6) 0.0142 (8) 0.0216 (7) −0.0017 (5) 0.0041 (5) −0.0032 (6)
O4 0.0197 (7) 0.0191 (7) 0.0261 (8) 0.0041 (6) 0.0064 (6) −0.0008 (7)
N1 0.0154 (8) 0.0178 (8) 0.0180 (9) 0.0000 (6) 0.0009 (7) −0.0001 (7)
N2 0.0179 (8) 0.0154 (8) 0.0175 (9) 0.0011 (6) 0.0037 (7) −0.0013 (7)
C1 0.0232 (10) 0.0184 (10) 0.0306 (12) −0.0037 (8) 0.0043 (9) −0.0086 (9)
C2 0.0278 (11) 0.0210 (10) 0.0208 (11) −0.0013 (8) 0.0071 (8) −0.0074 (9)
C3 0.0267 (10) 0.0167 (9) 0.0145 (10) 0.0065 (8) 0.0031 (7) 0.0025 (8)
C4 0.0221 (9) 0.0154 (9) 0.0120 (9) 0.0038 (7) 0.0035 (7) 0.0036 (8)
C5 0.0198 (9) 0.0168 (9) 0.0152 (10) 0.0007 (7) 0.0014 (7) −0.0007 (8)
C6 0.0179 (9) 0.0199 (10) 0.0140 (9) 0.0044 (7) 0.0019 (7) 0.0018 (7)
C7 0.0260 (9) 0.0297 (13) 0.0215 (10) −0.0006 (9) 0.0006 (7) −0.0047 (10)
C8 0.0245 (11) 0.0382 (13) 0.0274 (13) 0.0068 (9) 0.0077 (9) 0.0074 (11)

Geometric parameters (Å, º)

Cu1—N2 2.0150 (17) C1—H1B 0.9900
Cu1—N1 2.0286 (18) C2—C1i 1.518 (3)
Cu1—O4 2.4990 (17) C2—H2A 0.9900
O1—C3 1.254 (3) C2—H2B 0.9900
O2—C3 1.256 (3) C3—C4 1.513 (3)
O3—C7 1.425 (3) C4—C6 1.391 (3)
O3—H3A 0.79 (2) C4—C5 1.397 (3)
O4—C8 1.418 (3) C5—C6ii 1.387 (3)
O4—H4A 0.78 (2) C5—H5 0.9500
N1—C1 1.483 (3) C6—C5ii 1.387 (3)
N1—H1C 0.82 (3) C6—H6 0.9500
N1—H1D 0.84 (3) C7—H7A 0.9800
N2—C2 1.485 (3) C7—H7B 0.9800
N2—H2C 0.86 (2) C7—H7C 0.9800
N2—H2D 0.92 (2) C8—H8A 0.9800
C1—C2i 1.518 (3) C8—H8B 0.9800
C1—H1A 0.9900 C8—H8C 0.9800
N2—Cu1—N2i 180.0 N2—C2—H2A 110.2
N2—Cu1—N1 95.19 (7) C1i—C2—H2A 110.2
N2i—Cu1—N1 84.81 (7) N2—C2—H2B 110.2
N1i—Cu1—N1 180.0 C1i—C2—H2B 110.2
O4—Cu1—N1 92.66 (7) H2A—C2—H2B 108.5
O4—Cu1—N1i 87.34 (7) O1—C3—O2 125.47 (19)
O4—Cu1—N2 87.92 (7) O1—C3—C4 116.41 (19)
O4—Cu1—N2i 92.08 (7) O2—C3—C4 118.12 (18)
C7—O3—H3A 109 (2) C6—C4—C5 119.24 (18)
C8—O4—H4A 107 (2) C6—C4—C3 120.07 (18)
C1—N1—Cu1 109.39 (12) C5—C4—C3 120.69 (18)
C1—N1—H1C 109.0 (19) C6ii—C5—C4 119.91 (18)
Cu1—N1—H1C 116.0 (19) C6ii—C5—H5 120.0
C1—N1—H1D 107 (2) C4—C5—H5 120.0
Cu1—N1—H1D 107.2 (19) C5ii—C6—C4 120.86 (18)
H1C—N1—H1D 108 (3) C5ii—C6—H6 119.6
C2—N2—Cu1 106.80 (12) C4—C6—H6 119.6
C2—N2—H2C 111.4 (18) O3—C7—H7A 109.5
Cu1—N2—H2C 112.3 (19) O3—C7—H7B 109.5
C2—N2—H2D 108.3 (17) H7A—C7—H7B 109.5
Cu1—N2—H2D 106.7 (17) O3—C7—H7C 109.5
H2C—N2—H2D 111 (2) H7A—C7—H7C 109.5
N1—C1—C2i 108.47 (17) H7B—C7—H7C 109.5
N1—C1—H1A 110.0 O4—C8—H8A 109.5
C2i—C1—H1A 110.0 O4—C8—H8B 109.5
N1—C1—H1B 110.0 H8A—C8—H8B 109.5
C2i—C1—H1B 110.0 O4—C8—H8C 109.5
H1A—C1—H1B 108.4 H8A—C8—H8C 109.5
N2—C2—C1i 107.42 (18) H8B—C8—H8C 109.5
N2—Cu1—N1—C1 175.14 (15) O2—C3—C4—C6 172.9 (2)
N2i—Cu1—N1—C1 −4.86 (15) O1—C3—C4—C5 174.9 (2)
N1i—Cu1—N2—C2 23.15 (14) O2—C3—C4—C5 −6.1 (3)
N1—Cu1—N2—C2 −156.85 (14) C6—C4—C5—C6ii 0.0 (3)
Cu1—N1—C1—C2i 31.5 (2) C3—C4—C5—C6ii 178.98 (19)
Cu1—N2—C2—C1i −46.2 (2) C5—C4—C6—C5ii 0.0 (3)
O1—C3—C4—C6 −6.2 (3) C3—C4—C6—C5ii −178.99 (19)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O2 0.82 (3) 2.27 (3) 3.075 (3) 167 (3)
N1—H1D···O3iii 0.84 (3) 2.20 (3) 3.009 (2) 162 (3)
N2—H2C···O3 0.86 (2) 2.12 (3) 2.976 (2) 169 (3)
N2—H2D···O1iii 0.92 (2) 2.18 (3) 3.065 (3) 160 (2)
O3—H3A···O2 0.79 (2) 1.89 (2) 2.675 (2) 172 (3)
O4—H4A···O1iv 0.78 (2) 1.85 (2) 2.628 (2) 171 (3)
C7—H7C···O4v 0.98 2.53 3.320 (3) 138

Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2562).

References

  1. Al-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010a). J. Coord. Chem. 63, 3207–3217.
  2. Al-Hashemi, R., Safari, N., Amani, S., Amani, V. & Khavasi, H. R. (2010b). Polyhedron, 29, 2409–2416.
  3. Eddaoudi, M., Moler, D. V., Li, H., Chen, B., Reineke, T. M., O’Keefe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  9. Wen, Y.-H., Cheng, J.-K., Feng, Y.-L., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2005). Inorg. Chim. Acta, 358, 3347–3354.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028942/hy2562sup1.cif

e-68-m1012-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028942/hy2562Isup2.hkl

e-68-m1012-Isup2.hkl (149.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES