Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):m1015–m1016. doi: 10.1107/S1600536812028905

Dimethyl­ammonium dichloridotriphenyl­stannate(IV)

Yaya Sow a, Libasse Diop a, Gabriele Kociok-Kohn b, Kieran C Molloy b,*
PMCID: PMC3393250  PMID: 22807710

Abstract

The title salt, [(CH3)2NH2][Sn(C6H5)3Cl2], was obtained as a by-product of the reaction between bis­(dimethyl­ammonium) oxalate and triphenyl­tin chloride. In the stannate anion, the trigonal–bipyramidal coordination environment of the SnIV atom is defined by the phenyl groups in equatorial and the Cl atoms in axial positions. The cations are connected to adjacent anions through N—H⋯Cl and C—H⋯Cl hydrogen-bonding inter­actions, leading to a chain motif parallel to [100].

Related literature  

For background to organotin(IV) chemistry, see: Chee et al. (2003); Evans & Karpel (1985); Gielen et al. (1995); Ng & Kumar Das (1997); Zhang et al. (2006). For compounds containing the [Sn(C6H5)3Cl2] ion, see: Harrison et al. (1978); Ng (1995, 1999).graphic file with name e-68-m1015-scheme1.jpg

Experimental  

Crystal data  

  • (C2H8N)[Sn(C6H5)3Cl2]

  • M r = 466.98

  • Monoclinic, Inline graphic

  • a = 7.9865 (1) Å

  • b = 17.5031 (3) Å

  • c = 14.9484 (3) Å

  • β = 105.406 (1)°

  • V = 2014.53 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.656, T max = 0.749

  • 16595 measured reflections

  • 4569 independent reflections

  • 4469 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.045

  • S = 1.07

  • 4569 reflections

  • 227 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.89 e Å−3

  • Absolute structure: Flack (1983), 2256 Friedel pairs

  • Flack parameter: −0.030 (12)

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028905/wm2636sup1.cif

e-68-m1015-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028905/wm2636Isup2.hkl

e-68-m1015-Isup2.hkl (219.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn—C7 2.152 (2)
Sn—C13 2.152 (2)
Sn—C1 2.160 (2)
Sn—Cl2 2.6098 (6)
Sn—Cl1 2.6153 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1A⋯Cl1 0.89 (3) 2.33 (3) 3.203 (2) 167 (3)
N—H1B⋯Cl2i 0.82 (3) 2.34 (3) 3.143 (2) 164 (3)
C2—H2⋯Cl2 0.95 2.67 3.309 (3) 125
C6—H6⋯Cl1 0.95 2.76 3.376 (2) 123
C8—H8⋯Cl1 0.95 2.70 3.344 (2) 126
C12—H12⋯Cl2 0.95 2.69 3.340 (2) 126

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Three [Sn(C6H5)3Cl2]- stannate(IV) anion-containing compounds with 2,2'-iminodipyridinium (Ng, 1999), triphenyl(benzoylmethyl)arsonium (Harrison et al., 1978) and tetramethylammonium (Ng, 1995), have previously been reported. In our research of new organotin(IV) compounds, driven by the various applications found within this family (Chee et al., 2003; Evans & Karpel 1985; Gielen et al., 1995; Ng et al.,1997; Zhang et al., 2006), we have initiated here the study of the interactions between bis(dimethylammonium)oxalate and triphenyltin chloride which has yielded the title ionic product, [(CH3)2NH2][Sn(C6H5)3Cl2], (I).

The [Sn(C6H5)3Cl2]- anion has a trigonal-bipyramidal shape with the Sn(IV) atom in a trans-Cl2C3 environment (Fig. 1). The equatorial plane is defined by the three phenyl groups [Sn—C 2.152 (2), 2.152 (2) and 2.160 (2) Å] while the Sn—Cl distances are 2.6098 (6) and 2.6153 (6) Å. The latter distances are very close to those reported by Ng (1995, 1999), [2.598 (1) Å] but somehow longer and shorter than those reported by Harrison et al. (1978) [2.573 (7), 2.689 (6) Å] for the same kind of anion. The sum of the equatorial angles (360°) indicates a planar SnPh3 residue, although the Cl—Sn—Cl angle deviates from linearity [174.94 (2)°].

The [SnPh3Cl2]- anions are connected by the ammonium cations through a pair of similar N—H···Cl hydrogen bonds leading to an infinite chain structure parallel to [100] (Fig. 2), which is probably the origin of the Sn—Cl bond lengthening in comparison with [(CH3)4N][Sn(C6H5)3Cl2]. In the crystal packing C—H···Cl interactions are also observed (Table 1).

Experimental

All chemicals were purchased from Aldrich (Germany) and used without any further purification. When ((CH3)2NH2)2C2O4.nH2O (obtained as a powder on submitting a 2/1 ratio mixture of [(CH3)2NH2][OH] and oxalic acid in water to evaporate at 333 K) is allowed to react while stirring with an excess of Sn(C6H5)3Cl, both as ethanolic solutions, over 2 h, a precipitate is obtained. After filtering the precipitate, slow solvent evaporation from the filtrate afforded colourless crystals of the title complex suitable for X-ray work.

Refinement

Hydrogen atoms bonded to the N atom have been located in difference Fourier maps and have been freely refined. All other hydrogen atoms have been placed onto calculated position and refined using a riding model, with C—H distances of 0.95 Å for sp2 carbon atoms, or 0.98 Å for sp3 carbon atoms, and with Uiso(H) = 1.2Ueq(C) for the sp2 carbon atoms and Uiso(H) = 1.5Ueq(C) for the sp3 carbon atoms.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the complex showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

: The packing of the structure showing N—H···Cl hydrogen bonding interactions as dashed lines.

Crystal data

(C2H8N)[Sn(C6H5)3Cl2] F(000) = 936
Mr = 466.98 Dx = 1.540 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 12072 reflections
a = 7.9865 (1) Å θ = 2.9–27.5°
b = 17.5031 (3) Å µ = 1.54 mm1
c = 14.9484 (3) Å T = 150 K
β = 105.406 (1)° Block, colourless
V = 2014.53 (6) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 4569 independent reflections
Radiation source: fine-focus sealed tube 4469 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
298 2.0 degree images with φ and ω scans θmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan (SORTAV; Blessing, 1995) h = −10→10
Tmin = 0.656, Tmax = 0.749 k = −22→22
16595 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0204P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
4569 reflections Δρmax = 0.41 e Å3
227 parameters Δρmin = −0.89 e Å3
2 restraints Absolute structure: Flack (1983), 2256 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.030 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn 0.547277 (14) 0.045301 (7) 0.791813 (12) 0.01712 (5)
Cl1 0.25286 (7) 0.11982 (3) 0.75104 (4) 0.02502 (13)
Cl2 0.84601 (8) −0.02426 (3) 0.84731 (4) 0.02268 (12)
C1 0.4134 (3) −0.06314 (13) 0.77445 (16) 0.0196 (5)
C2 0.4971 (3) −0.12794 (14) 0.75338 (18) 0.0251 (5)
H2 0.6146 −0.1243 0.7510 0.030*
C3 0.4122 (3) −0.19752 (14) 0.73581 (18) 0.0293 (6)
H3 0.4699 −0.2405 0.7191 0.035*
C4 0.2430 (3) −0.20458 (14) 0.74251 (19) 0.0278 (6)
H4 0.1850 −0.2524 0.7314 0.033*
C5 0.1592 (3) −0.14099 (14) 0.76558 (18) 0.0269 (5)
H5 0.0438 −0.1454 0.7711 0.032*
C6 0.2438 (3) −0.07124 (14) 0.78062 (17) 0.0229 (5)
H6 0.1845 −0.0280 0.7955 0.028*
C7 0.6122 (3) 0.08981 (12) 0.67105 (15) 0.0189 (4)
C8 0.4818 (3) 0.11348 (13) 0.59360 (16) 0.0229 (5)
H8 0.3639 0.1126 0.5957 0.028*
C9 0.5229 (3) 0.13846 (14) 0.51318 (17) 0.0269 (5)
H9 0.4331 0.1537 0.4607 0.032*
C10 0.6947 (3) 0.14098 (13) 0.51011 (17) 0.0262 (5)
H10 0.7225 0.1573 0.4552 0.031*
C11 0.8259 (3) 0.11967 (13) 0.58705 (18) 0.0259 (5)
H11 0.9440 0.1228 0.5856 0.031*
C12 0.7843 (3) 0.09383 (13) 0.66590 (16) 0.0222 (5)
H12 0.8750 0.0784 0.7179 0.027*
C13 0.6162 (3) 0.10926 (12) 0.91933 (16) 0.0209 (5)
C14 0.6982 (3) 0.07444 (14) 1.00306 (17) 0.0246 (5)
H14 0.7210 0.0211 1.0046 0.029*
C15 0.7473 (3) 0.11681 (15) 1.08452 (18) 0.0315 (6)
H15 0.8030 0.0922 1.1413 0.038*
C16 0.7159 (4) 0.19439 (15) 1.0836 (2) 0.0340 (6)
H16 0.7496 0.2231 1.1395 0.041*
C17 0.6349 (3) 0.23011 (15) 1.0009 (2) 0.0318 (6)
H17 0.6148 0.2836 0.9998 0.038*
C18 0.5825 (3) 0.18794 (13) 0.91879 (18) 0.0257 (5)
H18 0.5240 0.2126 0.8626 0.031*
N 0.1313 (3) 0.09715 (12) 0.93699 (16) 0.0265 (5)
H1A 0.172 (4) 0.0954 (16) 0.887 (2) 0.034 (8)*
H1B 0.043 (4) 0.0718 (19) 0.916 (2) 0.032 (8)*
C30 0.0840 (5) 0.17409 (17) 0.9603 (3) 0.0535 (9)
H30A 0.0163 0.1706 1.0061 0.080*
H30B 0.0144 0.1993 0.9042 0.080*
H30C 0.1897 0.2038 0.9863 0.080*
C20 0.2435 (5) 0.0556 (2) 1.0161 (3) 0.0560 (10)
H20A 0.3495 0.0852 1.0420 0.084*
H20B 0.2743 0.0058 0.9952 0.084*
H20C 0.1815 0.0482 1.0639 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn 0.01594 (7) 0.01814 (7) 0.01734 (7) −0.00084 (7) 0.00453 (5) −0.00073 (8)
Cl1 0.0184 (3) 0.0280 (3) 0.0286 (3) 0.0049 (2) 0.0062 (2) 0.0038 (3)
Cl2 0.0170 (3) 0.0253 (3) 0.0250 (3) 0.0014 (2) 0.0043 (2) 0.0007 (3)
C1 0.0209 (11) 0.0241 (11) 0.0128 (11) −0.0049 (10) 0.0027 (9) −0.0002 (9)
C2 0.0238 (13) 0.0236 (12) 0.0317 (14) −0.0029 (10) 0.0142 (11) −0.0051 (10)
C3 0.0320 (13) 0.0230 (12) 0.0346 (15) 0.0016 (10) 0.0117 (12) −0.0050 (11)
C4 0.0284 (13) 0.0219 (12) 0.0314 (14) −0.0096 (11) 0.0052 (11) −0.0040 (11)
C5 0.0205 (11) 0.0284 (12) 0.0314 (14) −0.0053 (10) 0.0059 (10) −0.0008 (11)
C6 0.0231 (12) 0.0239 (12) 0.0228 (13) 0.0021 (10) 0.0077 (10) 0.0005 (11)
C7 0.0223 (11) 0.0157 (10) 0.0180 (11) −0.0031 (9) 0.0042 (9) −0.0025 (9)
C8 0.0220 (12) 0.0231 (12) 0.0227 (13) −0.0005 (9) 0.0043 (10) −0.0002 (10)
C9 0.0339 (14) 0.0250 (12) 0.0200 (12) 0.0022 (10) 0.0036 (11) −0.0004 (10)
C10 0.0422 (15) 0.0213 (12) 0.0185 (12) 0.0026 (10) 0.0136 (11) 0.0019 (10)
C11 0.0252 (13) 0.0252 (12) 0.0300 (14) −0.0044 (10) 0.0122 (11) −0.0017 (10)
C12 0.0230 (12) 0.0222 (11) 0.0202 (13) −0.0020 (9) 0.0039 (10) 0.0003 (10)
C13 0.0193 (11) 0.0233 (11) 0.0207 (12) −0.0027 (9) 0.0063 (10) −0.0023 (10)
C14 0.0282 (13) 0.0231 (12) 0.0228 (13) −0.0026 (10) 0.0075 (11) −0.0014 (10)
C15 0.0358 (15) 0.0377 (15) 0.0213 (13) −0.0058 (11) 0.0080 (12) −0.0039 (11)
C16 0.0386 (15) 0.0391 (15) 0.0264 (15) −0.0107 (12) 0.0127 (12) −0.0134 (12)
C17 0.0346 (14) 0.0244 (12) 0.0406 (17) −0.0057 (11) 0.0173 (13) −0.0134 (12)
C18 0.0269 (13) 0.0223 (12) 0.0296 (14) 0.0001 (10) 0.0105 (11) 0.0002 (10)
N 0.0232 (11) 0.0300 (11) 0.0258 (12) −0.0030 (9) 0.0058 (10) −0.0033 (10)
C30 0.059 (2) 0.0319 (16) 0.081 (3) 0.0027 (14) 0.039 (2) −0.0061 (16)
C20 0.045 (2) 0.078 (3) 0.041 (2) 0.0102 (16) 0.0024 (17) 0.0204 (17)

Geometric parameters (Å, º)

Sn—C7 2.152 (2) C11—C12 1.383 (3)
Sn—C13 2.152 (2) C11—H11 0.9500
Sn—C1 2.160 (2) C12—H12 0.9500
Sn—Cl2 2.6098 (6) C13—C14 1.390 (3)
Sn—Cl1 2.6153 (6) C13—C18 1.403 (3)
C1—C6 1.389 (3) C14—C15 1.390 (4)
C1—C2 1.395 (3) C14—H14 0.9500
C2—C3 1.385 (3) C15—C16 1.380 (4)
C2—H2 0.9500 C15—H15 0.9500
C3—C4 1.387 (3) C16—C17 1.384 (4)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.389 (3) C17—C18 1.397 (4)
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.385 (3) C18—H18 0.9500
C5—H5 0.9500 N—C30 1.466 (4)
C6—H6 0.9500 N—C20 1.473 (4)
C7—C8 1.399 (3) N—H1A 0.89 (3)
C7—C12 1.399 (3) N—H1B 0.82 (3)
C8—C9 1.398 (3) C30—H30A 0.9800
C8—H8 0.9500 C30—H30B 0.9800
C9—C10 1.386 (4) C30—H30C 0.9800
C9—H9 0.9500 C20—H20A 0.9800
C10—C11 1.386 (4) C20—H20B 0.9800
C10—H10 0.9500 C20—H20C 0.9800
C7—Sn—C13 119.52 (8) C12—C11—H11 120.1
C7—Sn—C1 116.05 (8) C10—C11—H11 120.1
C13—Sn—C1 124.43 (9) C11—C12—C7 121.7 (2)
C7—Sn—Cl2 91.83 (6) C11—C12—H12 119.2
C13—Sn—Cl2 87.94 (6) C7—C12—H12 119.2
C1—Sn—Cl2 90.57 (7) C14—C13—C18 118.7 (2)
C7—Sn—Cl1 91.49 (6) C14—C13—Sn 121.19 (16)
C13—Sn—Cl1 87.10 (6) C18—C13—Sn 120.14 (17)
C1—Sn—Cl1 91.40 (7) C13—C14—C15 120.7 (2)
Cl2—Sn—Cl1 174.94 (2) C13—C14—H14 119.6
C6—C1—C2 117.8 (2) C15—C14—H14 119.6
C6—C1—Sn 122.82 (18) C16—C15—C14 120.5 (3)
C2—C1—Sn 119.33 (16) C16—C15—H15 119.7
C3—C2—C1 121.2 (2) C14—C15—H15 119.7
C3—C2—H2 119.4 C15—C16—C17 119.6 (3)
C1—C2—H2 119.4 C15—C16—H16 120.2
C2—C3—C4 120.2 (2) C17—C16—H16 120.2
C2—C3—H3 119.9 C16—C17—C18 120.4 (2)
C4—C3—H3 119.9 C16—C17—H17 119.8
C3—C4—C5 119.3 (2) C18—C17—H17 119.8
C3—C4—H4 120.3 C17—C18—C13 120.1 (2)
C5—C4—H4 120.3 C17—C18—H18 120.0
C6—C5—C4 120.0 (2) C13—C18—H18 120.0
C6—C5—H5 120.0 C30—N—C20 113.8 (3)
C4—C5—H5 120.0 C30—N—H1A 113.9 (18)
C5—C6—C1 121.4 (2) C20—N—H1A 112.2 (19)
C5—C6—H6 119.3 C30—N—H1B 110 (2)
C1—C6—H6 119.3 C20—N—H1B 109 (2)
C8—C7—C12 117.8 (2) H1A—N—H1B 97 (3)
C8—C7—Sn 120.62 (17) N—C30—H30A 109.5
C12—C7—Sn 121.57 (17) N—C30—H30B 109.5
C9—C8—C7 120.8 (2) H30A—C30—H30B 109.5
C9—C8—H8 119.6 N—C30—H30C 109.5
C7—C8—H8 119.6 H30A—C30—H30C 109.5
C10—C9—C8 120.0 (2) H30B—C30—H30C 109.5
C10—C9—H9 120.0 N—C20—H20A 109.5
C8—C9—H9 120.0 N—C20—H20B 109.5
C11—C10—C9 120.1 (2) H20A—C20—H20B 109.5
C11—C10—H10 120.0 N—C20—H20C 109.5
C9—C10—H10 120.0 H20A—C20—H20C 109.5
C12—C11—C10 119.7 (2) H20B—C20—H20C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N—H1A···Cl1 0.89 (3) 2.33 (3) 3.203 (2) 167 (3)
N—H1B···Cl2i 0.82 (3) 2.34 (3) 3.143 (2) 164 (3)
C2—H2···Cl2 0.95 2.67 3.309 (3) 125
C6—H6···Cl1 0.95 2.76 3.376 (2) 123
C8—H8···Cl1 0.95 2.70 3.344 (2) 126
C12—H12···Cl2 0.95 2.69 3.340 (2) 126

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2636).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Chee, C. F., Lo, K. M. & Ng, S. W. (2003). Acta Cryst. E59, m36–m37.
  4. Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16, Amsterdam: Elsevier.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Gielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251–257.
  8. Harrison, P. G., Molloy, K. C., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421–434.
  9. Ng, S. W. (1995). Acta Cryst. C51, 1124–1125.
  10. Ng, S. W. (1999). Acta Cryst. C55, IUC9900098.
  11. Ng, S. W. & Kumar Das, V. G. (1997). Acta Cryst. C53, 1034–1036.
  12. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028905/wm2636sup1.cif

e-68-m1015-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028905/wm2636Isup2.hkl

e-68-m1015-Isup2.hkl (219.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES