Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 2;68(Pt 7):o1976. doi: 10.1107/S160053681202404X

2,2′-[2,5-Bis(hex­yloxy)-1,4-phenyl­ene]dithio­phene

Chin Hoong Teh a, Muhammad Mat Salleh b, Mohamed Ibrahim Mohamed Tahir c, Rusli Daik a, Mohammad B Kassim a,*
PMCID: PMC3393253  PMID: 22807810

Abstract

The asymmetric unit of the title compound, C26H34O2S2, comprises one half-mol­ecule located on an inversion centre. The thio­phene groups are twisted relative to the benzene ring, making a dihedral angle of 5.30 (7)°, and the n-hexyl groups are in a fully extended conformation. In the crystal, there are short C—H⋯π contacts involving the thio­phene groups.

Related literature  

For the synthesis and general background references, see: Carle et al. (2010); Promarak & Ruchirawat (2007); Bouachrine et al. (2002).graphic file with name e-68-o1976-scheme1.jpg

Experimental  

Crystal data  

  • C26H34O2S2

  • M r = 442.65

  • Monoclinic, Inline graphic

  • a = 12.2996 (3) Å

  • b = 5.4298 (1) Å

  • c = 17.6872 (4) Å

  • β = 103.982 (2)°

  • V = 1146.23 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.25 mm−1

  • T = 150 K

  • 0.26 × 0.11 × 0.03 mm

Data collection  

  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) T min = 0.592, T max = 0.935

  • 8010 measured reflections

  • 2216 independent reflections

  • 2018 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.113

  • S = 1.04

  • 2216 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202404X/gk2496sup1.cif

e-68-o1976-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202404X/gk2496Isup2.hkl

e-68-o1976-Isup2.hkl (109KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202404X/gk2496Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the S1, C4–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.85 3.5809 (16) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia for research grants UKM-GUP-BTT-07–26–178 and UKM-FST-06-FRGS0095–2010. This work was also supported by a National Science Fellowship (NSF) to TCH.

supplementary crystallographic information

Comment

Thiophene-phenylene-thiophene unit, as in the title compound, is an interesting material to produce soluble electroluminescent materials for LED applications (Bouachrine et al., 2002) and making photovoltaic devices (Carle et al., 2010). The solubility characteristic for the title compound in organic solvents was enhanced by the presence of dialkyloxy groups on the phenylene fragment.

The molecule of the title compound is shown in Fig. 1 and crystal packing projection along the b axis is shown in Fig. 2.

Experimental

The preparation of title compound was adapted from previously published procedure with a slight modification (Promarak & Ruchirawat, 2007). Aqueous sodium carbonate solution (2M, 10.5 ml) was added into a solution of 2,5-dibromo-1,4-bis(hexyloxy)benzene (1.50 g, 3.44 mmol) in dry THF prior to addition of Pd(PPh3)4 (0.21 g) catalyst. This was followed by the addition of 2-thiophene boronic acid (1.32 g, 10.32 mmol) and the mixture was heated under reflux overnight in dry N2 atmosphere and allowed to cool to ambient temperature prior to addition of water. The product was extracted into CH2Cl2 and the organic phase was combined, washed with water and brine solution, followed by drying over anhydrous MgSO4. The solvent was evaporated using rotary evaporator and the product was further recrystallized from ethanol/ethyl acetate to afford crystals suitable for single-crystal X-ray diffraction (yield: 80%).

Refinement

The H atom positions were calculated geometrically and refined in a riding model approximation with C–H bond lengths in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) except methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Symmetry code for atoms with the A label: -x, 1 - y, 1 - z.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed down the b-axis.

Crystal data

C26H34O2S2 F(000) = 476
Mr = 442.65 Dx = 1.283 Mg m3
Monoclinic, P21/c Melting point = 369–367 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54178 Å
a = 12.2996 (3) Å Cell parameters from 3985 reflections
b = 5.4298 (1) Å θ = 4–71°
c = 17.6872 (4) Å µ = 2.25 mm1
β = 103.982 (2)° T = 150 K
V = 1146.23 (4) Å3 Thin plate, colourless
Z = 2 0.26 × 0.11 × 0.03 mm

Data collection

Oxford Diffraction Gemini diffractometer 2216 independent reflections
Radiation source: fine-focus sealed tube 2018 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
ω scans θmax = 71.3°, θmin = 3.7°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) h = −15→14
Tmin = 0.592, Tmax = 0.935 k = −6→6
8010 measured reflections l = −21→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.5049P] where P = (Fo2 + 2Fc2)/3
2216 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer 1986) with a nominal stability of 0.1 K.Cosier, J. & Glazer, A.M., (1986)., J. Appl. Cryst.105 107.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29977 (3) 0.23308 (7) 0.14406 (2) 0.02015 (17)
O1 0.33781 (9) 0.3460 (2) 0.00566 (6) 0.0185 (3)
C1 0.41842 (12) 0.1767 (3) 0.00089 (8) 0.0151 (3)
C2 0.44944 (12) 0.0140 (3) 0.06456 (8) 0.0146 (3)
C3 0.46770 (12) 0.1612 (3) −0.06175 (8) 0.0153 (3)
H3 0.4451 0.2703 −0.1031 0.018*
C4 0.39762 (12) 0.0159 (3) 0.13132 (8) 0.0144 (3)
C5 0.41723 (12) −0.1539 (3) 0.19221 (8) 0.0163 (3)
H5 0.4667 −0.2856 0.1962 0.020*
C6 0.35315 (13) −0.1034 (3) 0.24751 (9) 0.0190 (3)
H6 0.3560 −0.1990 0.2916 0.023*
C7 0.28728 (13) 0.0999 (3) 0.22898 (9) 0.0205 (3)
H7 0.2408 0.1595 0.2592 0.025*
C8 0.30066 (12) 0.5135 (3) −0.05794 (8) 0.0161 (3)
H8A 0.2722 0.4229 −0.1059 0.019*
H8B 0.3624 0.6160 −0.0643 0.019*
C9 0.20894 (12) 0.6715 (3) −0.03966 (8) 0.0162 (3)
H9A 0.2394 0.7674 0.0069 0.019*
H9B 0.1504 0.5663 −0.0294 0.019*
C10 0.15873 (13) 0.8453 (3) −0.10717 (9) 0.0173 (3)
H10A 0.2181 0.9460 −0.1184 0.021*
H10B 0.1269 0.7482 −0.1532 0.021*
C11 0.06820 (13) 1.0129 (3) −0.09008 (9) 0.0180 (3)
H11A 0.1007 1.1141 −0.0451 0.022*
H11B 0.0102 0.9122 −0.0770 0.022*
C12 0.01499 (13) 1.1804 (3) −0.15839 (9) 0.0206 (3)
H12A 0.0732 1.2796 −0.1718 0.025*
H12B −0.0182 1.0791 −0.2032 0.025*
C13 −0.07480 (13) 1.3507 (3) −0.14123 (10) 0.0237 (4)
H13A −0.1337 1.2538 −0.1291 0.036*
H13B −0.1050 1.4511 −0.1861 0.036*
H13C −0.0422 1.4544 −0.0977 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0231 (3) 0.0238 (3) 0.0156 (2) 0.00695 (14) 0.00873 (17) 0.00228 (13)
O1 0.0210 (6) 0.0222 (6) 0.0139 (5) 0.0084 (4) 0.0074 (4) 0.0046 (4)
C1 0.0131 (7) 0.0172 (7) 0.0143 (7) 0.0013 (6) 0.0021 (5) −0.0007 (6)
C2 0.0135 (7) 0.0185 (7) 0.0117 (7) −0.0007 (6) 0.0028 (5) −0.0012 (5)
C3 0.0166 (7) 0.0174 (7) 0.0115 (7) 0.0015 (6) 0.0022 (5) 0.0024 (5)
C4 0.0126 (7) 0.0175 (7) 0.0124 (7) 0.0002 (5) 0.0016 (5) −0.0023 (5)
C5 0.0158 (7) 0.0220 (8) 0.0119 (7) −0.0011 (6) 0.0049 (6) −0.0027 (6)
C6 0.0197 (7) 0.0247 (8) 0.0128 (7) −0.0018 (6) 0.0042 (6) 0.0007 (6)
C7 0.0211 (8) 0.0286 (8) 0.0138 (7) 0.0016 (6) 0.0079 (6) −0.0008 (6)
C8 0.0175 (7) 0.0189 (7) 0.0116 (7) 0.0033 (6) 0.0030 (5) 0.0018 (5)
C9 0.0165 (7) 0.0184 (7) 0.0139 (7) 0.0018 (6) 0.0040 (6) −0.0001 (6)
C10 0.0184 (7) 0.0188 (7) 0.0146 (7) 0.0028 (6) 0.0039 (6) 0.0008 (6)
C11 0.0188 (7) 0.0181 (7) 0.0170 (7) 0.0019 (6) 0.0041 (6) −0.0003 (6)
C12 0.0193 (8) 0.0235 (8) 0.0193 (8) 0.0048 (6) 0.0054 (6) 0.0026 (6)
C13 0.0207 (8) 0.0236 (8) 0.0257 (8) 0.0060 (6) 0.0037 (6) 0.0011 (7)

Geometric parameters (Å, º)

S1—C7 1.7071 (15) C8—H8A 0.9700
S1—C4 1.7380 (15) C8—H8B 0.9700
O1—C1 1.3697 (18) C9—C10 1.530 (2)
O1—C8 1.4326 (17) C9—H9A 0.9700
C1—C3 1.388 (2) C9—H9B 0.9700
C1—C2 1.409 (2) C10—C11 1.524 (2)
C2—C3i 1.404 (2) C10—H10A 0.9700
C2—C4 1.471 (2) C10—H10B 0.9700
C3—C2i 1.404 (2) C11—C12 1.527 (2)
C3—H3 0.9300 C11—H11A 0.9700
C4—C5 1.394 (2) C11—H11B 0.9700
C5—C6 1.423 (2) C12—C13 1.526 (2)
C5—H5 0.9300 C12—H12A 0.9700
C6—C7 1.362 (2) C12—H12B 0.9700
C6—H6 0.9300 C13—H13A 0.9600
C7—H7 0.9300 C13—H13B 0.9600
C8—C9 1.513 (2) C13—H13C 0.9600
C7—S1—C4 92.24 (7) C8—C9—H9A 109.4
C1—O1—C8 118.42 (11) C10—C9—H9A 109.4
O1—C1—C3 123.50 (14) C8—C9—H9B 109.4
O1—C1—C2 115.58 (13) C10—C9—H9B 109.4
C3—C1—C2 120.92 (14) H9A—C9—H9B 108.0
C3i—C2—C1 117.07 (13) C11—C10—C9 112.96 (12)
C3i—C2—C4 119.49 (13) C11—C10—H10A 109.0
C1—C2—C4 123.42 (13) C9—C10—H10A 109.0
C1—C3—C2i 122.00 (14) C11—C10—H10B 109.0
C1—C3—H3 119.0 C9—C10—H10B 109.0
C2i—C3—H3 119.0 H10A—C10—H10B 107.8
C5—C4—C2 126.00 (13) C10—C11—C12 113.12 (13)
C5—C4—S1 110.17 (11) C10—C11—H11A 109.0
C2—C4—S1 123.82 (11) C12—C11—H11A 109.0
C4—C5—C6 112.47 (14) C10—C11—H11B 109.0
C4—C5—H5 123.8 C12—C11—H11B 109.0
C6—C5—H5 123.8 H11A—C11—H11B 107.8
C7—C6—C5 112.76 (14) C13—C12—C11 113.32 (13)
C7—C6—H6 123.6 C13—C12—H12A 108.9
C5—C6—H6 123.6 C11—C12—H12A 108.9
C6—C7—S1 112.35 (12) C13—C12—H12B 108.9
C6—C7—H7 123.8 C11—C12—H12B 108.9
S1—C7—H7 123.8 H12A—C12—H12B 107.7
O1—C8—C9 107.75 (11) C12—C13—H13A 109.5
O1—C8—H8A 110.2 C12—C13—H13B 109.5
C9—C8—H8A 110.2 H13A—C13—H13B 109.5
O1—C8—H8B 110.2 C12—C13—H13C 109.5
C9—C8—H8B 110.2 H13A—C13—H13C 109.5
H8A—C8—H8B 108.5 H13B—C13—H13C 109.5
C8—C9—C10 111.36 (12)

Symmetry code: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the S1, C4–C7 ring.

D—H···A D—H H···A D···A D—H···A
C5—H5···Cg1ii 0.93 2.85 3.5809 (16) 137

Symmetry code: (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2496).

References

  1. Bouachrine, M., Lere-Porte, J.-P., Moreau, J. J. E., Spirau, F. S., da Silva, R. A., Lmimouni, K., Ouchani, L. & Dufour, C. (2002). Synth. Met. 126, 241–244.
  2. Carle, J. E., Andreasen, J. W., Jorgensen, M. & Krebs, F. C. (2010). Sol. Energy Mater. Sol. Cells, 94, 774–780.
  3. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, England.
  4. Promarak, V. & Ruchirawat, S. (2007). Tetrahedron, 63, 1602–1609.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202404X/gk2496sup1.cif

e-68-o1976-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202404X/gk2496Isup2.hkl

e-68-o1976-Isup2.hkl (109KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202404X/gk2496Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES