Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 2;68(Pt 7):o1983. doi: 10.1107/S1600536812024324

N,N′-{[Ethane-1,2-diylbis(­oxy)]bis­(ethane-2,1-di­yl)}bis­(4-methyl­benzene­sulfonamide)

Nassir N Al-Mohammed a, Yatimah Alias a, Zanariah Abdullah a, Hamid Khaledi a,*
PMCID: PMC3393259  PMID: 22807816

Abstract

The asymmetric unit of the title compound, C20H28N2O6S2, contains one half-mol­ecule, related to the other half by a twofold rotation axis. The two aromatic rings of the mol­ecule make a dihedral angle of 50.91 (7)°. The O—CH2—CH2—O and N—CH2—CH2—O fragments both adopt gauche conformations, with torsion angles of 76.0 (4) and 70.4 (3)°, respectively. In the crystal, adjacent mol­ecules are linked through N—H⋯O hydrogen bonds into chains along the a-axis direction. The chains are further connected via C—H⋯O inter­actions into a two-dimensional supra­molecular network in the ac plane.

Related literature  

For similar structures, see: Polyakova et al. (1990); Ding et al. (2003).graphic file with name e-68-o1983-scheme1.jpg

Experimental  

Crystal data  

  • C20H28N2O6S2

  • M r = 456.56

  • Monoclinic, Inline graphic

  • a = 11.135 (7) Å

  • b = 9.220 (6) Å

  • c = 21.452 (15) Å

  • β = 93.680 (12)°

  • V = 2198 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.23 × 0.14 × 0.04 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.938, T max = 0.989

  • 5135 measured reflections

  • 1983 independent reflections

  • 1558 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.150

  • S = 1.03

  • 1983 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024324/pv2551sup1.cif

e-68-o1983-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024324/pv2551Isup2.hkl

e-68-o1983-Isup2.hkl (97.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024324/pv2551Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.82 (2) 2.14 (2) 2.944 (3) 171 (3)
C6—H6⋯O1ii 0.93 2.56 3.311 (4) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the University of Malaya for funding this study (HIR MOHE (Fakulti) F0004–21001).

supplementary crystallographic information

Comment

The title compound (Fig. 1) was obtained through the condensation reaction of 1,8-diamino-3,6-dioxaoctane with p-toluenesulfonyl chloride. A twofold rotation axis passes through the mid-point of C10—C10' bond (symmetry code: ' = -x + 2, y, -z + 3/2), the asymmetric unit therefore comprises one half of the molecule. The two symmetry related aromatic rings in the molecule make a dihedral angle of 50.91 (7)°. Similar to what was observed in a related structure (Polyakova et al., 1990), the O—CH2—CH2—O and N—CH2—CH2—O fragments adopt the gauche conformations with torsion angles of 76.0 (4) and 70.4 (3)° respectively. The S—O bond distances [1.423 (2) and 1.433 (2) Å] and S—N bond distance [1.608 (2) Å] are comparable to the values found in the literature (Ding et al., 2003; Polyakova et al., 1990). The crystal packing of the molecule shows layers in the ac plane formed by N—H···O and C—H···O interactions (Table 1, Fig. 2)

Experimental

A solution of p-toluenesulfonyl chloride (2.83 g, 1.48 mmol) in dry dichloromethane (25 ml) was added drop wise to a dichloromethane solution (25 ml) of 1,8-diamino-3,6-dioxaoctane (1 g, 0.675 mmol) and triethylamine (2.34 ml, 1.69 mmol) at 273 K. The mixture was stirred at room temperature overnight, washed with water and saturated solution of NaHCO3 (3 x 10 ml) and dried over MgSO4. The organic layer was evaporated and the residue was dissolved in methanol. The colorless crystals of the title compound were obtained through slow evaporation of the methanolic solution at room temperature (m.p. = 361–363 K).

Refinement

C-bound hydrogen atoms were located at the calculated positions and refined in riding mode with C—H distances of 0.93 (aryl), 0.96 (methyl) and 0.97 (methylene) Å. The amino hydrogen atom was found in a difference Fourier map and refined with a distance restraint of N—H 0.86 (2) Å. For H atoms, Uiso(H) were set to 1.2 (1.5 for methyl) Ueq(carrier atoms).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: ' = -x + 2, y, -z + 3/2.

Fig. 2.

Fig. 2.

The 2-D array in the ac plane formed by N—H···O and C—H···O hydrogen bonds, depicted as dashed lines.

Crystal data

C20H28N2O6S2 F(000) = 968
Mr = 456.56 Dx = 1.380 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1589 reflections
a = 11.135 (7) Å θ = 2.9–25.7°
b = 9.220 (6) Å µ = 0.28 mm1
c = 21.452 (15) Å T = 296 K
β = 93.680 (12)° Plate, colorless
V = 2198 (3) Å3 0.23 × 0.14 × 0.04 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1983 independent reflections
Radiation source: fine-focus sealed tube 1558 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
φ and ω scans θmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→12
Tmin = 0.938, Tmax = 0.989 k = −11→11
5135 measured reflections l = −17→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.5056P] where P = (Fo2 + 2Fc2)/3
1983 reflections (Δ/σ)max = 0.001
140 parameters Δρmax = 0.32 e Å3
1 restraint Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.51163 (5) 0.03617 (7) 0.64470 (3) 0.0440 (3)
O1 0.48265 (19) −0.0655 (2) 0.59612 (9) 0.0590 (6)
O2 0.41953 (16) 0.0823 (2) 0.68398 (9) 0.0561 (5)
O3 0.87638 (18) 0.0318 (2) 0.72055 (10) 0.0567 (6)
N1 0.6163 (2) −0.0329 (2) 0.69058 (11) 0.0464 (6)
H1 0.614 (3) 0.002 (3) 0.7255 (9) 0.056*
C1 0.7115 (3) 0.5726 (4) 0.52722 (19) 0.0769 (10)
H1A 0.7314 0.6430 0.5592 0.115*
H1B 0.6528 0.6126 0.4973 0.115*
H1C 0.7827 0.5473 0.5066 0.115*
C2 0.6609 (2) 0.4389 (3) 0.55625 (15) 0.0518 (7)
C3 0.6610 (2) 0.4248 (3) 0.62001 (15) 0.0533 (7)
H3 0.6933 0.4992 0.6452 0.064*
C4 0.6151 (2) 0.3047 (3) 0.64781 (13) 0.0488 (7)
H4 0.6153 0.2980 0.6911 0.059*
C5 0.5681 (2) 0.1927 (3) 0.60972 (12) 0.0398 (6)
C6 0.5678 (2) 0.2038 (3) 0.54560 (13) 0.0512 (7)
H6 0.5374 0.1288 0.5202 0.061*
C7 0.6131 (3) 0.3270 (3) 0.51958 (14) 0.0594 (8)
H7 0.6116 0.3352 0.4763 0.071*
C8 0.7215 (3) −0.1019 (3) 0.66646 (15) 0.0578 (8)
H8A 0.6986 −0.1426 0.6257 0.069*
H8B 0.7461 −0.1816 0.6939 0.069*
C9 0.8272 (3) −0.0037 (4) 0.66034 (14) 0.0566 (8)
H9A 0.8873 −0.0518 0.6369 0.068*
H9B 0.8019 0.0839 0.6381 0.068*
C10 0.9623 (3) 0.1465 (3) 0.72024 (14) 0.0570 (8)
H10A 0.9210 0.2387 0.7150 0.068*
H10B 1.0129 0.1338 0.6855 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0341 (4) 0.0516 (4) 0.0450 (4) −0.0066 (3) −0.0080 (3) 0.0044 (3)
O1 0.0642 (13) 0.0572 (11) 0.0529 (12) −0.0192 (10) −0.0164 (10) −0.0014 (9)
O2 0.0341 (10) 0.0774 (13) 0.0567 (12) −0.0015 (9) 0.0011 (9) 0.0128 (10)
O3 0.0480 (11) 0.0616 (12) 0.0595 (13) −0.0071 (9) −0.0041 (10) 0.0074 (10)
N1 0.0402 (12) 0.0549 (14) 0.0428 (13) 0.0016 (10) −0.0072 (11) −0.0002 (10)
C1 0.067 (2) 0.0605 (18) 0.102 (3) −0.0117 (17) −0.004 (2) 0.0204 (19)
C2 0.0369 (14) 0.0502 (15) 0.068 (2) 0.0001 (12) −0.0021 (14) 0.0101 (14)
C3 0.0412 (14) 0.0467 (14) 0.071 (2) −0.0039 (12) −0.0036 (14) −0.0096 (14)
C4 0.0417 (14) 0.0558 (15) 0.0478 (16) −0.0024 (12) −0.0043 (12) −0.0049 (13)
C5 0.0296 (12) 0.0452 (13) 0.0440 (14) 0.0015 (10) −0.0033 (11) 0.0013 (11)
C6 0.0518 (16) 0.0545 (15) 0.0463 (16) −0.0087 (13) −0.0055 (13) −0.0009 (13)
C7 0.0644 (19) 0.0631 (18) 0.0499 (17) −0.0079 (15) −0.0023 (15) 0.0103 (14)
C8 0.0500 (16) 0.0562 (16) 0.0658 (19) 0.0092 (13) −0.0086 (15) −0.0111 (15)
C9 0.0423 (15) 0.0745 (19) 0.0526 (18) 0.0121 (14) −0.0004 (14) −0.0021 (15)
C10 0.0504 (16) 0.0494 (15) 0.071 (2) 0.0000 (13) 0.0026 (14) 0.0071 (14)

Geometric parameters (Å, º)

S1—O1 1.423 (2) C3—H3 0.9300
S1—O2 1.433 (2) C4—C5 1.398 (4)
S1—N1 1.608 (2) C4—H4 0.9300
S1—C5 1.761 (3) C5—C6 1.379 (4)
O3—C9 1.409 (3) C6—C7 1.376 (4)
O3—C10 1.426 (3) C6—H6 0.9300
N1—C8 1.457 (4) C7—H7 0.9300
N1—H1 0.816 (17) C8—C9 1.497 (4)
C1—C2 1.507 (4) C8—H8A 0.9700
C1—H1A 0.9600 C8—H8B 0.9700
C1—H1B 0.9600 C9—H9A 0.9700
C1—H1C 0.9600 C9—H9B 0.9700
C2—C3 1.374 (4) C10—C10i 1.482 (6)
C2—C7 1.383 (4) C10—H10A 0.9700
C3—C4 1.372 (4) C10—H10B 0.9700
O1—S1—O2 119.26 (13) C6—C5—S1 120.5 (2)
O1—S1—N1 108.00 (13) C4—C5—S1 119.1 (2)
O2—S1—N1 106.01 (13) C7—C6—C5 119.2 (3)
O1—S1—C5 107.33 (13) C7—C6—H6 120.4
O2—S1—C5 107.22 (13) C5—C6—H6 120.4
N1—S1—C5 108.68 (12) C6—C7—C2 121.5 (3)
C9—O3—C10 112.9 (2) C6—C7—H7 119.2
C8—N1—S1 121.6 (2) C2—C7—H7 119.2
C8—N1—H1 124 (2) N1—C8—C9 114.9 (2)
S1—N1—H1 110 (2) N1—C8—H8A 108.5
C2—C1—H1A 109.5 C9—C8—H8A 108.5
C2—C1—H1B 109.5 N1—C8—H8B 108.5
H1A—C1—H1B 109.5 C9—C8—H8B 108.5
C2—C1—H1C 109.5 H8A—C8—H8B 107.5
H1A—C1—H1C 109.5 O3—C9—C8 108.8 (2)
H1B—C1—H1C 109.5 O3—C9—H9A 109.9
C3—C2—C7 118.2 (3) C8—C9—H9A 109.9
C3—C2—C1 120.8 (3) O3—C9—H9B 109.9
C7—C2—C1 121.0 (3) C8—C9—H9B 109.9
C4—C3—C2 122.2 (3) H9A—C9—H9B 108.3
C4—C3—H3 118.9 O3—C10—C10i 109.8 (2)
C2—C3—H3 118.9 O3—C10—H10A 109.7
C3—C4—C5 118.6 (3) C10i—C10—H10A 109.7
C3—C4—H4 120.7 O3—C10—H10B 109.7
C5—C4—H4 120.7 C10i—C10—H10B 109.7
C6—C5—C4 120.3 (2) H10A—C10—H10B 108.2

Symmetry code: (i) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2ii 0.82 (2) 2.14 (2) 2.944 (3) 171 (3)
C6—H6···O1iii 0.93 2.56 3.311 (4) 138

Symmetry codes: (ii) −x+1, y, −z+3/2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2551).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ding, X., Ukaji, Y., Fujinami, S. & Inomata, K. (2003). Chem. Lett. 32, 582–583.
  4. Polyakova, I. N., Starikova, Z. A. & Tsirkina, O. A. (1990). Kristallografiya, 35, 1284–1287.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024324/pv2551sup1.cif

e-68-o1983-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024324/pv2551Isup2.hkl

e-68-o1983-Isup2.hkl (97.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024324/pv2551Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES