Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 2;68(Pt 7):o1986. doi: 10.1107/S1600536812024531

1-{2-[4-(4-Nitro­phen­yl)piperazin-1-yl]eth­yl}-4-aza-1-azoniabicyclo­[2.2.2]octane iodide

Anssi Peuronen a, Manu Lahtinen a,*
PMCID: PMC3393262  PMID: 22807819

Abstract

The title compound, C18H28N5O2 +·I, was observed as a main product in an intended 1:1 reaction between 4-iodo­nitro­benzene and 1,4-diaza­bicyclo­[2.2.2]octane (DABCO). In the reaction, DABCO undergoes a ring opening to yield a quaternary salt of DABCO and 1-ethyl-4-(4-nitro­phen­yl)piperazine with an iodide anion. The crystal structure determination was carried out as no crystal structure had been previously reported in the investigations describing the corresponding reaction with 4-chloro­nitro­benze. Indeed, the crystal structure of the title compound confirms the mol­ecular composition proposed earlier for the analogous chloride salt. The cation conformation is similar to the previously reported dinitro analogue 1-{2-[4-(2,4-dinitro­phen­yl)piperazin-1-yl]eth­yl}-4-aza-1-azoniabicyclo­[2.2.2]octane chloride [Clegg et al. (2004). Acta Cryst. E60, o291–o293]. The crystal packing is dominated by cation⋯I inter­actions in addition to weak inter­molecular C—H⋯O2N and C—H⋯N inter­actions between the cations.

Related literature  

For a possible route of synthesis for the chloride salt of the title compound, see: Ross & Finkelstein (1963). For a related structure, see: Clegg et al. (2004). For the synthesis of the intended 1:1 product of DABCO and 4-iodo­nitro­benzene, see Ibata et al. (1987).graphic file with name e-68-o1986-scheme1.jpg

Experimental  

Crystal data  

  • C18H28N5O2 +·I

  • M r = 473.35

  • Monoclinic, Inline graphic

  • a = 9.758 (1) Å

  • b = 10.702 (1) Å

  • c = 20.187 (2) Å

  • β = 110.124 (3)°

  • V = 1979.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 123 K

  • 0.40 × 0.24 × 0.16 mm

Data collection  

  • Bruker–Nonius KappaCCD diffractometer with an APEXII detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b ) T min = 0.617, T max = 0.746

  • 12011 measured reflections

  • 3855 independent reflections

  • 3473 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.060

  • S = 1.10

  • 3855 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a ); molecular graphics: Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024531/nr2029sup1.cif

e-68-o1986-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024531/nr2029Isup2.hkl

e-68-o1986-Isup2.hkl (185.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024531/nr2029Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.99 2.52 3.051 (3) 113
C5—H5A⋯O2ii 0.99 2.47 3.414 (3) 160
C6—H6B⋯O1ii 0.99 2.59 3.141 (3) 116
C14—H14⋯I1i 0.95 3.02 3.914 (3) 158
C17—H17⋯O2iii 0.95 2.48 3.412 (3) 168
C18—H18⋯N1iv 0.95 2.45 3.384 (3) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors would like to thank the Inorganic Materials Chemistry Graduate Program for financial support.

supplementary crystallographic information

Comment

The reaction between DABCO and 4-chloronitrobenzene has first been reported by Ross & Finkelstein (1963). The product obtained was identified as the chloride salt analogue of the title compound, 1-(4-nitrophenyl)-4-aza-1-azoniabicyclo[2.2.2]octane chloride, instead of the expected 1:1 product. We were interested in the synthesis of the elusive 1:1 product for its potential applications in supramolecular chemistry based on halogen bonding interactions. We tried to use 4-iodonitrobenzene in order to obtain the 1:1 product. Regardless of the milder conditions (THF at reflux for 48 h) and a different halobenzene, the corresponding reaction proceeds according to the aforementioned route yielding an analogous iodide salt, 1-(4-nitrophenyl)-4-aza-1-azoniabicyclo[2.2.2]octane iodide, to the compound described above. Nonetheless, despite the failure in the intended synthesis, the crystal structure of the title compound provides a crystallographic evidence for the previously described reaction between DABCO and a 4-halonitrobenzene. Furthermore, our investigation suggests that changing the halogen atom in the 4-halonitrobenzene from chloride to iodine has evidently no effect in the outcome of the reaction (except that of different anion). A possible route for the anticipated 1:1 product is described by Ibata et al. (1987).

The cation of the title salt lies in a conformation similar to the previously reported dinitrobenzene analogue (Clegg et al., 2004). The labeling scheme is shown in Fig. 1. The intermolecular interactions in the crystal structure comprise mostly of weak C—H···O2N interactions between DABCO –CH2 groups and the –NO2 groups [C···O distances range from 3.051 (3) to 3.414 (3)]. These short intermolecular contacts are most likely due to the attractive interactions between highly electronegative O atoms in the nitro groups and electropositive H atoms near the quaternary ammonium center. These are accompanied by presumably weaker aryl –CH···O2N [d(C17···O2) = 3.412 (3)], aryl –CH···I- [d(C14···I1) = 3.914 (3)] and aryl –CH···N (DABCO) [d(C18···N1) = 3.412 (3)] interactions (Fig. 2). The ordering of the ion pairs are shown in Fig. 3.

Experimental

The title compound was obtained as a major product in a reaction between DABCO (2.0 mmol) and 4-iodonitrobenzene (2.0 mmol) carried out in THF (48 h at reflux). After the removal of solvent the yellow oily residue was precipitated with dichloromethane, filtered and recrystallized from water/acetone mixture to yield a batch of yellow crystals of the title compound.

Refinement

All H atoms were refined as riding atoms with fixed isotropic displacement parameters 1.2 times larger than corresponding host carbon atoms. C—H distances were refined as 0.95 Å for aromatic and 0.99 Å for methylene H atoms. All non-hydrogen atoms were refined anisotropically.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit and labeling scheme of the title compound. Ellipsoids are presented at the 50% probability level.

Fig. 2.

Fig. 2.

Anion-cation and cation-cation interactions viewed along the crystallographic a-axis. Ellipsoids are presented at the 50% probability level.

Fig. 3.

Fig. 3.

Packing of the ion pairs viewed along the crystallographic b-axis. The hydrogen atoms have been omitted for clarity.

Crystal data

C18H28N5O2+·I F(000) = 960
Mr = 473.35 Dx = 1.588 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 489 reflections
a = 9.758 (1) Å θ = 1.0–26.0°
b = 10.702 (1) Å µ = 1.64 mm1
c = 20.187 (2) Å T = 123 K
β = 110.124 (3)° Block, yellow
V = 1979.4 (3) Å3 0.40 × 0.24 × 0.16 mm
Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer with ApexII detector 3855 independent reflections
Radiation source: fine-focus sealed tube 3473 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 9 pixels mm-1 θmax = 26.0°, θmin = 2.2°
φ and ω scans h = −12→10
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) k = −12→13
Tmin = 0.617, Tmax = 0.746 l = −24→24
12011 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.P)2 + 2.7637P] where P = (Fo2 + 2Fc2)/3
3855 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8248 (3) 0.5722 (3) 0.22628 (15) 0.0253 (6)
H1A 0.7838 0.6532 0.2341 0.030*
H1B 0.9068 0.5895 0.2094 0.030*
C2 0.8816 (3) 0.4998 (2) 0.29637 (14) 0.0191 (6)
H2A 0.9891 0.5078 0.3174 0.023*
H2B 0.8381 0.5339 0.3302 0.023*
C3 0.6055 (3) 0.4544 (3) 0.20373 (14) 0.0212 (6)
H3A 0.5201 0.4184 0.1663 0.025*
H3B 0.5708 0.5250 0.2255 0.025*
C4 0.6750 (3) 0.3538 (2) 0.26039 (14) 0.0180 (6)
H4A 0.6454 0.3673 0.3021 0.022*
H4B 0.6423 0.2695 0.2412 0.022*
C5 0.7831 (3) 0.3924 (3) 0.15276 (14) 0.0234 (6)
H5A 0.8425 0.4213 0.1247 0.028*
H5B 0.7079 0.3343 0.1232 0.028*
C6 0.8814 (3) 0.3235 (2) 0.21871 (13) 0.0178 (6)
H6A 0.8682 0.2321 0.2119 0.021*
H6B 0.9851 0.3436 0.2273 0.021*
C7 0.9208 (3) 0.2816 (2) 0.34290 (14) 0.0199 (6)
H7A 1.0238 0.2759 0.3455 0.024*
H7B 0.8787 0.1965 0.3332 0.024*
C8 0.9188 (3) 0.3226 (3) 0.41463 (14) 0.0215 (6)
H8A 0.9851 0.2675 0.4511 0.026*
H8B 0.9583 0.4086 0.4239 0.026*
C9 0.7828 (3) 0.3793 (2) 0.48911 (14) 0.0210 (6)
H9A 0.8214 0.4653 0.4912 0.025*
H9B 0.8502 0.3313 0.5290 0.025*
C10 0.6337 (3) 0.3833 (2) 0.49568 (15) 0.0218 (6)
H10A 0.6416 0.4200 0.5419 0.026*
H10B 0.5692 0.4378 0.4582 0.026*
C11 0.7208 (3) 0.1927 (2) 0.42183 (15) 0.0219 (6)
H11A 0.7876 0.1456 0.4623 0.026*
H11B 0.7186 0.1503 0.3779 0.026*
C12 0.5692 (3) 0.1928 (2) 0.42620 (14) 0.0205 (6)
H12A 0.5006 0.2341 0.3839 0.025*
H12B 0.5361 0.1056 0.4272 0.025*
C13 0.4545 (3) 0.2381 (2) 0.51467 (13) 0.0163 (5)
C14 0.4455 (3) 0.3041 (2) 0.57372 (13) 0.0172 (5)
H14 0.5165 0.3662 0.5954 0.021*
C15 0.3362 (3) 0.2803 (2) 0.60037 (14) 0.0171 (5)
H15 0.3308 0.3265 0.6396 0.021*
C16 0.2337 (3) 0.1884 (2) 0.56971 (13) 0.0158 (5)
C17 0.2390 (3) 0.1219 (2) 0.51154 (13) 0.0176 (6)
H17 0.1682 0.0591 0.4910 0.021*
C18 0.3463 (3) 0.1465 (2) 0.48361 (14) 0.0179 (6)
H18 0.3481 0.1019 0.4432 0.021*
N1 0.7115 (2) 0.5005 (2) 0.17234 (12) 0.0215 (5)
N2 0.8396 (2) 0.36461 (18) 0.28111 (11) 0.0152 (4)
N3 0.7755 (2) 0.32088 (19) 0.42256 (11) 0.0167 (5)
N4 0.5684 (2) 0.25860 (19) 0.48977 (11) 0.0174 (5)
N5 0.1165 (2) 0.1644 (2) 0.59637 (11) 0.0189 (5)
O1 0.0900 (2) 0.24296 (17) 0.63502 (10) 0.0241 (4)
O2 0.0460 (2) 0.06682 (18) 0.57861 (11) 0.0287 (5)
I1 0.289527 (19) 0.471091 (16) 0.287677 (10) 0.02555 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0279 (16) 0.0193 (13) 0.0288 (16) −0.0030 (12) 0.0102 (13) 0.0036 (12)
C2 0.0184 (14) 0.0169 (12) 0.0216 (15) −0.0027 (11) 0.0065 (12) −0.0036 (11)
C3 0.0163 (14) 0.0280 (14) 0.0207 (15) 0.0031 (11) 0.0081 (12) 0.0045 (11)
C4 0.0124 (13) 0.0227 (13) 0.0201 (14) −0.0022 (10) 0.0069 (11) 0.0016 (11)
C5 0.0238 (15) 0.0323 (15) 0.0174 (14) −0.0008 (12) 0.0115 (12) −0.0004 (12)
C6 0.0195 (14) 0.0218 (13) 0.0170 (14) −0.0006 (11) 0.0123 (12) −0.0034 (10)
C7 0.0156 (14) 0.0217 (13) 0.0235 (15) 0.0046 (11) 0.0083 (12) 0.0063 (11)
C8 0.0169 (14) 0.0284 (15) 0.0185 (14) 0.0022 (11) 0.0051 (12) 0.0038 (11)
C9 0.0214 (15) 0.0242 (14) 0.0178 (14) −0.0051 (11) 0.0075 (12) −0.0018 (11)
C10 0.0261 (15) 0.0172 (13) 0.0259 (15) −0.0026 (11) 0.0140 (13) −0.0040 (11)
C11 0.0282 (16) 0.0191 (13) 0.0235 (15) 0.0021 (11) 0.0154 (13) 0.0010 (11)
C12 0.0274 (16) 0.0176 (13) 0.0200 (15) −0.0039 (11) 0.0127 (12) −0.0039 (11)
C13 0.0186 (14) 0.0162 (12) 0.0152 (13) 0.0039 (10) 0.0073 (11) 0.0023 (10)
C14 0.0188 (14) 0.0158 (12) 0.0173 (14) −0.0018 (10) 0.0067 (11) −0.0033 (10)
C15 0.0200 (14) 0.0176 (13) 0.0160 (13) 0.0039 (11) 0.0091 (11) −0.0024 (10)
C16 0.0147 (13) 0.0190 (13) 0.0147 (13) 0.0019 (10) 0.0062 (11) 0.0025 (10)
C17 0.0206 (14) 0.0135 (12) 0.0187 (14) −0.0003 (10) 0.0066 (12) −0.0018 (10)
C18 0.0210 (14) 0.0177 (13) 0.0147 (13) 0.0019 (11) 0.0060 (11) −0.0029 (10)
N1 0.0206 (12) 0.0265 (12) 0.0198 (13) 0.0000 (10) 0.0101 (10) 0.0049 (10)
N2 0.0148 (11) 0.0148 (10) 0.0190 (12) 0.0001 (8) 0.0098 (9) −0.0011 (9)
N3 0.0164 (12) 0.0188 (11) 0.0164 (12) −0.0005 (9) 0.0076 (9) −0.0003 (9)
N4 0.0216 (12) 0.0156 (10) 0.0184 (12) −0.0019 (9) 0.0115 (10) −0.0033 (9)
N5 0.0190 (12) 0.0227 (12) 0.0166 (12) 0.0017 (9) 0.0080 (10) 0.0004 (9)
O1 0.0269 (11) 0.0262 (10) 0.0244 (11) 0.0014 (8) 0.0154 (9) −0.0056 (8)
O2 0.0246 (11) 0.0314 (11) 0.0348 (12) −0.0116 (9) 0.0161 (10) −0.0109 (9)
I1 0.01937 (11) 0.02237 (11) 0.03199 (13) −0.00198 (7) 0.00509 (8) −0.00562 (7)

Geometric parameters (Å, º)

C1—N1 1.472 (4) C9—N3 1.461 (3)
C1—C2 1.539 (4) C9—C10 1.506 (4)
C1—H1A 0.9900 C9—H9A 0.9900
C1—H1B 0.9900 C9—H9B 0.9900
C2—N2 1.507 (3) C10—N4 1.466 (3)
C2—H2A 0.9900 C10—H10A 0.9900
C2—H2B 0.9900 C10—H10B 0.9900
C3—N1 1.472 (3) C11—N3 1.470 (3)
C3—C4 1.547 (4) C11—C12 1.511 (4)
C3—H3A 0.9900 C11—H11A 0.9900
C3—H3B 0.9900 C11—H11B 0.9900
C4—N2 1.519 (3) C12—N4 1.466 (3)
C4—H4A 0.9900 C12—H12A 0.9900
C4—H4B 0.9900 C12—H12B 0.9900
C5—N1 1.474 (3) C13—N4 1.386 (3)
C5—C6 1.535 (4) C13—C14 1.414 (3)
C5—H5A 0.9900 C13—C18 1.418 (4)
C5—H5B 0.9900 C14—C15 1.374 (4)
C6—N2 1.517 (3) C14—H14 0.9500
C6—H6A 0.9900 C15—C16 1.388 (4)
C6—H6B 0.9900 C15—H15 0.9500
C7—N2 1.515 (3) C16—C17 1.389 (4)
C7—C8 1.520 (4) C16—N5 1.444 (3)
C7—H7A 0.9900 C17—C18 1.375 (4)
C7—H7B 0.9900 C17—H17 0.9500
C8—N3 1.461 (3) C18—H18 0.9500
C8—H8A 0.9900 N5—O1 1.233 (3)
C8—H8B 0.9900 N5—O2 1.234 (3)
N1—C1—C2 111.1 (2) N4—C10—C9 111.9 (2)
N1—C1—H1A 109.4 N4—C10—H10A 109.2
C2—C1—H1A 109.4 C9—C10—H10A 109.2
N1—C1—H1B 109.4 N4—C10—H10B 109.2
C2—C1—H1B 109.4 C9—C10—H10B 109.2
H1A—C1—H1B 108.0 H10A—C10—H10B 107.9
N2—C2—C1 108.0 (2) N3—C11—C12 111.0 (2)
N2—C2—H2A 110.1 N3—C11—H11A 109.4
C1—C2—H2A 110.1 C12—C11—H11A 109.4
N2—C2—H2B 110.1 N3—C11—H11B 109.4
C1—C2—H2B 110.1 C12—C11—H11B 109.4
H2A—C2—H2B 108.4 H11A—C11—H11B 108.0
N1—C3—C4 110.9 (2) N4—C12—C11 110.6 (2)
N1—C3—H3A 109.5 N4—C12—H12A 109.5
C4—C3—H3A 109.5 C11—C12—H12A 109.5
N1—C3—H3B 109.5 N4—C12—H12B 109.5
C4—C3—H3B 109.5 C11—C12—H12B 109.5
H3A—C3—H3B 108.0 H12A—C12—H12B 108.1
N2—C4—C3 107.7 (2) N4—C13—C14 121.1 (2)
N2—C4—H4A 110.2 N4—C13—C18 121.1 (2)
C3—C4—H4A 110.2 C14—C13—C18 117.7 (2)
N2—C4—H4B 110.2 C15—C14—C13 121.2 (2)
C3—C4—H4B 110.2 C15—C14—H14 119.4
H4A—C4—H4B 108.5 C13—C14—H14 119.4
N1—C5—C6 110.9 (2) C14—C15—C16 119.6 (2)
N1—C5—H5A 109.5 C14—C15—H15 120.2
C6—C5—H5A 109.5 C16—C15—H15 120.2
N1—C5—H5B 109.5 C15—C16—C17 120.6 (2)
C6—C5—H5B 109.5 C15—C16—N5 120.1 (2)
H5A—C5—H5B 108.0 C17—C16—N5 119.3 (2)
N2—C6—C5 108.3 (2) C18—C17—C16 120.2 (2)
N2—C6—H6A 110.0 C18—C17—H17 119.9
C5—C6—H6A 110.0 C16—C17—H17 119.9
N2—C6—H6B 110.0 C17—C18—C13 120.5 (2)
C5—C6—H6B 110.0 C17—C18—H18 119.8
H6A—C6—H6B 108.4 C13—C18—H18 119.8
N2—C7—C8 116.1 (2) C3—N1—C1 108.4 (2)
N2—C7—H7A 108.3 C3—N1—C5 108.7 (2)
C8—C7—H7A 108.3 C1—N1—C5 107.6 (2)
N2—C7—H7B 108.3 C2—N2—C7 111.5 (2)
C8—C7—H7B 108.3 C2—N2—C6 108.47 (19)
H7A—C7—H7B 107.4 C7—N2—C6 107.45 (19)
N3—C8—C7 115.3 (2) C2—N2—C4 108.49 (19)
N3—C8—H8A 108.4 C7—N2—C4 112.71 (19)
C7—C8—H8A 108.4 C6—N2—C4 108.07 (19)
N3—C8—H8B 108.4 C8—N3—C9 110.5 (2)
C7—C8—H8B 108.4 C8—N3—C11 111.7 (2)
H8A—C8—H8B 107.5 C9—N3—C11 108.1 (2)
N3—C9—C10 110.5 (2) C13—N4—C10 119.7 (2)
N3—C9—H9A 109.6 C13—N4—C12 119.2 (2)
C10—C9—H9A 109.6 C10—N4—C12 112.1 (2)
N3—C9—H9B 109.6 O1—N5—O2 122.9 (2)
C10—C9—H9B 109.6 O1—N5—C16 118.7 (2)
H9A—C9—H9B 108.1 O2—N5—C16 118.4 (2)
N1—C1—C2—N2 17.9 (3) C8—C7—N2—C6 168.3 (2)
N1—C3—C4—N2 17.4 (3) C8—C7—N2—C4 −72.8 (3)
N1—C5—C6—N2 16.5 (3) C5—C6—N2—C2 −67.9 (3)
N2—C7—C8—N3 65.3 (3) C5—C6—N2—C7 171.4 (2)
N3—C9—C10—N4 56.7 (3) C5—C6—N2—C4 49.5 (3)
N3—C11—C12—N4 −57.3 (3) C3—C4—N2—C2 48.9 (3)
N4—C13—C14—C15 −177.3 (2) C3—C4—N2—C7 172.9 (2)
C18—C13—C14—C15 0.2 (4) C3—C4—N2—C6 −68.5 (2)
C13—C14—C15—C16 1.1 (4) C7—C8—N3—C9 −171.5 (2)
C14—C15—C16—C17 −1.2 (4) C7—C8—N3—C11 68.1 (3)
C14—C15—C16—N5 −178.7 (2) C10—C9—N3—C8 177.2 (2)
C15—C16—C17—C18 0.0 (4) C10—C9—N3—C11 −60.3 (3)
N5—C16—C17—C18 177.5 (2) C12—C11—N3—C8 −177.0 (2)
C16—C17—C18—C13 1.3 (4) C12—C11—N3—C9 61.3 (3)
N4—C13—C18—C17 176.0 (2) C14—C13—N4—C10 −32.4 (4)
C14—C13—C18—C17 −1.4 (4) C18—C13—N4—C10 150.2 (2)
C4—C3—N1—C1 −68.6 (3) C14—C13—N4—C12 −176.9 (2)
C4—C3—N1—C5 48.1 (3) C18—C13—N4—C12 5.8 (4)
C2—C1—N1—C3 47.9 (3) C9—C10—N4—C13 161.0 (2)
C2—C1—N1—C5 −69.5 (3) C9—C10—N4—C12 −52.2 (3)
C6—C5—N1—C3 −68.3 (3) C11—C12—N4—C13 −161.0 (2)
C6—C5—N1—C1 48.9 (3) C11—C12—N4—C10 52.0 (3)
C1—C2—N2—C7 166.4 (2) C15—C16—N5—O1 15.9 (3)
C1—C2—N2—C6 48.3 (3) C17—C16—N5—O1 −161.6 (2)
C1—C2—N2—C4 −68.9 (3) C15—C16—N5—O2 −165.1 (2)
C8—C7—N2—C2 49.5 (3) C17—C16—N5—O2 17.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2B···O1i 0.99 2.52 3.051 (3) 113
C5—H5A···O2ii 0.99 2.47 3.414 (3) 160
C6—H6B···O1ii 0.99 2.59 3.141 (3) 116
C14—H14···I1i 0.95 3.02 3.914 (3) 158
C17—H17···O2iii 0.95 2.48 3.412 (3) 168
C18—H18···N1iv 0.95 2.45 3.384 (3) 166

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, −y+1/2, z−1/2; (iii) −x, −y, −z+1; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2029).

References

  1. Bruker (2008). COLLECT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Clegg, W., Golding, B. T., Harrington, R. W. & Scott, R. (2004). Acta Cryst. E60, o291–o293.
  3. Ibata, T., Isogame, Y. & Toyoda, J. (1987). Chem. Lett. 16, 1187–1190.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Ross, S. & Finkelstein, M. (1963). J. Am. Chem. Soc. 85, 2603–2607.
  7. Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008b). SADABS University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024531/nr2029sup1.cif

e-68-o1986-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024531/nr2029Isup2.hkl

e-68-o1986-Isup2.hkl (185.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024531/nr2029Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES