Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 2;68(Pt 7):o1989. doi: 10.1107/S1600536812023914

Benzene-1,2-dicarb­oxy­lic acid–pyridinium-2-olate (1/1)

Chua-Hua Yu a,*
PMCID: PMC3393265  PMID: 22807822

Abstract

The asymmetric unit of the title compound, C5H5NO·C8H6O4, contains one o-phthalate acid mol­ecule and one pyridin-2-ol mol­ecule, which exists in a zwitterionic form. In the o-phthalate acid mol­ecule, the carboxyl­ate groups are twisted from the benzene ring by dihedral angles of 13.6 (1)° and 73.1 (1)°; the hy­droxy H atom in the latter group is disordered over two positons in a 1:1 ratio. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains in [-101].

Related literature  

For background to molecular ferroelectrics, see: Zhang et al. (2009, 2010, 2012). For a related structure, see: Zhu & Yu (2011). graphic file with name e-68-o1989-scheme1.jpg

Experimental  

Crystal data  

  • C5H5NO·C8H6O4

  • M r = 261.23

  • Triclinic, Inline graphic

  • a = 7.4529 (15) Å

  • b = 7.7925 (16) Å

  • c = 11.489 (2) Å

  • α = 84.42 (3)°

  • β = 84.29 (3)°

  • γ = 70.30 (3)°

  • V = 623.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.34 × 0.30 × 0.28 mm

Data collection  

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.964, T max = 0.970

  • 6555 measured reflections

  • 2864 independent reflections

  • 1687 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.174

  • S = 1.06

  • 2864 reflections

  • 184 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023914/cv5304sup1.cif

e-68-o1989-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023914/cv5304Isup2.hkl

e-68-o1989-Isup2.hkl (140.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023914/cv5304Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.86 (2) 1.80 (2) 2.644 (3) 167 (7)
O4—H3A′⋯O3i 0.85 (3) 1.81 (3) 2.644 (3) 167 (4)
O1—H1B⋯O5ii 0.85 (2) 1.74 (2) 2.587 (2) 178 (3)
N1—H1A⋯O5iii 0.86 2.04 2.892 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author thanks the Ordered Matter Science Research Center, Southeast University, for support.

supplementary crystallographic information

Comment

The title compound was synthesized to find potential ferroelectric phase change materials via dielectric constant measurements of compounds on the basis of temperature (Zhang, Chen et al., 2009; Zhang, Ye et al., 2010; Zhang & Xiong, 2012), with reference to the compound C5H9N2+.C8H5O4- (Zhu & Yu, 2011). Regrettably, no dielectric anomaly was observed ranging from 120 K to 353 K near its melting point. Herewith we report the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one molecule of the o-phthalate acid and one pyridin-2-ol molecule, which exists in a zwitterionic form (Fig. 1). In the o-phthalate acid molecule, atom H3A is disordered over two positions being attached either to O3 or to O4 in a ratio 1:1. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link the molecules into zigzag chains in [-1 0 1] (Fig. 2).

Experimental

0.83 g (5 mmol) of phthalic acid and 10 ml water which were heated, then added with a few ethanol dropst, and 0.476 g (5 mmol) 2-hydroxypyridine was added to the solution. After stirring the mixture for minutes for the sake of achieving the ambient temperature, the liquid was filtered to give a clear solution. Colourless block crystals suitable for X-ray structure analysis were obtained, by the slow evaporation of the above solution after sever days at the ambient temperature.

Refinement

O-bound H atoms were located on a difference map and isotropically refined with restraint O—H = 0.85 (2) Å. The rest H atoms were placed in geometrically idealized positions (N—H = 0.86 Å; C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Uiso(C, N).

Figures

Fig. 1.

Fig. 1.

A content of asymmetric unit, with displacement ellipsoids drawn at the 30% probability level. For the disordered atom H3A (attached either to O3 or to O4), only one position is shown. C-bound H atoms omitted for clarity.

Fig. 2.

Fig. 2.

A portion of the crystal packing showing hydrogen-bonded (dashed lines) chain of the molecules. For the disordered hydroxy H atom only one position is shown. C-bound H atoms omitted for clarity.

Crystal data

C5H5NO·C8H6O4 Z = 2
Mr = 261.23 F(000) = 272
Triclinic, P1 Dx = 1.391 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4529 (15) Å Cell parameters from 2864 reflections
b = 7.7925 (16) Å θ = 3.2–27.5°
c = 11.489 (2) Å µ = 0.11 mm1
α = 84.42 (3)° T = 293 K
β = 84.29 (3)° Block, colourless
γ = 70.30 (3)° 0.34 × 0.30 × 0.28 mm
V = 623.6 (2) Å3

Data collection

Rigaku, SCXmini diffractometer 1687 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
Graphite monochromator θmax = 27.5°, θmin = 3.2°
ω scans h = −9→9
Absorption correction: multi-scan CrystalClear (Rigaku, 2005) k = −10→10
Tmin = 0.964, Tmax = 0.970 l = −14→14
6555 measured reflections 3 standard reflections every 180 reflections
2864 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0891P)2] where P = (Fo2 + 2Fc2)/3
2864 reflections (Δ/σ)max < 0.001
184 parameters Δρmax = 0.20 e Å3
6 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.3559 (3) 0.3156 (3) 0.68465 (17) 0.0443 (5)
C2 0.5446 (3) 0.2808 (3) 0.6408 (2) 0.0567 (6)
H2 0.5713 0.3150 0.5629 0.068*
C3 0.6907 (3) 0.1969 (3) 0.7113 (2) 0.0662 (7)
H3 0.8165 0.1738 0.6811 0.079*
C4 0.6532 (3) 0.1465 (3) 0.8262 (2) 0.0633 (6)
H4 0.7537 0.0872 0.8732 0.076*
C5 0.4692 (3) 0.1827 (3) 0.87225 (18) 0.0532 (6)
H5 0.4452 0.1500 0.9508 0.064*
C6 0.3168 (3) 0.2685 (3) 0.80241 (17) 0.0433 (5)
C7 0.1172 (3) 0.3228 (3) 0.85256 (18) 0.0508 (5)
C8 0.2024 (3) 0.3968 (3) 0.60303 (16) 0.0456 (5)
C9 0.3260 (3) 0.6814 (3) 0.87731 (18) 0.0491 (5)
C10 0.2091 (3) 0.8029 (3) 0.7956 (2) 0.0623 (6)
H10 0.0770 0.8389 0.8093 0.075*
C11 0.2866 (4) 0.8680 (3) 0.6973 (2) 0.0665 (7)
H11 0.2069 0.9480 0.6440 0.080*
C12 0.4816 (4) 0.8177 (3) 0.6746 (2) 0.0632 (6)
H12 0.5342 0.8633 0.6068 0.076*
C13 0.5943 (3) 0.7015 (3) 0.7522 (2) 0.0611 (6)
H13 0.7264 0.6659 0.7385 0.073*
H3A 0.063 (5) 0.612 (8) 0.532 (5) 0.11 (2)* 0.50
H3A' 0.038 (5) 0.352 (5) 0.521 (3) 0.11 (2)* 0.50
H1B −0.026 (3) 0.294 (4) 0.983 (2) 0.092 (10)*
N1 0.5161 (3) 0.6359 (2) 0.85064 (15) 0.0547 (5)
H1A 0.5917 0.5613 0.8987 0.066*
O1 0.0910 (3) 0.2509 (2) 0.95711 (14) 0.0729 (5)
O2 −0.0108 (2) 0.4285 (3) 0.79990 (16) 0.0876 (6)
O3 0.1680 (3) 0.5598 (2) 0.56473 (16) 0.0723 (5)
O4 0.1233 (3) 0.2930 (2) 0.56793 (15) 0.0696 (5)
O5 0.2656 (2) 0.6139 (2) 0.97148 (13) 0.0663 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0418 (11) 0.0481 (11) 0.0449 (11) −0.0178 (9) −0.0053 (9) 0.0001 (9)
C2 0.0510 (13) 0.0692 (15) 0.0519 (12) −0.0261 (11) 0.0056 (11) −0.0011 (11)
C3 0.0394 (12) 0.0793 (17) 0.0794 (17) −0.0192 (12) −0.0011 (12) −0.0083 (13)
C4 0.0457 (14) 0.0684 (15) 0.0716 (16) −0.0089 (11) −0.0185 (12) −0.0064 (12)
C5 0.0539 (13) 0.0566 (13) 0.0462 (12) −0.0129 (10) −0.0119 (10) −0.0016 (10)
C6 0.0418 (11) 0.0464 (11) 0.0414 (11) −0.0142 (9) −0.0052 (9) 0.0000 (8)
C7 0.0486 (13) 0.0613 (13) 0.0412 (11) −0.0177 (11) −0.0029 (10) 0.0010 (10)
C8 0.0490 (12) 0.0524 (13) 0.0377 (10) −0.0221 (10) −0.0026 (9) 0.0045 (9)
C9 0.0498 (12) 0.0537 (12) 0.0409 (11) −0.0147 (10) 0.0057 (9) −0.0065 (9)
C10 0.0552 (14) 0.0587 (14) 0.0626 (14) −0.0072 (11) −0.0008 (11) −0.0015 (11)
C11 0.0803 (18) 0.0523 (14) 0.0582 (15) −0.0121 (12) −0.0107 (13) 0.0073 (11)
C12 0.0769 (17) 0.0550 (13) 0.0524 (13) −0.0210 (12) 0.0078 (12) 0.0058 (11)
C13 0.0585 (14) 0.0608 (14) 0.0580 (14) −0.0169 (11) 0.0108 (11) 0.0000 (11)
N1 0.0523 (11) 0.0583 (11) 0.0472 (10) −0.0121 (9) −0.0012 (9) 0.0028 (8)
O1 0.0565 (11) 0.0911 (13) 0.0538 (10) −0.0116 (9) 0.0091 (8) 0.0177 (9)
O2 0.0456 (10) 0.1286 (16) 0.0627 (11) −0.0037 (10) −0.0012 (8) 0.0241 (10)
O3 0.0820 (13) 0.0609 (11) 0.0843 (12) −0.0359 (9) −0.0379 (10) 0.0231 (9)
O4 0.0824 (12) 0.0601 (10) 0.0769 (12) −0.0331 (9) −0.0393 (10) 0.0142 (9)
O5 0.0584 (10) 0.0838 (11) 0.0494 (9) −0.0192 (8) 0.0075 (8) 0.0033 (8)

Geometric parameters (Å, º)

C1—C2 1.391 (3) C9—O5 1.266 (2)
C1—C6 1.396 (3) C9—N1 1.351 (3)
C1—C8 1.483 (3) C9—C10 1.404 (3)
C2—C3 1.365 (3) C10—C11 1.350 (3)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.370 (4) C11—C12 1.377 (3)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.365 (3) C12—C13 1.342 (3)
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.395 (3) C13—N1 1.355 (3)
C5—H5 0.9300 C13—H13 0.9300
C6—C7 1.475 (3) N1—H1A 0.8600
C7—O2 1.201 (3) O1—H1B 0.85 (2)
C7—O1 1.300 (2) O3—H3A 0.855 (15)
C8—O3 1.252 (2) O4—H3A' 0.85 (3)
C8—O4 1.263 (2)
C2—C1—C6 119.45 (19) O4—C8—C1 117.90 (18)
C2—C1—C8 118.47 (18) O5—C9—N1 119.3 (2)
C6—C1—C8 122.05 (17) O5—C9—C10 124.9 (2)
C3—C2—C1 120.4 (2) N1—C9—C10 115.89 (19)
C3—C2—H2 119.8 C11—C10—C9 120.7 (2)
C1—C2—H2 119.8 C11—C10—H10 119.7
C2—C3—C4 120.4 (2) C9—C10—H10 119.7
C2—C3—H3 119.8 C10—C11—C12 121.1 (2)
C4—C3—H3 119.8 C10—C11—H11 119.5
C5—C4—C3 120.4 (2) C12—C11—H11 119.5
C5—C4—H4 119.8 C13—C12—C11 118.6 (2)
C3—C4—H4 119.8 C13—C12—H12 120.7
C4—C5—C6 120.5 (2) C11—C12—H12 120.7
C4—C5—H5 119.7 C12—C13—N1 120.2 (2)
C6—C5—H5 119.7 C12—C13—H13 119.9
C5—C6—C1 118.79 (19) N1—C13—H13 119.9
C5—C6—C7 121.36 (18) C9—N1—C13 123.6 (2)
C1—C6—C7 119.67 (18) C9—N1—H1A 118.2
O2—C7—O1 122.9 (2) C13—N1—H1A 118.2
O2—C7—C6 121.49 (18) C7—O1—H1B 110 (2)
O1—C7—C6 115.58 (19) C8—O3—H3A 117 (4)
O3—C8—O4 122.96 (19) C8—O4—H3A' 111 (3)
O3—C8—C1 118.87 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O4i 0.86 (2) 1.80 (2) 2.644 (3) 167 (7)
O4—H3A′···O3i 0.85 (3) 1.81 (3) 2.644 (3) 167 (4)
O1—H1B···O5ii 0.85 (2) 1.74 (2) 2.587 (2) 178 (3)
N1—H1A···O5iii 0.86 2.04 2.892 (3) 171

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5304).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545. [DOI] [PubMed]
  5. Zhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163–1195. [DOI] [PubMed]
  6. Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300–7302. [DOI] [PubMed]
  7. Zhu, R.-Q. & Yu, C.-H. (2011). Acta Cryst. E67, o2746. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023914/cv5304sup1.cif

e-68-o1989-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023914/cv5304Isup2.hkl

e-68-o1989-Isup2.hkl (140.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023914/cv5304Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES