Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2017. doi: 10.1107/S1600536812022143

2-{[3-Methyl-4-(2,2,2-trifluoro­eth­oxy)pyridin-2-yl]methyl­sulfan­yl}-1H-benzimidazole propan-2-ol monosolvate: a second monoclinic polymorph

Jin-Ju Ma a,b, Ming-Hui Qi b, Ming-Huang Hong b, Jie Lu c, Guo-Bin Ren a,b,*
PMCID: PMC3393286  PMID: 22807843

Abstract

In the crystal structure of the title compound, C16H14F3N3OS·C3H8O, the mol­ecules are linked into chains along [010] via N—H⋯O and O—H⋯N hydrogen bonds. The triclinic form was reported by Ren et al. [(2011). Acta Cryst. E67, o270] and the first monoclinic form by Chen et al. [(2012). Acta Cryst. E68, o2015–o2016]. The fused five-and six-membered rings make a dihedral angle of 1.22 (2)°, while the benzene and pyridine rings make a dihedral angle of 10.15 (2)°.

Related literature  

For the use of the title compound as an inter­mediate in the synthesis of the anti-ulcer drug lansoprazole {systematic name: (RS)-2-([3-methyl-4-(2,2,2-trifluoro­eth­oxy)pyridin-2-yl]methyl­sulfin­yl)-1H-benzo[d]imidazole}, see: Del Rio et al. (2007); Reddy et al. (2008); Iwahi et al. (1991). For related structures, see: Swamy & Ravikumar (2007); Hakim et al. (2010). For the triclinic polymorph of the title propan-2-ol solvo-polymorph, see: Ren et al. (2011) and for the monoclinic mono­hydrate, see: Chen et al. (2012).graphic file with name e-68-o2017-scheme1.jpg

Experimental  

Crystal data  

  • C16H14F3N3OS·C3H8O

  • M r = 413.46

  • Monoclinic, Inline graphic

  • a = 17.4583 (2) Å

  • b = 7.4162 (1) Å

  • c = 16.9622 (2) Å

  • β = 116.255 (2)°

  • V = 1969.60 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.89 mm−1

  • T = 296 K

  • 0.31 × 0.23 × 0.15 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.592, T max = 0.765

  • 13351 measured reflections

  • 3410 independent reflections

  • 3266 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.116

  • S = 1.06

  • 3410 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022143/bg2460sup1.cif

e-68-o2017-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022143/bg2460Isup2.hkl

e-68-o2017-Isup2.hkl (167.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022143/bg2460Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N1i 0.82 2.01 2.8142 (18) 167
N2—H2A⋯O2ii 0.86 1.98 2.8027 (18) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the New Drug Innovation (2009ZX09301–007) project of the Ministry of Science and Technology of China and the National Natural Science Foundation of China (Nos. 81102391 and 21176102).

supplementary crystallographic information

Comment

Lansoprazole (Del Rio et al., 2007; Reddy et al., 2008) and many of its analogues are characterized by an anti-ulcer effect (Iwahi et al.,1991) The title compound, (I), is the critical reaction intermediate of lansoprazole Recently, the compound was successfully crystallized from 2-propanol, and the crystal structure is now firstly reported.

The crystral structure (Fig 1) contains one independent molecule and one 2-propanol solvato which are involved in the formation of hydrogen-bonded chains running along [010] via N—H···O and O—H···N hydrogen bonds (Table 1 and Fig. 2). The 2-propanol molecules acts as a hydrogen-bond bridge, providing further stability to the crystal lattice.

Experimental

The raw material was kindly provided by Shanghai Enran Sci-Tech Investment Management Co., Ltd. The compound was dissolved in 2-propanol and suitable crystals of X-ray were obtained by slow evaporation at room temperature over a period of one week.

Refinement

All C-H atoms were constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH; 0.97 Å and Uiso(H) = 1.2Ueq (C) for CH2; 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3; 0.82 Å and Uiso(H) = 1.5Ueq(C)for OH atoms; and 0.86 Å and Uiso(H) = 1.5Ueq(C) for NH atoms.

Figures

Fig. 1.

Fig. 1.

The content of asymmetric unit (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines denote hydrogen bonds. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

A packing diagram, projected along the [010] chains.

Crystal data

C16H14F3N3OS·C3H8O F(000) = 864
Mr = 413.46 Dx = 1.394 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 3266 reflections
a = 17.4583 (2) Å θ = 6.1–67.0°
b = 7.4162 (1) Å µ = 1.89 mm1
c = 16.9622 (2) Å T = 296 K
β = 116.255 (2)° Column, colorless
V = 1969.60 (5) Å3 0.31 × 0.23 × 0.15 mm
Z = 4

Data collection

Bruker APEXII diffractometer 3410 independent reflections
Radiation source: fine-focus sealed tube 3266 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
Detector resolution: 0 pixels mm-1 θmax = 67.0°, θmin = 6.1°
phi and ω scans h = −19→20
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −8→8
Tmin = 0.592, Tmax = 0.765 l = −20→19
13351 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.5861P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
3410 reflections Δρmax = 0.38 e Å3
254 parameters Δρmin = −0.28 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0024 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22271 (3) 0.11157 (5) 1.05242 (3) 0.04524 (17)
O1 0.09818 (8) 0.61043 (16) 0.71885 (7) 0.0497 (3)
O2 0.32047 (8) 0.67645 (16) 0.17242 (10) 0.0573 (4)
H2B 0.3016 0.5801 0.1800 0.086*
N1 0.28104 (9) 0.32274 (18) 1.20227 (9) 0.0417 (3)
N2 0.29844 (8) 0.02492 (18) 1.22301 (8) 0.0419 (3)
H2A 0.2958 −0.0880 1.2105 0.050*
N3 0.14436 (10) 0.1600 (2) 0.87641 (9) 0.0476 (4)
F1 0.13495 (9) 0.8359 (2) 0.61276 (11) 0.0938 (5)
F2 0.01560 (8) 0.89596 (15) 0.61011 (8) 0.0681 (3)
F3 0.02040 (11) 0.76215 (19) 0.50116 (8) 0.0893 (5)
C1 0.26983 (10) 0.1637 (2) 1.16472 (10) 0.0375 (3)
C1' 0.47122 (13) 0.6930 (4) 0.26857 (17) 0.0747 (6)
H1'A 0.4639 0.6167 0.3104 0.112*
H1'B 0.4658 0.8169 0.2816 0.112*
H1'C 0.5269 0.6734 0.2717 0.112*
C2 0.32070 (10) 0.2857 (2) 1.29233 (11) 0.0415 (4)
C2' 0.40380 (12) 0.6487 (3) 0.17709 (15) 0.0594 (5)
H2'A 0.4095 0.5217 0.1646 0.071*
C3 0.34706 (13) 0.4014 (3) 1.36387 (13) 0.0556 (5)
H3B 0.3384 0.5251 1.3561 0.067*
C3' 0.41146 (15) 0.7633 (4) 0.10808 (17) 0.0729 (6)
H3'A 0.3673 0.7311 0.0513 0.109*
H3'B 0.4663 0.7440 0.1092 0.109*
H3'C 0.4057 0.8880 0.1196 0.109*
C4 0.38645 (14) 0.3274 (3) 1.44666 (13) 0.0631 (5)
H4A 0.4048 0.4029 1.4954 0.076*
C5 0.39947 (13) 0.1429 (3) 1.45925 (13) 0.0595 (5)
H5A 0.4272 0.0979 1.5162 0.071*
C6 0.37235 (11) 0.0253 (3) 1.38953 (11) 0.0519 (4)
H6A 0.3803 −0.0985 1.3980 0.062*
C7 0.33245 (10) 0.0997 (2) 1.30578 (11) 0.0408 (4)
C8 0.20875 (11) 0.3377 (2) 1.00826 (11) 0.0443 (4)
H8A 0.1736 0.4076 1.0281 0.053*
H8B 0.2638 0.3969 1.0285 0.053*
C9 0.16630 (10) 0.3261 (2) 0.90919 (10) 0.0385 (3)
C10 0.15158 (10) 0.4812 (2) 0.85880 (10) 0.0393 (4)
C11 0.11201 (10) 0.4568 (2) 0.76766 (10) 0.0405 (4)
C12 0.08915 (12) 0.2862 (2) 0.73202 (11) 0.0493 (4)
H12A 0.0628 0.2686 0.6715 0.059*
C13 0.10670 (13) 0.1429 (2) 0.78931 (12) 0.0536 (5)
H13A 0.0913 0.0278 0.7657 0.064*
C14 0.05724 (12) 0.5917 (2) 0.62635 (11) 0.0454 (4)
H14A −0.0010 0.5500 0.6070 0.054*
H14B 0.0875 0.5051 0.6076 0.054*
C15 0.05779 (11) 0.7721 (3) 0.58855 (11) 0.0495 (4)
C16 0.17477 (13) 0.6669 (3) 0.89758 (12) 0.0548 (5)
H16A 0.1592 0.7539 0.8511 0.082*
H16B 0.2352 0.6730 0.9344 0.082*
H16C 0.1448 0.6924 0.9320 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0616 (3) 0.0325 (3) 0.0362 (2) −0.00018 (16) 0.0168 (2) 0.00201 (14)
O1 0.0649 (8) 0.0411 (7) 0.0345 (6) −0.0002 (5) 0.0143 (5) 0.0050 (5)
O2 0.0481 (7) 0.0306 (6) 0.0920 (10) −0.0005 (5) 0.0299 (7) 0.0013 (6)
N1 0.0517 (8) 0.0324 (7) 0.0404 (7) 0.0030 (6) 0.0199 (6) 0.0036 (5)
N2 0.0523 (8) 0.0304 (7) 0.0395 (7) 0.0015 (6) 0.0172 (6) 0.0040 (5)
N3 0.0613 (9) 0.0367 (7) 0.0395 (8) −0.0012 (6) 0.0174 (7) 0.0000 (6)
F1 0.0650 (8) 0.1046 (11) 0.1088 (12) −0.0198 (7) 0.0357 (8) 0.0334 (9)
F2 0.0844 (8) 0.0471 (7) 0.0706 (8) 0.0098 (5) 0.0322 (7) 0.0056 (5)
F3 0.1476 (14) 0.0680 (8) 0.0367 (6) −0.0046 (8) 0.0267 (7) 0.0095 (6)
C1 0.0419 (8) 0.0318 (8) 0.0383 (8) 0.0007 (6) 0.0172 (7) 0.0037 (6)
C1' 0.0519 (11) 0.0715 (15) 0.0859 (16) 0.0019 (10) 0.0171 (11) 0.0122 (12)
C2 0.0444 (8) 0.0411 (9) 0.0408 (9) 0.0024 (7) 0.0203 (7) 0.0022 (7)
C2' 0.0493 (10) 0.0350 (9) 0.0896 (15) 0.0018 (8) 0.0268 (10) −0.0054 (9)
C3 0.0682 (12) 0.0485 (11) 0.0517 (11) −0.0001 (9) 0.0280 (9) −0.0078 (8)
C3' 0.0667 (13) 0.0789 (16) 0.0785 (15) −0.0071 (11) 0.0369 (12) −0.0080 (12)
C4 0.0703 (12) 0.0766 (14) 0.0434 (10) −0.0044 (11) 0.0260 (9) −0.0130 (9)
C5 0.0584 (11) 0.0791 (14) 0.0382 (9) 0.0024 (10) 0.0188 (8) 0.0082 (9)
C6 0.0554 (10) 0.0533 (11) 0.0442 (10) 0.0035 (8) 0.0195 (8) 0.0122 (8)
C7 0.0419 (8) 0.0412 (9) 0.0401 (8) 0.0006 (6) 0.0190 (7) 0.0044 (6)
C8 0.0566 (10) 0.0334 (8) 0.0365 (9) 0.0009 (7) 0.0147 (7) 0.0028 (7)
C9 0.0404 (8) 0.0363 (8) 0.0365 (8) 0.0010 (6) 0.0149 (6) 0.0004 (6)
C10 0.0406 (8) 0.0374 (8) 0.0367 (8) 0.0014 (6) 0.0143 (6) 0.0014 (6)
C11 0.0425 (8) 0.0388 (8) 0.0375 (8) 0.0016 (7) 0.0152 (6) 0.0044 (7)
C12 0.0595 (10) 0.0467 (10) 0.0337 (8) −0.0012 (8) 0.0134 (7) −0.0017 (7)
C13 0.0726 (12) 0.0376 (9) 0.0421 (9) −0.0051 (8) 0.0176 (9) −0.0053 (7)
C14 0.0536 (9) 0.0453 (10) 0.0341 (8) 0.0029 (7) 0.0165 (7) 0.0017 (7)
C15 0.0548 (10) 0.0539 (11) 0.0365 (8) −0.0026 (8) 0.0170 (7) 0.0045 (7)
C16 0.0733 (12) 0.0383 (9) 0.0422 (9) −0.0022 (8) 0.0159 (9) 0.0010 (7)

Geometric parameters (Å, º)

S1—C1 1.7517 (16) C3'—H3'A 0.9600
S1—C8 1.8088 (17) C3'—H3'B 0.9600
O1—C11 1.366 (2) C3'—H3'C 0.9600
O1—C14 1.414 (2) C4—C5 1.388 (3)
O2—C2' 1.436 (2) C4—H4A 0.9300
O2—H2B 0.8200 C5—C6 1.374 (3)
N1—C1 1.313 (2) C5—H5A 0.9300
N1—C2 1.397 (2) C6—C7 1.390 (2)
N2—C1 1.360 (2) C6—H6A 0.9300
N2—C7 1.376 (2) C8—C9 1.510 (2)
N2—H2A 0.8600 C8—H8A 0.9700
N3—C13 1.331 (2) C8—H8B 0.9700
N3—C9 1.337 (2) C9—C10 1.387 (2)
F1—C15 1.311 (2) C10—C11 1.398 (2)
F2—C15 1.326 (2) C10—C16 1.502 (2)
F3—C15 1.331 (2) C11—C12 1.383 (3)
C1'—C2' 1.512 (3) C12—C13 1.380 (3)
C1'—H1'A 0.9600 C12—H12A 0.9300
C1'—H1'B 0.9600 C13—H13A 0.9300
C1'—H1'C 0.9600 C14—C15 1.486 (3)
C2—C3 1.388 (3) C14—H14A 0.9700
C2—C7 1.398 (2) C14—H14B 0.9700
C2'—C3' 1.499 (3) C16—H16A 0.9600
C2'—H2'A 0.9800 C16—H16B 0.9600
C3—C4 1.375 (3) C16—H16C 0.9600
C3—H3B 0.9300
C1—S1—C8 99.09 (8) C7—C6—H6A 121.5
C11—O1—C14 117.24 (13) N2—C7—C6 132.68 (16)
C2'—O2—H2B 109.5 N2—C7—C2 105.36 (14)
C1—N1—C2 104.42 (13) C6—C7—C2 121.96 (17)
C1—N2—C7 106.91 (13) C9—C8—S1 108.55 (11)
C1—N2—H2A 126.5 C9—C8—H8A 110.0
C7—N2—H2A 126.5 S1—C8—H8A 110.0
C13—N3—C9 117.35 (15) C9—C8—H8B 110.0
N1—C1—N2 113.52 (14) S1—C8—H8B 110.0
N1—C1—S1 128.56 (12) H8A—C8—H8B 108.4
N2—C1—S1 117.92 (12) N3—C9—C10 124.55 (15)
C2'—C1'—H1'A 109.5 N3—C9—C8 115.14 (14)
C2'—C1'—H1'B 109.5 C10—C9—C8 120.30 (14)
H1'A—C1'—H1'B 109.5 C9—C10—C11 116.09 (15)
C2'—C1'—H1'C 109.5 C9—C10—C16 123.33 (14)
H1'A—C1'—H1'C 109.5 C11—C10—C16 120.58 (14)
H1'B—C1'—H1'C 109.5 O1—C11—C12 123.98 (14)
C3—C2—N1 130.27 (16) O1—C11—C10 115.48 (14)
C3—C2—C7 119.94 (16) C12—C11—C10 120.53 (15)
N1—C2—C7 109.79 (15) C13—C12—C11 117.74 (16)
O2—C2'—C3' 108.28 (17) C13—C12—H12A 121.1
O2—C2'—C1' 109.59 (18) C11—C12—H12A 121.1
C3'—C2'—C1' 112.37 (18) N3—C13—C12 123.72 (17)
O2—C2'—H2'A 108.8 N3—C13—H13A 118.1
C3'—C2'—H2'A 108.8 C12—C13—H13A 118.1
C1'—C2'—H2'A 108.8 O1—C14—C15 107.09 (14)
C4—C3—C2 117.96 (19) O1—C14—H14A 110.3
C4—C3—H3B 121.0 C15—C14—H14A 110.3
C2—C3—H3B 121.0 O1—C14—H14B 110.3
C2'—C3'—H3'A 109.5 C15—C14—H14B 110.3
C2'—C3'—H3'B 109.5 H14A—C14—H14B 108.6
H3'A—C3'—H3'B 109.5 F1—C15—F2 106.44 (17)
C2'—C3'—H3'C 109.5 F1—C15—F3 107.37 (16)
H3'A—C3'—H3'C 109.5 F2—C15—F3 106.68 (16)
H3'B—C3'—H3'C 109.5 F1—C15—C14 113.07 (16)
C3—C4—C5 121.61 (19) F2—C15—C14 113.23 (14)
C3—C4—H4A 119.2 F3—C15—C14 109.68 (15)
C5—C4—H4A 119.2 C10—C16—H16A 109.5
C6—C5—C4 121.53 (18) C10—C16—H16B 109.5
C6—C5—H5A 119.2 H16A—C16—H16B 109.5
C4—C5—H5A 119.2 C10—C16—H16C 109.5
C5—C6—C7 116.97 (19) H16A—C16—H16C 109.5
C5—C6—H6A 121.5 H16B—C16—H16C 109.5
C2—N1—C1—N2 0.47 (18) C13—N3—C9—C10 0.8 (3)
C2—N1—C1—S1 179.51 (12) C13—N3—C9—C8 179.99 (15)
C7—N2—C1—N1 −0.99 (18) S1—C8—C9—N3 3.65 (19)
C7—N2—C1—S1 179.85 (11) S1—C8—C9—C10 −177.14 (12)
C8—S1—C1—N1 6.99 (17) N3—C9—C10—C11 −0.9 (2)
C8—S1—C1—N2 −174.00 (12) C8—C9—C10—C11 179.94 (14)
C1—N1—C2—C3 −179.33 (18) N3—C9—C10—C16 178.21 (17)
C1—N1—C2—C7 0.23 (18) C8—C9—C10—C16 −0.9 (2)
N1—C2—C3—C4 −178.76 (18) C14—O1—C11—C12 0.6 (2)
C7—C2—C3—C4 1.7 (3) C14—O1—C11—C10 −179.17 (14)
C2—C3—C4—C5 −0.3 (3) C9—C10—C11—O1 −179.78 (13)
C3—C4—C5—C6 −1.1 (3) C16—C10—C11—O1 1.1 (2)
C4—C5—C6—C7 1.0 (3) C9—C10—C11—C12 0.5 (2)
C1—N2—C7—C6 −178.20 (18) C16—C10—C11—C12 −178.69 (17)
C1—N2—C7—C2 1.05 (17) O1—C11—C12—C13 −179.70 (17)
C5—C6—C7—N2 179.62 (17) C10—C11—C12—C13 0.0 (3)
C5—C6—C7—C2 0.5 (3) C9—N3—C13—C12 −0.2 (3)
C3—C2—C7—N2 178.81 (15) C11—C12—C13—N3 −0.2 (3)
N1—C2—C7—N2 −0.81 (18) C11—O1—C14—C15 −174.15 (14)
C3—C2—C7—C6 −1.8 (3) O1—C14—C15—F1 59.7 (2)
N1—C2—C7—C6 178.54 (15) O1—C14—C15—F2 −61.42 (19)
C1—S1—C8—C9 −178.94 (12) O1—C14—C15—F3 179.55 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2B···N1i 0.82 2.01 2.8142 (18) 167
N2—H2A···O2ii 0.86 1.98 2.8027 (18) 161

Symmetry codes: (i) x, y, z−1; (ii) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2460).

References

  1. Bruker (2009). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, Y.-F., Chen, J.-Y., Hong, M.-H., Lu, J. & Ren, G.-B. (2012). Acta Cryst. E68, o2015–o2016. [DOI] [PMC free article] [PubMed]
  3. Del Rio, R. E., Wang, B., Achab, S. & Bohe, L. (2007). Org. Lett. 9, 2265–2268. [DOI] [PubMed]
  4. Hakim Al-arique, Q. N. M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1507–o1508. [DOI] [PMC free article] [PubMed]
  5. Iwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother. 35, 490–496. [DOI] [PMC free article] [PubMed]
  6. Reddy, G. M., Mukkanti, K., Kumar, T., Babu, J., Moses, M. & Reddy, P. P. (2008). Synth. Commun. 38, 3477–3489.
  7. Ren, G.-B., Hong, M.-H., Zhong, J.-L., Yi, D.-X. & Xu, L.-H. (2011). Acta Cryst. E67, o270. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Swamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem. 48, 715–718.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022143/bg2460sup1.cif

e-68-o2017-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022143/bg2460Isup2.hkl

e-68-o2017-Isup2.hkl (167.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022143/bg2460Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES