Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2019. doi: 10.1107/S1600536812023446

3-(1H-Indol-3-yl)-2-(2-nitro­benzene­sulfonamido)­propanoic acid including an unknown solvate

Islam Ullah Khan a,*, Hafiz Mubashar-ur-Rehman a, Salman Aziz a, William T A Harrison b
PMCID: PMC3393288  PMID: 22807845

Abstract

In the title compound, C17H15N3O6S, which crystallized with highly disordered methanol and/or water solvent mol­ecules, the dihedral angle between the the indole and benzene ring systems is 5.3 (2)°, which allows for the formation of intra­molecular π–π stacking inter­actions [centroid–centroid separations = 3.641 (3) and 3.694 (3) Å] and an approximate overall U-shape for the mol­ecule. In the crystal, dimers linked by pairs of Ns—H⋯Oc (s = sulfonamide and c = carboxyl­ate) hydrogen bonds generate R 2 2(10) loops, whereas Ni—H⋯π (i = indole) inter­actions lead to chains propagating in [100] or [010]. Together, these lead to a three-dimensional network in which the solvent voids are present as inter­secting (two-dimensional) systems of [100] and [010] channels. The title compound was found to contain a heavily disordered solvent mol­ecule, which could be methanol or water or a mixture of the two. Due to its uncertain nature and the unresolvable disorder, the data were processed with the SQUEEZE option in PLATON [Spek (2009). Acta Cryst. D65, 148–155], which revealed 877.8 Å3 of solvent-accessible volume per unit cell and 126 electron-units of scattering density or 109.7 Å3 (16 electron units) per organic mol­ecule.. This was not included in the calculations of overall formula weight, density and absorption coefficient.

Related literature  

For related structures and background references to the biological activity of sulfonamides, see: Khan et al. (2011a ,b ). For further synthetic details, see: Deng & Mani (2006).graphic file with name e-68-o2019-scheme1.jpg

Experimental  

Crystal data  

  • C17H15N3O6S

  • M r = 389.38

  • Tetragonal, Inline graphic

  • a = 9.6818 (5) Å

  • c = 44.017 (3) Å

  • V = 4126.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.10 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • 4042 measured reflections

  • 4042 independent reflections

  • 3492 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.168

  • S = 1.07

  • 4042 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), 1581 Friedel pairs

  • Flack parameter: 0.03 (15)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023446/sj5218sup1.cif

e-68-o2019-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023446/sj5218Isup2.hkl

e-68-o2019-Isup2.hkl (198.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023446/sj5218Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg1i 0.86 2.77 3.565 (4) 155
N2—H2⋯O1ii 0.86 2.10 2.918 (4) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

supplementary crystallographic information

Comment

As part of our ongoing studies of chiral sulfonamides with possible biological activity (Khan et al., 2011a,b), we now report the structure of the title compound, (I). Compound (I) was found to contain a heavily disordered solvent molecule, which could be methanol or water or a mixture of the two. Due to its uncertain nature and the unresolvable disorder, the data were processed with the SQUEEZE option in PLATON (Spek, 2009), to remove the solvent contribution to the scattering.

The molecular structure of (I) (Fig. 1) approximates to a U-shape, with the indole ring system (C1—C8/N1; r.m.s. deviation = 0.007 Å) and benzene ring (C12–C17) lying approximately parallel to each other [dihedral angle = 5.3 (2)°]. This allows intramolecular aromatic π-π stacking to occur: the separations of the centroid of the C12–C17 benzene ring with those of the C1–C6 and C1/C6/C7/C8/N1 rings are 3.641 (3) Å and 3.694 (3) Å, respectively. The N3/O5/O6 nitro group is twisted out of the plane of its atttached ring by 48.9 (4)°. The configuration of the stereogenic carbon atom (C10) in (I) is S, which is consistent with that of the equivalent atom in the starting material.

In the crystal, the molecules are linked into dimers via pairs of Ns–H···Oc (s = sulfonamide, c = carboxylate) hydrogen bonds (Fig. 2, Table 1), which result in R22(10) loops. A crystallographic twofold axis directed along [110] generates the second molecule from the asymmetric molecule. In addition, weak Ni—H···π (i = indole) interactions occur: these lead to [100] chains for the asymmetric molecule and [010] chains for symmetry-generated molecules in other locations in the unit-cell (Fig. 3). The carboxylic acid O—H group is directed towards the solvent void and probably forms a hydrogen bond to the solvent.

Together, the N–H···O and N–H···π bonds generate a three-dimensional network of molecules within the distinctive "tall" tetragonal unit-cell (Fig. 3). The solvent voids are apparent as square grids of intersecting [100] and [010] pseudo channels lying at z = 0, z = 1/4 and symmetry equivalent locations.

The molcular conformation and crystal structure (Khan et al., 2011a) of the closely related compound 3-(1H-indol-3-yl)-2-(toluene-4-sulfonylamino)-propionic acid monohydrate, (II), are completely different to (I). In (II), where a para-toluene substituent has replaced the 2-nitrobebzene substituent in (I), the organic molecule adopts an extended Z-shaped conformation and no intramolecular π-π stacking can occur. In the crystal of (II), in which the solvent water molecule was located, Ns–H···Os hydrogen bonds and Oc–H···Ow (s = sulfonamide, c = carboxylic acid, w = water) hydrogen bonds generate chains and the crystal symmetry is monoclinic. Another feature of (II) not seen in (I) is the presence of a short intermolecular C—H···O interaction arising from the α (chiral) C atom (Khan et al., 2011b). However, it is interesting to note that (I) and (II) both feature an unusual Ni–H···π (i = indole) interaction.

Experimental

The title compound was prepared following the literature method (Deng & Mani, 2006) and recrystalized from methanol by slow evaporation to yield yellow blocks of (I).

Refinement

Due to the disordered solvent molecule and its uncertain identity, the data were processed with SQUEEZE in PLATON (Spek, 2009). This revealed 877.8 Å3 of solvent accessible volume per unit cell and 126 electron-units of scattering density or 109.7 Å3 (16 electron units) per organic molecule. This was not included in the calculations of overall formula weight, density and absorption coefficient. The original data set consisted of 31099 measured reflections (-11 ≤ h ≤ 11, -11 ≤ k ≤ 11, -54 ≤ l ≤ 54), for which Rint was 0.068.

The C- and N-bound H-atoms were geometrically placed (C—H = 0.93–0.98 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier). The O-bound H was located in a difference map and refined as riding in its as-found relative position with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level and the intramolecular π-π stacking interactions shown as double-dashed lines betweent the ring centroids.

Fig. 2.

Fig. 2.

Detail of the structure of (I) showing the formation of dimers linked by pairs of N—H···O hydrogen bonds, thus generating R22(10) loops. All C-bonded H atoms omitted for clarity. Symmetry code: (ii) y, x, 1 - z.

Fig. 3.

Fig. 3.

Detail of the structure of (I) showing the formation of [100] chains linked by N—H···π interactions. Cg1 (pink circle) is the centroid of the C1–C6 ring. Symmetry code: (i) x - 1/2, 3/2 - y, 3/4 - z.

Fig. 4.

Fig. 4.

The unit-cell packing for (I) viewed approximately down [010] showing the solvent voids.

Crystal data

C17H15N3O6S Dx = 1.254 Mg m3
Mr = 389.38 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212 Cell parameters from 9980 reflections
Hall symbol: P 4abw 2nw θ = 2.8–26.9°
a = 9.6818 (5) Å µ = 0.19 mm1
c = 44.017 (3) Å T = 296 K
V = 4126.0 (4) Å3 Block, yellow
Z = 8 0.30 × 0.25 × 0.10 mm
F(000) = 1616

Data collection

Bruker Kappa APEXII CCD diffractometer 3492 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.000
Graphite monochromator θmax = 26.0°, θmin = 2.5°
ω scans h = −7→8
4042 measured reflections k = 0→11
4042 independent reflections l = 0→54

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.0679P)2 + 3.5726P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.168 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.21 e Å3
4042 reflections Δρmin = −0.24 e Å3
245 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0083 (12)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1581 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.03 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5558 (4) 0.6025 (4) 0.39025 (8) 0.0488 (8)
C2 0.6443 (5) 0.5208 (5) 0.37363 (10) 0.0583 (10)
H2A 0.7108 0.4675 0.3834 0.070*
C3 0.6335 (6) 0.5186 (6) 0.34215 (11) 0.0780 (15)
H3A 0.6925 0.4627 0.3309 0.094*
C4 0.5350 (7) 0.5994 (6) 0.32731 (10) 0.0792 (15)
H4 0.5306 0.5977 0.3062 0.095*
C5 0.4460 (6) 0.6799 (6) 0.34293 (11) 0.0763 (14)
H5 0.3799 0.7328 0.3329 0.092*
C6 0.4564 (5) 0.6813 (4) 0.37487 (9) 0.0558 (10)
C7 0.4312 (5) 0.7179 (5) 0.42414 (10) 0.0641 (11)
H7 0.3953 0.7511 0.4423 0.077*
C8 0.5374 (4) 0.6301 (4) 0.42204 (8) 0.0505 (9)
C9 0.6174 (4) 0.5663 (4) 0.44725 (9) 0.0554 (10)
H9A 0.6013 0.6180 0.4658 0.067*
H9B 0.7152 0.5717 0.4426 0.067*
C10 0.5775 (4) 0.4149 (4) 0.45240 (8) 0.0500 (9)
H10 0.5916 0.3639 0.4334 0.060*
C11 0.6702 (4) 0.3540 (4) 0.47649 (8) 0.0481 (9)
C12 0.2877 (4) 0.3494 (4) 0.40872 (8) 0.0467 (8)
C13 0.3606 (5) 0.2926 (5) 0.38483 (9) 0.0612 (11)
H13 0.4322 0.2310 0.3887 0.073*
C14 0.3275 (6) 0.3271 (6) 0.35519 (9) 0.0734 (14)
H14 0.3782 0.2905 0.3391 0.088*
C15 0.2204 (7) 0.4150 (6) 0.34959 (10) 0.0777 (14)
H15 0.1990 0.4378 0.3296 0.093*
C16 0.1439 (5) 0.4701 (6) 0.37262 (11) 0.0718 (13)
H16 0.0696 0.5281 0.3686 0.086*
C17 0.1800 (4) 0.4373 (4) 0.40226 (9) 0.0552 (10)
S1 0.33465 (11) 0.29054 (11) 0.44601 (2) 0.0528 (3)
N1 0.3822 (4) 0.7526 (4) 0.39580 (9) 0.0713 (11)
H1 0.3162 0.8094 0.3920 0.086*
N2 0.4319 (3) 0.4032 (3) 0.46119 (6) 0.0484 (7)
H2 0.3988 0.4579 0.4747 0.058*
N3 0.0981 (4) 0.5018 (4) 0.42620 (10) 0.0664 (10)
O1 0.6449 (3) 0.3541 (4) 0.50311 (6) 0.0781 (10)
O2 0.7836 (3) 0.3064 (4) 0.46516 (6) 0.0853 (12)
H3 0.8481 0.2766 0.4797 0.102*
O3 0.4148 (3) 0.1700 (3) 0.44107 (7) 0.0718 (9)
O4 0.2103 (3) 0.2828 (4) 0.46327 (7) 0.0755 (10)
O5 0.1554 (4) 0.5580 (5) 0.44684 (9) 0.0921 (12)
O6 −0.0272 (4) 0.4964 (5) 0.42333 (11) 0.0987 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.055 (2) 0.044 (2) 0.0473 (18) −0.0035 (17) 0.0050 (17) 0.0033 (16)
C2 0.059 (3) 0.053 (2) 0.062 (2) −0.005 (2) 0.006 (2) −0.0003 (19)
C3 0.096 (4) 0.071 (3) 0.068 (3) −0.006 (3) 0.028 (3) −0.012 (2)
C4 0.112 (5) 0.075 (3) 0.050 (2) −0.024 (3) −0.001 (3) 0.007 (2)
C5 0.087 (4) 0.078 (3) 0.064 (3) −0.005 (3) −0.012 (3) 0.021 (3)
C6 0.062 (3) 0.049 (2) 0.057 (2) −0.004 (2) −0.0034 (18) 0.0095 (18)
C7 0.068 (3) 0.068 (3) 0.056 (2) 0.005 (2) 0.011 (2) 0.004 (2)
C8 0.057 (2) 0.044 (2) 0.0509 (19) −0.0017 (17) 0.0004 (17) 0.0059 (16)
C9 0.057 (2) 0.056 (2) 0.053 (2) −0.0113 (18) −0.0096 (18) 0.0039 (18)
C10 0.054 (2) 0.062 (2) 0.0342 (15) 0.0002 (19) −0.0001 (15) −0.0023 (15)
C11 0.049 (2) 0.055 (2) 0.0394 (16) 0.0018 (17) 0.0053 (15) 0.0022 (15)
C12 0.046 (2) 0.049 (2) 0.0459 (17) −0.0078 (17) −0.0033 (16) −0.0022 (15)
C13 0.060 (3) 0.066 (3) 0.057 (2) −0.007 (2) 0.0011 (19) −0.013 (2)
C14 0.085 (3) 0.086 (3) 0.050 (2) −0.031 (3) 0.006 (2) −0.010 (2)
C15 0.099 (4) 0.082 (4) 0.051 (2) −0.028 (3) −0.015 (3) 0.004 (2)
C16 0.058 (3) 0.081 (3) 0.077 (3) −0.007 (2) −0.019 (2) 0.013 (2)
C17 0.044 (2) 0.060 (2) 0.062 (2) −0.0064 (19) −0.0104 (18) 0.0037 (19)
S1 0.0515 (6) 0.0560 (6) 0.0508 (5) −0.0032 (5) −0.0041 (4) 0.0055 (4)
N1 0.070 (3) 0.064 (2) 0.080 (2) 0.0302 (19) 0.002 (2) 0.0077 (19)
N2 0.0449 (17) 0.060 (2) 0.0401 (14) 0.0036 (15) 0.0014 (13) −0.0026 (14)
N3 0.050 (2) 0.069 (3) 0.081 (2) 0.0070 (18) 0.0047 (19) 0.014 (2)
O1 0.068 (2) 0.128 (3) 0.0381 (13) 0.030 (2) 0.0032 (13) 0.0059 (16)
O2 0.0609 (19) 0.147 (4) 0.0478 (14) 0.039 (2) 0.0108 (14) 0.0140 (19)
O3 0.076 (2) 0.0584 (18) 0.081 (2) 0.0064 (17) −0.0180 (17) −0.0001 (16)
O4 0.0590 (18) 0.102 (3) 0.0655 (17) −0.0225 (18) 0.0054 (15) 0.0188 (18)
O5 0.075 (2) 0.118 (3) 0.082 (2) 0.013 (2) 0.010 (2) −0.031 (2)
O6 0.046 (2) 0.115 (3) 0.135 (3) 0.010 (2) 0.000 (2) 0.015 (3)

Geometric parameters (Å, º)

C1—C2 1.377 (6) C11—O1 1.197 (4)
C1—C6 1.402 (6) C11—O2 1.291 (5)
C1—C8 1.436 (5) C12—C17 1.375 (5)
C2—C3 1.390 (7) C12—C13 1.381 (6)
C2—H2A 0.9300 C12—S1 1.796 (4)
C3—C4 1.396 (8) C13—C14 1.384 (6)
C3—H3A 0.9300 C13—H13 0.9300
C4—C5 1.350 (8) C14—C15 1.363 (8)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.410 (6) C15—C16 1.364 (8)
C5—H5 0.9300 C15—H15 0.9300
C6—N1 1.356 (6) C16—C17 1.387 (6)
C7—C8 1.337 (6) C16—H16 0.9300
C7—N1 1.376 (6) C17—N3 1.459 (6)
C7—H7 0.9300 S1—O3 1.418 (3)
C8—C9 1.488 (5) S1—O4 1.426 (3)
C9—C10 1.533 (6) S1—N2 1.588 (3)
C9—H9A 0.9700 N1—H1 0.8600
C9—H9B 0.9700 N2—H2 0.8600
C10—N2 1.466 (5) N3—O5 1.195 (5)
C10—C11 1.509 (5) N3—O6 1.221 (5)
C10—H10 0.9800 O2—H3 0.9400
C2—C1—C6 118.9 (4) O1—C11—C10 124.5 (4)
C2—C1—C8 134.6 (4) O2—C11—C10 111.9 (3)
C6—C1—C8 106.5 (4) C17—C12—C13 118.5 (4)
C1—C2—C3 119.5 (5) C17—C12—S1 125.2 (3)
C1—C2—H2A 120.3 C13—C12—S1 116.1 (3)
C3—C2—H2A 120.3 C12—C13—C14 120.2 (5)
C2—C3—C4 120.6 (5) C12—C13—H13 119.9
C2—C3—H3A 119.7 C14—C13—H13 119.9
C4—C3—H3A 119.7 C15—C14—C13 119.8 (5)
C5—C4—C3 121.5 (4) C15—C14—H14 120.1
C5—C4—H4 119.3 C13—C14—H14 120.1
C3—C4—H4 119.3 C14—C15—C16 121.5 (4)
C4—C5—C6 117.9 (5) C14—C15—H15 119.2
C4—C5—H5 121.1 C16—C15—H15 119.2
C6—C5—H5 121.1 C15—C16—C17 118.2 (5)
N1—C6—C1 108.2 (3) C15—C16—H16 120.9
N1—C6—C5 130.1 (4) C17—C16—H16 120.9
C1—C6—C5 121.7 (4) C12—C17—C16 121.8 (4)
C8—C7—N1 110.9 (4) C12—C17—N3 121.8 (4)
C8—C7—H7 124.5 C16—C17—N3 116.4 (4)
N1—C7—H7 124.5 O3—S1—O4 120.0 (2)
C7—C8—C1 106.3 (4) O3—S1—N2 107.77 (18)
C7—C8—C9 127.8 (4) O4—S1—N2 108.22 (19)
C1—C8—C9 125.8 (4) O3—S1—C12 105.04 (19)
C8—C9—C10 112.1 (3) O4—S1—C12 106.84 (19)
C8—C9—H9A 109.2 N2—S1—C12 108.47 (17)
C10—C9—H9A 109.2 C6—N1—C7 108.0 (4)
C8—C9—H9B 109.2 C6—N1—H1 126.0
C10—C9—H9B 109.2 C7—N1—H1 126.0
H9A—C9—H9B 107.9 C10—N2—S1 120.8 (3)
N2—C10—C11 110.9 (3) C10—N2—H2 119.6
N2—C10—C9 110.8 (3) S1—N2—H2 119.6
C11—C10—C9 109.1 (3) O5—N3—O6 124.0 (5)
N2—C10—H10 108.7 O5—N3—C17 119.4 (4)
C11—C10—H10 108.7 O6—N3—C17 116.6 (5)
C9—C10—H10 108.7 C11—O2—H3 114.3
O1—C11—O2 123.5 (4)
C6—C1—C2—C3 0.2 (6) C12—C13—C14—C15 −1.5 (7)
C8—C1—C2—C3 −179.9 (5) C13—C14—C15—C16 −0.2 (8)
C1—C2—C3—C4 0.7 (7) C14—C15—C16—C17 1.6 (8)
C2—C3—C4—C5 −1.2 (8) C13—C12—C17—C16 −0.2 (6)
C3—C4—C5—C6 0.7 (8) S1—C12—C17—C16 −175.2 (4)
C2—C1—C6—N1 −179.9 (4) C13—C12—C17—N3 −179.9 (4)
C8—C1—C6—N1 0.1 (5) S1—C12—C17—N3 5.2 (6)
C2—C1—C6—C5 −0.7 (6) C15—C16—C17—C12 −1.4 (7)
C8—C1—C6—C5 179.4 (4) C15—C16—C17—N3 178.2 (4)
C4—C5—C6—N1 179.3 (5) C17—C12—S1—O3 160.3 (4)
C4—C5—C6—C1 0.2 (7) C13—C12—S1—O3 −14.8 (4)
N1—C7—C8—C1 −1.9 (5) C17—C12—S1—O4 31.7 (4)
N1—C7—C8—C9 −178.9 (4) C13—C12—S1—O4 −143.3 (3)
C2—C1—C8—C7 −178.9 (5) C17—C12—S1—N2 −84.7 (4)
C6—C1—C8—C7 1.1 (5) C13—C12—S1—N2 100.2 (3)
C2—C1—C8—C9 −1.7 (7) C1—C6—N1—C7 −1.2 (5)
C6—C1—C8—C9 178.2 (4) C5—C6—N1—C7 179.6 (5)
C7—C8—C9—C10 103.7 (5) C8—C7—N1—C6 2.0 (6)
C1—C8—C9—C10 −72.8 (5) C11—C10—N2—S1 −104.3 (3)
C8—C9—C10—N2 −62.1 (4) C9—C10—N2—S1 134.4 (3)
C8—C9—C10—C11 175.6 (3) O3—S1—N2—C10 36.3 (3)
N2—C10—C11—O1 −31.5 (6) O4—S1—N2—C10 167.5 (3)
C9—C10—C11—O1 90.8 (5) C12—S1—N2—C10 −76.9 (3)
N2—C10—C11—O2 151.1 (4) C12—C17—N3—O5 48.9 (6)
C9—C10—C11—O2 −86.6 (4) C16—C17—N3—O5 −130.7 (5)
C17—C12—C13—C14 1.7 (6) C12—C17—N3—O6 −132.4 (5)
S1—C12—C13—C14 177.1 (3) C16—C17—N3—O6 48.0 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cg1i 0.86 2.77 3.565 (4) 155
N2—H2···O1ii 0.86 2.10 2.918 (4) 158

Symmetry codes: (i) x−1/2, −y+3/2, −z+3/4; (ii) y, x, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5218).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Khan, I. U., Arshad, M. N., Mubashar-ur-Rehman, H., Harrison, W. T. A. & Ali, M. B. (2011a). Acta Cryst. E67, o2325. [DOI] [PMC free article] [PubMed]
  6. Khan, M. H., Khan, I. U., Arshad, M. N., Rafique, H. M. & Harrison, W. T. A. (2011b). Crystals, 1, 69–77.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023446/sj5218sup1.cif

e-68-o2019-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023446/sj5218Isup2.hkl

e-68-o2019-Isup2.hkl (198.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023446/sj5218Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES