Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2037. doi: 10.1107/S1600536812025019

2-(2-Chloro­phen­yl)-5-methyl-1,3-dioxane-5-carboxylic acid

Guo-Kai Jia a, Lin Yuan b,*, Min Zhang b, Xian-You Yuan b
PMCID: PMC3393306  PMID: 22807863

Abstract

In the title compound, C12H13ClO4, the 1,3-dioxane ring adopts a chair conformation and the 2-chloro­benzene and methyl substituents occupy equatorial sites. The carboxyl group is in an axial inclination. In the crystal, carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R 2 2(8) loops.

Related literature  

For background to protecting groups, see: He et al. (2004). For related structures, see: Laing et al. (1984); Sun et al. (2010); Wang et al. (2010).graphic file with name e-68-o2037-scheme1.jpg

Experimental  

Crystal data  

  • C12H13ClO4

  • M r = 256.67

  • Monoclinic, Inline graphic

  • a = 9.4452 (3) Å

  • b = 13.9413 (5) Å

  • c = 9.37059 (18) Å

  • β = 102.145 (2)°

  • V = 1206.28 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.83 mm−1

  • T = 153 K

  • 0.46 × 0.42 × 0.23 mm

Data collection  

  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2006) T min = 0.356, T max = 0.562

  • 5864 measured reflections

  • 2089 independent reflections

  • 1902 reflections with I > 2σ(I)

  • R int = 0.023

  • Standard reflections: 0

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.084

  • S = 1.07

  • 2089 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2006); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025019/hb6799sup1.cif

e-68-o2037-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025019/hb6799Isup2.hkl

e-68-o2037-Isup2.hkl (102.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025019/hb6799Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O3i 0.72 (2) 1.92 (2) 2.6323 (18) 170 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Construction Program of Key Disciplines in Hunan Province (2011–76), the Science and Technology Planning Project of Yongzhou (No. 2011–6), the Key Project of Hunan University of Science and Engineering (No. 2011) and the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2012–318) for financial support.

supplementary crystallographic information

Comment

The title compound was synthesized to be used as a protection of carbonyl or synthetic intermediate in organic syntheses (He et al., 2004).

In the title compound, C12H13ClO4, the 1,3-dioxane ring adopts a chair conformation and the 2-chlorophenyl substituent occupies an equatorial site (Fig. 1). In the crystal, adjacent molecules are connected by O—H···O hydrogen bonding interactions between the oxygen atoms O3 and O4 into a dimer (Fig. 2). The crystal structures of some similar 1,3-dioxanes have been reported (Laing et al., 1984; Sun et al., 2010; Wang et al., 2010).

Experimental

2,2-bis(hydroxymethyl propionic acid (6.7 g, 0.05 mol), 2-chlorobenzaldehyde (7.0 g, 0.05 mol), N,N-dimethylformamide (30 ml), cyclohexane (15 ml), and p-toluenesulfonic acid monohydrate (1 g, 0.005 mol) were heated and stirred at 353 K for 5 h. Diethyl ether (50 ml) and NaHCO3 (0.42 g, 5 mmol) were added to dissolve the residue after DMF and cyclohexane were evaporated under reduced pressure. The organic solution was washed with water (100 ml), and dried with anhydrous sodium sulfate for 3 h. The resulting solution was filtered and evaporated, and the product was recrystallized from ethyl acetate to give 8.3 g of colorless blocks (yield 65%; m.p. 424.2 K).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, Uiso(H) = 1.2–1.5 Ueq(C). The H-atoms of the hydroxyl groups were placed at calculated positions and then refined as riding; O—H =0.72 Å and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A view of the packing of the title compound

Crystal data

C12H13ClO4 F(000) = 536
Mr = 256.67 Dx = 1.413 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 9.4452 (3) Å Cell parameters from 5864 reflections
b = 13.9413 (5) Å θ = 4.8–67.0°
c = 9.37059 (18) Å µ = 2.83 mm1
β = 102.145 (2)° T = 153 K
V = 1206.28 (6) Å3 Block, colorless
Z = 4 0.46 × 0.42 × 0.23 mm

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer 2089 independent reflections
Radiation source: fine-focus sealed tube 1902 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
ω scans θmax = 67.0°, θmin = 4.8°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2006) h = −10→11
Tmin = 0.356, Tmax = 0.562 k = −16→15
5864 measured reflections l = −10→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.6772P] where P = (Fo2 + 2Fc2)/3
2089 reflections (Δ/σ)max < 0.001
158 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.64679 (5) 0.45963 (3) 0.15200 (5) 0.02559 (15)
O1 0.83817 (12) 0.26839 (8) 0.27910 (12) 0.0143 (3)
C9 0.95610 (17) 0.13397 (12) 0.18663 (17) 0.0139 (3)
C8 0.96031 (17) 0.24125 (12) 0.22005 (18) 0.0149 (3)
H8A 1.0508 0.2569 0.2909 0.018*
H8B 0.9596 0.2779 0.1294 0.018*
C10 0.80794 (17) 0.11189 (12) 0.08981 (17) 0.0147 (4)
H10A 0.8003 0.1430 −0.0065 0.018*
H10B 0.7978 0.0418 0.0741 0.018*
C7 0.54853 (18) 0.37904 (12) 0.23610 (19) 0.0193 (4)
C3 0.50347 (18) 0.22009 (12) 0.31020 (18) 0.0181 (4)
H3 0.5253 0.1535 0.3151 0.022*
C5 0.3595 (2) 0.35127 (14) 0.3641 (2) 0.0296 (5)
H5 0.2832 0.3748 0.4062 0.036*
C4 0.39209 (19) 0.25432 (14) 0.3718 (2) 0.0233 (4)
H4 0.3385 0.2115 0.4190 0.028*
C6 0.43677 (19) 0.41421 (14) 0.2957 (2) 0.0275 (4)
H6 0.4135 0.4806 0.2897 0.033*
C1 0.70735 (17) 0.24594 (11) 0.17837 (18) 0.0141 (3)
H1 0.7062 0.2786 0.0831 0.017*
O2 0.69428 (12) 0.14595 (8) 0.15653 (12) 0.0144 (3)
C2 0.58361 (17) 0.28173 (12) 0.24141 (18) 0.0153 (3)
O4 1.05941 (15) 0.10910 (10) 0.43964 (14) 0.0264 (3)
O3 0.91722 (14) −0.00573 (9) 0.32146 (14) 0.0271 (3)
C12 0.97688 (17) 0.07531 (12) 0.32671 (17) 0.0138 (3)
C11 1.07850 (19) 0.10862 (13) 0.10860 (19) 0.0202 (4)
H11A 1.1703 0.1340 0.1645 0.030*
H11B 1.0580 0.1369 0.0107 0.030*
H11C 1.0854 0.0388 0.1008 0.030*
H4B 1.073 (2) 0.0772 (17) 0.502 (3) 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0236 (2) 0.0145 (2) 0.0385 (3) 0.00062 (17) 0.00616 (19) 0.00353 (18)
O1 0.0115 (6) 0.0153 (6) 0.0155 (6) 0.0004 (5) 0.0014 (4) −0.0026 (4)
C9 0.0145 (8) 0.0154 (8) 0.0122 (8) 0.0008 (7) 0.0038 (6) 0.0004 (6)
C8 0.0143 (8) 0.0152 (8) 0.0159 (8) 0.0003 (7) 0.0046 (6) 0.0015 (7)
C10 0.0171 (8) 0.0154 (8) 0.0117 (8) 0.0013 (7) 0.0034 (6) −0.0018 (6)
C7 0.0146 (8) 0.0167 (8) 0.0245 (9) −0.0009 (7) −0.0010 (7) 0.0001 (7)
C3 0.0170 (8) 0.0169 (8) 0.0188 (8) −0.0004 (7) 0.0000 (7) −0.0010 (7)
C5 0.0179 (9) 0.0291 (11) 0.0442 (12) 0.0047 (8) 0.0118 (8) −0.0053 (9)
C4 0.0162 (9) 0.0256 (10) 0.0283 (10) −0.0016 (8) 0.0052 (7) −0.0016 (8)
C6 0.0196 (9) 0.0185 (9) 0.0442 (12) 0.0057 (8) 0.0062 (8) −0.0027 (8)
C1 0.0147 (8) 0.0111 (8) 0.0148 (8) −0.0009 (7) −0.0010 (6) 0.0002 (6)
O2 0.0135 (6) 0.0126 (6) 0.0172 (6) 0.0000 (5) 0.0032 (4) −0.0029 (4)
C2 0.0119 (8) 0.0166 (8) 0.0152 (8) 0.0010 (7) −0.0025 (6) −0.0025 (7)
O4 0.0412 (8) 0.0197 (7) 0.0134 (6) 0.0008 (6) −0.0053 (6) 0.0030 (5)
O3 0.0298 (7) 0.0195 (7) 0.0278 (7) −0.0068 (6) −0.0038 (6) 0.0077 (5)
C12 0.0129 (8) 0.0138 (8) 0.0149 (8) 0.0028 (7) 0.0038 (6) −0.0015 (6)
C11 0.0201 (9) 0.0241 (9) 0.0183 (9) 0.0028 (7) 0.0081 (7) −0.0014 (7)

Geometric parameters (Å, º)

Cl—C7 1.7472 (18) C3—H3 0.9500
O1—C1 1.4230 (19) C5—C6 1.382 (3)
O1—C8 1.4314 (18) C5—C4 1.385 (3)
C9—C12 1.524 (2) C5—H5 0.9500
C9—C8 1.527 (2) C4—H4 0.9500
C9—C10 1.530 (2) C6—H6 0.9500
C9—C11 1.534 (2) C1—O2 1.4106 (19)
C8—H8A 0.9900 C1—C2 1.501 (2)
C8—H8B 0.9900 C1—H1 1.0000
C10—O2 1.4322 (19) O4—C12 1.266 (2)
C10—H10A 0.9900 O4—H4B 0.72 (2)
C10—H10B 0.9900 O3—C12 1.259 (2)
C7—C6 1.384 (2) C11—H11A 0.9800
C7—C2 1.395 (2) C11—H11B 0.9800
C3—C4 1.387 (2) C11—H11C 0.9800
C3—C2 1.390 (2)
C1—O1—C8 110.09 (12) C4—C5—H5 119.6
C12—C9—C8 110.85 (13) C5—C4—C3 119.60 (17)
C12—C9—C10 109.80 (13) C5—C4—H4 120.2
C8—C9—C10 107.44 (13) C3—C4—H4 120.2
C12—C9—C11 108.28 (13) C5—C6—C7 118.96 (17)
C8—C9—C11 109.50 (13) C5—C6—H6 120.5
C10—C9—C11 110.98 (13) C7—C6—H6 120.5
O1—C8—C9 110.48 (13) O2—C1—O1 110.54 (12)
O1—C8—H8A 109.6 O2—C1—C2 109.51 (13)
C9—C8—H8A 109.6 O1—C1—C2 107.77 (13)
O1—C8—H8B 109.6 O2—C1—H1 109.7
C9—C8—H8B 109.6 O1—C1—H1 109.7
H8A—C8—H8B 108.1 C2—C1—H1 109.7
O2—C10—C9 110.51 (12) C1—O2—C10 109.89 (12)
O2—C10—H10A 109.5 C3—C2—C7 117.99 (15)
C9—C10—H10A 109.5 C3—C2—C1 121.46 (15)
O2—C10—H10B 109.5 C7—C2—C1 120.52 (15)
C9—C10—H10B 109.5 C12—O4—H4B 114.9 (19)
H10A—C10—H10B 108.1 O3—C12—O4 123.95 (15)
C6—C7—C2 121.73 (16) O3—C12—C9 118.20 (14)
C6—C7—Cl 118.49 (14) O4—C12—C9 117.75 (15)
C2—C7—Cl 119.78 (13) C9—C11—H11A 109.5
C4—C3—C2 121.00 (16) C9—C11—H11B 109.5
C4—C3—H3 119.5 H11A—C11—H11B 109.5
C2—C3—H3 119.5 C9—C11—H11C 109.5
C6—C5—C4 120.71 (17) H11A—C11—H11C 109.5
C6—C5—H5 119.6 H11B—C11—H11C 109.5
C1—O1—C8—C9 −59.01 (16) C4—C3—C2—C7 −0.1 (2)
C12—C9—C8—O1 −66.61 (16) C4—C3—C2—C1 178.11 (15)
C10—C9—C8—O1 53.36 (16) C6—C7—C2—C3 −0.6 (3)
C11—C9—C8—O1 173.98 (13) Cl—C7—C2—C3 179.55 (12)
C12—C9—C10—O2 67.01 (16) C6—C7—C2—C1 −178.79 (16)
C8—C9—C10—O2 −53.64 (16) Cl—C7—C2—C1 1.4 (2)
C11—C9—C10—O2 −173.32 (13) O2—C1—C2—C3 19.6 (2)
C6—C5—C4—C3 0.0 (3) O1—C1—C2—C3 −100.69 (17)
C2—C3—C4—C5 0.4 (3) O2—C1—C2—C7 −162.29 (14)
C4—C5—C6—C7 −0.6 (3) O1—C1—C2—C7 77.43 (18)
C2—C7—C6—C5 1.0 (3) C8—C9—C12—O3 149.70 (15)
Cl—C7—C6—C5 −179.21 (15) C10—C9—C12—O3 31.1 (2)
C8—O1—C1—O2 64.06 (15) C11—C9—C12—O3 −90.17 (18)
C8—O1—C1—C2 −176.31 (12) C8—C9—C12—O4 −33.9 (2)
O1—C1—O2—C10 −64.23 (15) C10—C9—C12—O4 −152.45 (14)
C2—C1—O2—C10 177.19 (12) C11—C9—C12—O4 86.24 (18)
C9—C10—O2—C1 59.63 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4B···O3i 0.72 (2) 1.92 (2) 2.6323 (18) 170 (3)

Symmetry code: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6799).

References

  1. Agilent (2006). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. He, M. H. & Liao, Q. J. (2004). Chin. J. Med. Chem. 14, 350–354.
  3. Laing, M., Sommerville, P., Drewes, S. E. & Drewes, M. W. (1984). S. Afr. J. Chem. 37, 27–30.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sun, X. Q., Yu, S. L., Li, Z. Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152–155.
  6. Wang, X.-Y., Shi, J.-H., Zhang, M. & Ng, S. W. (2010). Acta Cryst. E66, o426. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025019/hb6799sup1.cif

e-68-o2037-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025019/hb6799Isup2.hkl

e-68-o2037-Isup2.hkl (102.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025019/hb6799Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES