Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2038–o2039. doi: 10.1107/S1600536812025172

Bis(3-azoniapentane-1,5-diaminium) cyclo­hexa­phosphate dihydrate: a monoclinic polymorph

Lamia Khedhiri a,*, Samah Akriche a, Salem S Al-Deyab b, Mohamed Rzaigui a
PMCID: PMC3393307  PMID: 22807864

Abstract

In the title hydrated mol­ecular salt, 2C4H16N3 3+·P6O18 6−·2H2O, the complete cyclo­hexa­phosphate anion is generated by crystallographic inversion symmetry. The six P atoms of the P6O18 6− anion form a chair conformation and the organic cation has a corrugated linear geometry. In the crystal, the cations and the anions are connected by N—H⋯O hydrogen bonds into slabs propagating in the ac plane. The water mol­ecules link the slabs by accepting N—H⋯O links and forming O—H⋯O links. The triclinic polymorph was reported by Gharbi et al. [(1995). J. Solid State Chem. 114, 42–51].

Related literature  

For the triclinic polymorph of the title compound, see: Gharbi et al. (1995). For related structures, see: Averbuch-Pouchot & Durif (1991); Bridi & Jouini (1989); Kamoun et al. (1990); Khedhiri et al. (2007); Schülke & Kayser (1985); Khedhiri et al. (2003).graphic file with name e-68-o2038-scheme1.jpg

Experimental  

Crystal data  

  • 2C4H16N3 3+·P6O18 6−·2H2O

  • M r = 722.25

  • Monoclinic, Inline graphic

  • a = 10.033 (4) Å

  • b = 16.597 (2) Å

  • c = 8.007 (3) Å

  • β = 105.07 (2)°

  • V = 1287.6 (7) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.32 × 0.27 × 0.21 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • 9091 measured reflections

  • 6303 independent reflections

  • 5211 reflections with I > 2σ(I)

  • R int = 0.014

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.099

  • S = 1.07

  • 6303 reflections

  • 189 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025172/hb6809sup1.cif

e-68-o2038-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025172/hb6809Isup2.hkl

e-68-o2038-Isup2.hkl (302.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O5 0.84 (1) 2.12 (1) 2.9274 (17) 163 (2)
O1W—H2W1⋯O2i 0.85 (1) 1.85 (1) 2.6938 (16) 175 (2)
N1—H1B⋯O1W ii 0.89 1.99 2.7817 (15) 147
N1—H1C⋯O1 0.89 1.96 2.8054 (14) 159
N1—H1A⋯O6iii 0.89 1.96 2.8013 (15) 156
N2—H2A⋯O8iii 0.90 2.10 2.8049 (16) 135
N2—H2A⋯O9ii 0.90 2.36 3.0891 (15) 138
N2—H2B⋯O9 0.90 2.14 2.7973 (16) 130
N2—H2B⋯O8ii 0.90 2.15 2.8706 (13) 137
N3—H3B⋯O5iv 0.89 1.99 2.8414 (17) 159
N3—H3C⋯O1v 0.89 1.93 2.7973 (16) 164
N3—H3A⋯O6vi 0.89 1.96 2.8008 (16) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University.

supplementary crystallographic information

Comment

The title compound (I), was prepared as part of our ongoing structural studies of inorganic-organic cyclohexaphosphates systems. Its chemical composition includes three entities, P6O18 ring, water molecules and organic cations [C4N3H16]3+ and is polymorphic with a previously described triclinic phase (Gharbi et al., 1995). The geometrical configuration of these entities is depicted in Figure 1, whereas Figure 2 shows the complete atomic arrangement.

The packing of (I) consists of hybrid layers where the organic and inorganic species are alternated. Theses layers, extended perpendicularly to the b axis, are also connected between them in the two other directions via H-bonds assuring the cohesion of the network. The P6O18 rings are located around the inversion centers (0, 0, 0) and (1/2, 1/2, 1/2) and are built up by only three independent PO4 tetrahedra. The P—P—P angles of 98.85 (1), 109.09 (1) and 138.42 (1)° show that the rings are significantly distorted from the ideal threefold symmetry. It should be noted that these large deviations are commonly observed in cyclohexaphosphates with a ring of low local symmetry (Khedhiri et al., 2003, Khedhiri et al., 2007), as in the title compound. Nevertheless, this distortion is comparatively less important than that observed in Cs6P6O18.6H2O, which shows the greatest distortion for the same angles, ranging between 93.2 and 145.5° (Averbuch-Pouchot and Durif, 1991). The great flexibility of the hexamembered P6O18 rings can probably explain the pronounced distortion observed for the big rings compared with their smaller ring analogues. Examination of the main geometrical features of the three independent PO4 tetrahedra (P—O and P–P distances as well as P–O–P or O–P–O angles) shows clearly that, in spite of the P–P–P angles deformation, they are in accordance with values generally observed in condensed phosphate anions.

In the organic entity, N–C and C–C distances and N–C–C and C–N–C angles, spreading within the respective ranges 1.477 (1) - 1.512 (2) Å and 109 (1) -111.5 (9)°, are similar to those observed in others compounds (Kamoun et al., 1990; Bridi et al., 1989). All nitrogen atoms of the used amine are protonated and so it is formulated by [C4N3H16]3+. Among the eight hydrogen atoms of this group, only one, H1B, establishes a hydrogen bond with a water molecule, the remaining ones are connected to the external oxygen atoms of three phosphoric rings to form an anionic entity of formula [C4N3H16(P6O18)3]15-. The two hydrogen atoms of the water molecule act as a link between successive anions. A three dimensional network of N–H···O and O–H···O hydrogen bonds interconnects the structural arrangement.

This study shows that (I) is a polymorph of the triclinic structure published elsewhere (Gharbi et al., 1995). Both phases have the same chemical formula and some structural analogeous but they present several differences in their crystal data, H-bonding scheme, internal symmetry of the cyclohexaphosphoric anions and particularly the aza-3 pentanediyl-1,5 diaminium which has different conformations where the torsion angles N2–C3–C4–N3, C2–N2–C3–C4, N1–C1–C2–N2 and C3–N2–C2–C1 exhibit the following values -175.34 (9)°, -178.34 (9)°, 171.15 (9)° and 177.79 (9)° in the title compound and 177.67°, 175.32°, 66.45° and -69.92° in the bibliography one.

Experimental

Single crystals of the title compound were prepared in two steps. In the first one, 50 ml of an aqueous solution of cyclohexaphosphoric acid was prepared by protonation of 4 g of Li6P6O18.6H2O, obtained by the Schülke process (Schülke et al., 1985), with an ion-exchange resin (Amberlite IR 120). In the second one, the frech acidic solution (20 ml, 2.6 mmol) was immediately neutralized with a solution of aza-3 pentanediyl-1,5 diamine (2.8 mmol in 10 ml of ehanol) under continuous stirring. Good quality of prismatic-shaped crystals were obtained after a slow evaporation during few days at ambient temperature

Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C or N).The water H atoms were refined using restraints [O— H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

Fig. 2.

Fig. 2.

Structure projection of (I) along the a axis. The H-atoms not involved in H-bonding are omitted.

Crystal data

2C4H16N33+·P6O186·2H2O F(000) = 752
Mr = 722.25 Dx = 1.863 Mg m3
Monoclinic, P21/c Ag Kα radiation, λ = 0.56087 Å
a = 10.033 (4) Å Cell parameters from 25 reflections
b = 16.597 (2) Å θ = 9–11°
c = 8.007 (3) Å µ = 0.27 mm1
β = 105.07 (2)° T = 293 K
V = 1287.6 (7) Å3 Prism, colorless
Z = 2 0.32 × 0.27 × 0.21 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.014
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 2.3°
Graphite monochromator h = −16→3
non–profiled ω scans k = −27→2
9091 measured reflections l = −13→13
6303 independent reflections 2 standard reflections every 120 min
5211 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1509P] where P = (Fo2 + 2Fc2)/3
6303 reflections (Δ/σ)max = 0.003
189 parameters Δρmax = 0.47 e Å3
3 restraints Δρmin = −0.97 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.20977 (2) 0.430603 (15) 0.26986 (3) 0.01668 (6)
P2 0.22574 (3) 0.561419 (16) 0.52233 (3) 0.01743 (6)
P3 0.50730 (2) 0.627794 (15) 0.61516 (3) 0.01533 (5)
O1 0.14711 (9) 0.48310 (6) 0.11911 (10) 0.02688 (16)
O2 0.15970 (10) 0.34709 (5) 0.26697 (13) 0.03036 (18)
O3 0.37237 (8) 0.43405 (4) 0.29127 (10) 0.01950 (13)
O4 0.19351 (8) 0.47242 (5) 0.44433 (9) 0.01962 (13)
O5 0.16446 (10) 0.62392 (5) 0.39346 (12) 0.02936 (17)
O6 0.18261 (11) 0.55876 (6) 0.68613 (12) 0.03256 (19)
O7 0.38893 (8) 0.56033 (5) 0.56188 (13) 0.02876 (18)
O8 0.47732 (10) 0.68151 (5) 0.74802 (10) 0.02667 (16)
O9 0.53563 (11) 0.66399 (6) 0.46030 (11) 0.0340 (2)
O1W 0.00786 (13) 0.72797 (7) 0.5688 (2) 0.0500 (3)
H1W1 0.061 (2) 0.6947 (11) 0.540 (3) 0.060*
H2W1 −0.0488 (19) 0.7066 (13) 0.618 (3) 0.060*
N1 0.13894 (10) 0.63794 (6) −0.02369 (13) 0.02486 (17)
H1A 0.1317 0.6212 −0.1313 0.037*
H1B 0.0692 0.6709 −0.0228 0.037*
H1C 0.1363 0.5957 0.0438 0.037*
N2 0.52234 (9) 0.66493 (5) 0.10700 (11) 0.01944 (14)
H2A 0.5252 0.6967 0.0169 0.023*
H2B 0.5298 0.6966 0.2003 0.023*
N3 0.88883 (10) 0.59139 (7) 0.20294 (12) 0.02576 (18)
H3A 0.8737 0.5500 0.2663 0.039*
H3B 0.9692 0.6143 0.2545 0.039*
H3C 0.8911 0.5739 0.0986 0.039*
C1 0.27111 (11) 0.68116 (7) 0.04148 (16) 0.02540 (19)
H1D 0.2726 0.7076 0.1499 0.030*
H1E 0.2810 0.7220 −0.0411 0.030*
C2 0.38863 (11) 0.62149 (6) 0.06828 (14) 0.02173 (17)
H2C 0.3865 0.5857 0.1634 0.026*
H2D 0.3784 0.5891 −0.0351 0.026*
C3 0.63924 (10) 0.60786 (6) 0.14047 (14) 0.02126 (17)
H3D 0.6324 0.5748 0.0387 0.026*
H3E 0.6344 0.5725 0.2352 0.026*
C4 0.77604 (12) 0.65144 (8) 0.18517 (19) 0.0315 (2)
H4A 0.7791 0.6898 0.0948 0.038*
H4B 0.7874 0.6807 0.2928 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01475 (10) 0.01827 (10) 0.01602 (10) −0.00204 (7) 0.00221 (8) −0.00203 (7)
P2 0.01514 (10) 0.01911 (11) 0.01686 (10) 0.00136 (8) 0.00204 (8) −0.00171 (7)
P3 0.01797 (10) 0.01535 (10) 0.01216 (9) 0.00046 (7) 0.00302 (7) 0.00027 (7)
O1 0.0259 (4) 0.0339 (4) 0.0167 (3) 0.0062 (3) −0.0019 (3) 0.0011 (3)
O2 0.0304 (4) 0.0226 (4) 0.0406 (5) −0.0104 (3) 0.0137 (4) −0.0089 (3)
O3 0.0149 (3) 0.0209 (3) 0.0223 (3) 0.0003 (2) 0.0043 (2) 0.0044 (2)
O4 0.0214 (3) 0.0203 (3) 0.0178 (3) −0.0036 (2) 0.0063 (2) −0.0028 (2)
O5 0.0276 (4) 0.0240 (4) 0.0311 (4) 0.0032 (3) −0.0020 (3) 0.0059 (3)
O6 0.0412 (5) 0.0361 (5) 0.0248 (4) −0.0009 (4) 0.0165 (4) −0.0082 (3)
O7 0.0154 (3) 0.0231 (3) 0.0438 (5) −0.0011 (3) 0.0005 (3) −0.0097 (3)
O8 0.0383 (4) 0.0210 (3) 0.0211 (3) 0.0043 (3) 0.0083 (3) −0.0055 (3)
O9 0.0430 (5) 0.0408 (5) 0.0204 (3) 0.0056 (4) 0.0121 (3) 0.0133 (3)
O1W 0.0487 (7) 0.0299 (5) 0.0854 (9) 0.0048 (4) 0.0424 (7) 0.0120 (6)
N1 0.0197 (4) 0.0278 (4) 0.0272 (4) 0.0013 (3) 0.0063 (3) −0.0007 (3)
N2 0.0197 (3) 0.0188 (3) 0.0203 (3) 0.0004 (3) 0.0059 (3) 0.0006 (3)
N3 0.0182 (4) 0.0354 (5) 0.0225 (4) −0.0010 (3) 0.0031 (3) −0.0015 (3)
C1 0.0205 (4) 0.0232 (4) 0.0324 (5) 0.0012 (3) 0.0067 (4) −0.0026 (4)
C2 0.0188 (4) 0.0215 (4) 0.0241 (4) 0.0003 (3) 0.0042 (3) 0.0004 (3)
C3 0.0183 (4) 0.0207 (4) 0.0242 (4) 0.0011 (3) 0.0044 (3) 0.0010 (3)
C4 0.0209 (4) 0.0270 (5) 0.0436 (7) −0.0024 (4) 0.0031 (4) −0.0081 (5)

Geometric parameters (Å, º)

P1—O2 1.4725 (9) N2—C3 1.4769 (14)
P1—O1 1.4889 (9) N2—C2 1.4831 (14)
P1—O3 1.5964 (10) N2—H2A 0.9000
P1—O4 1.6058 (9) N2—H2B 0.9000
P2—O5 1.4796 (9) N3—C4 1.4867 (16)
P2—O6 1.4847 (10) N3—H3A 0.8900
P2—O7 1.5849 (11) N3—H3B 0.8900
P2—O4 1.6037 (8) N3—H3C 0.8900
P3—O9 1.4706 (9) C1—C2 1.5119 (15)
P3—O8 1.4776 (9) C1—H1D 0.9700
P3—O7 1.6072 (9) C1—H1E 0.9700
P3—O3i 1.6132 (8) C2—H2C 0.9700
O3—P3i 1.6132 (8) C2—H2D 0.9700
O1W—H1W1 0.840 (9) C3—C4 1.5099 (16)
O1W—H2W1 0.849 (9) C3—H3D 0.9700
N1—C1 1.4783 (15) C3—H3E 0.9700
N1—H1A 0.8900 C4—H4A 0.9700
N1—H1B 0.8900 C4—H4B 0.9700
N1—H1C 0.8900
O2—P1—O1 117.88 (6) C2—N2—H2B 109.4
O2—P1—O3 111.74 (5) H2A—N2—H2B 108.0
O1—P1—O3 105.69 (5) C4—N3—H3A 109.5
O2—P1—O4 108.01 (5) C4—N3—H3B 109.5
O1—P1—O4 109.60 (5) H3A—N3—H3B 109.5
O3—P1—O4 102.90 (4) C4—N3—H3C 109.5
O5—P2—O6 118.24 (6) H3A—N3—H3C 109.5
O5—P2—O7 111.58 (6) H3B—N3—H3C 109.5
O6—P2—O7 110.27 (6) N1—C1—C2 109.10 (9)
O5—P2—O4 111.65 (5) N1—C1—H1D 109.9
O6—P2—O4 103.95 (5) C2—C1—H1D 109.9
O7—P2—O4 99.24 (4) N1—C1—H1E 109.9
O9—P3—O8 118.73 (6) C2—C1—H1E 109.9
O9—P3—O7 110.62 (6) H1D—C1—H1E 108.3
O8—P3—O7 109.68 (6) N2—C2—C1 109.94 (9)
O9—P3—O3i 111.48 (5) N2—C2—H2C 109.7
O8—P3—O3i 108.51 (5) C1—C2—H2C 109.7
O7—P3—O3i 95.29 (5) N2—C2—H2D 109.7
P1—O3—P3i 130.36 (5) C1—C2—H2D 109.7
P2—O4—P1 132.93 (5) H2C—C2—H2D 108.2
P2—O7—P3 134.33 (6) N2—C3—C4 111.46 (9)
H1W1—O1W—H2W1 113.7 (19) N2—C3—H3D 109.3
C1—N1—H1A 109.5 C4—C3—H3D 109.3
C1—N1—H1B 109.5 N2—C3—H3E 109.3
H1A—N1—H1B 109.5 C4—C3—H3E 109.3
C1—N1—H1C 109.5 H3D—C3—H3E 108.0
H1A—N1—H1C 109.5 N3—C4—C3 108.90 (10)
H1B—N1—H1C 109.5 N3—C4—H4A 109.9
C3—N2—C2 111.02 (9) C3—C4—H4A 109.9
C3—N2—H2A 109.4 N3—C4—H4B 109.9
C2—N2—H2A 109.4 C3—C4—H4B 109.9
C3—N2—H2B 109.4 H4A—C4—H4B 108.3
O2—P1—O3—P3i −28.76 (9) O6—P2—O7—P3 −82.21 (10)
O1—P1—O3—P3i −158.18 (6) O4—P2—O7—P3 169.10 (9)
O4—P1—O3—P3i 86.88 (7) O9—P3—O7—P2 −89.73 (10)
O5—P2—O4—P1 50.02 (9) O8—P3—O7—P2 43.13 (11)
O6—P2—O4—P1 178.57 (7) O3i—P3—O7—P2 154.95 (9)
O7—P2—O4—P1 −67.73 (8) C3—N2—C2—C1 177.79 (9)
O2—P1—O4—P2 −178.70 (7) N1—C1—C2—N2 171.15 (9)
O1—P1—O4—P2 −49.08 (8) C2—N2—C3—C4 −178.34 (9)
O3—P1—O4—P2 63.01 (8) N2—C3—C4—N3 −175.34 (9)
O5—P2—O7—P3 51.30 (11)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O5 0.84 (1) 2.12 (1) 2.9274 (17) 163 (2)
O1W—H2W1···O2ii 0.85 (1) 1.85 (1) 2.6938 (16) 175 (2)
N1—H1B···O1Wiii 0.89 1.99 2.7817 (15) 147
N1—H1C···O1 0.89 1.96 2.8054 (14) 159
N1—H1A···O6iv 0.89 1.96 2.8013 (15) 156
N2—H2A···O8iv 0.90 2.10 2.8049 (16) 135
N2—H2A···O9iii 0.90 2.36 3.0891 (15) 138
N2—H2B···O9 0.90 2.14 2.7973 (16) 130
N2—H2B···O8iii 0.90 2.15 2.8706 (13) 137
N3—H3B···O5v 0.89 1.99 2.8414 (17) 159
N3—H3C···O1vi 0.89 1.93 2.7973 (16) 164
N3—H3A···O6i 0.89 1.96 2.8008 (16) 157

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x, −y+3/2, z−1/2; (iv) x, y, z−1; (v) x+1, y, z; (vi) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6809).

References

  1. Averbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9–22.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.
  3. Bridi, M. & Jouini, A. (1989). Eur. J. Solid State Inorg. Chem. 26, 585–590.
  4. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Gharbi, A., Jouini, A. & Durif, A. (1995). J. Solid State Chem. 114, 42–51.
  8. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  9. Kamoun, S., Jouini, A. & Daoud, A. (1990). Acta Cryst. C46, 1481–1483.
  10. Khedhiri, L., Bel Haj Salah Raoudha,, Belam, W. & Rzaigui, M. (2007). Acta Cryst. E63, o2269–o2271.
  11. Khedhiri, L., Ben Nasr, C., Rzaigui, M. & Lefebre, F. (2003). Helv. Chim. Acta, 86, 2662–2670.
  12. Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025172/hb6809sup1.cif

e-68-o2038-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025172/hb6809Isup2.hkl

e-68-o2038-Isup2.hkl (302.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES