Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2043. doi: 10.1107/S1600536812025378

5-(4-Chloro­phen­yl)-2-fluoro­pyridine

Muhammad Adeel a, Fazal Elahi a, M Nawaz Tahir b,*, Azim Khan a, Peter Langer c
PMCID: PMC3393311  PMID: 22807868

Abstract

In the title compound, C11H7ClFN, the chloro­benzene and 2-fluoro­pyridine rings are oriented at a dihedral angle of 38.83 (5)°. In the crystal, there are no hydrogen-bonding interactions.

Related literature  

For a related structure, see: Elahi et al. (2012).graphic file with name e-68-o2043-scheme1.jpg

Experimental  

Crystal data  

  • C11H7ClFN

  • M r = 207.63

  • Orthorhombic, Inline graphic

  • a = 21.1252 (14) Å

  • b = 3.8763 (3) Å

  • c = 11.7009 (8) Å

  • V = 958.16 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.932, T max = 0.950

  • 4142 measured reflections

  • 1619 independent reflections

  • 1255 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.073

  • S = 1.08

  • 1619 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983), 735 Friedel pairs

  • Flack parameter: −0.09 (8)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025378/bq2365sup1.cif

e-68-o2043-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025378/bq2365Isup2.hkl

e-68-o2043-Isup2.hkl (78.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025378/bq2365Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. MA also acknowledges financial support from theWorld University Service, Germany, for an equipment grant and the Higher Education Commission, Pakistan, for a resource grant.

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1) is prepared as a precursor and for the study of biological activities.

We have reported the crystal structure of 5-(4-fluorophenyl)-2-fluoropyridine previously (Elahi et al., 2012) which is related to (I). In (I) the chlorobenzene A (C1–C6/CL1) and the 2-fluoropyridine B (C7—C11/N1/F1) are planar with r.m.s. deviations of 0.0093 Å and 0.0064 Å. The dihedral angle between A/B is 38.82 (5)°. There does not exist any kind of π-interactions and the molecules must be stabilized due to van Der Wall forces.

Experimental

To a 5 ml solution of 5-bromo-2-fluoropyridine (0.1 g, 0.568 mmol), 4-chlorophenylboronic acid (0.097 g, 0.624 mmol) in dioxane and K3PO4 (0.132 g, 0.624 mmol) was added Pd(PPh3)4 (1.5 mole %) at 373 K under N2 atmosphere. The reaction mixture was refluxed for 8 h. Then 20 ml of distilled water was added to the reaction mixture. The aqueous layer was extracted three times with CH2Cl2(3 × 15 ml). The organic layer was evaporated in vacuo and the title compound (I) was obtained as a colorless crystalline solid. Yield: 0.106 g, 91 %. M.p. 344–347 K. Crystallization from a saturated CHCl3 /CH3OH solution gave colorless crystals.

Refinement

The H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for all H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

Crystal data

C11H7ClFN F(000) = 424
Mr = 207.63 Dx = 1.439 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1255 reflections
a = 21.1252 (14) Å θ = 2.6–26.0°
b = 3.8763 (3) Å µ = 0.37 mm1
c = 11.7009 (8) Å T = 296 K
V = 958.16 (12) Å3 Prism, colorless
Z = 4 0.26 × 0.20 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 1619 independent reflections
Radiation source: fine-focus sealed tube 1255 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
Detector resolution: 8.10 pixels mm-1 θmax = 26.0°, θmin = 2.6°
ω scans h = −18→26
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −3→4
Tmin = 0.932, Tmax = 0.950 l = −14→10
4142 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0344P)2] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1619 reflections Δρmax = 0.11 e Å3
127 parameters Δρmin = −0.13 e Å3
0 restraints Absolute structure: Flack (1983), 735 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.09 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.25579 (12) 0.5138 (6) 0.1995 (3) 0.0593 (8)
C2 0.24833 (12) 0.3704 (7) 0.3061 (3) 0.0634 (7)
H2 0.2834 0.3347 0.3528 0.076*
C3 0.18888 (12) 0.2798 (7) 0.3435 (2) 0.0571 (7)
H3 0.1840 0.1830 0.4157 0.068*
C4 0.13552 (11) 0.3311 (6) 0.2745 (2) 0.0460 (5)
C5 0.14486 (11) 0.4731 (6) 0.1677 (2) 0.0531 (6)
H5 0.1102 0.5058 0.1199 0.064*
C6 0.20444 (12) 0.5682 (6) 0.1297 (2) 0.0591 (7)
H6 0.2096 0.6673 0.0579 0.071*
C7 0.07137 (11) 0.2343 (6) 0.31377 (19) 0.0464 (6)
C8 0.05152 (13) 0.2866 (7) 0.4246 (2) 0.0607 (7)
H8 0.0804 0.3817 0.4756 0.073*
C9 −0.04479 (14) 0.0724 (8) 0.3900 (3) 0.0646 (8)
C10 0.02695 (11) 0.0942 (6) 0.2397 (2) 0.0521 (6)
H10 0.0374 0.0584 0.1635 0.062*
C11 −0.03221 (12) 0.0085 (7) 0.2783 (3) 0.0595 (7)
H11 −0.0623 −0.0890 0.2301 0.071*
Cl1 0.33061 (3) 0.6376 (2) 0.15406 (9) 0.0880 (3)
F1 −0.10306 (8) −0.0034 (5) 0.43168 (15) 0.0899 (6)
N1 −0.00621 (11) 0.2107 (6) 0.4643 (2) 0.0696 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0572 (16) 0.0525 (15) 0.068 (2) 0.0040 (12) 0.0070 (13) −0.0211 (14)
C2 0.0583 (17) 0.0676 (17) 0.064 (2) 0.0100 (14) −0.0131 (13) −0.0165 (17)
C3 0.0652 (16) 0.0590 (16) 0.0470 (15) 0.0066 (13) −0.0051 (12) −0.0039 (14)
C4 0.0594 (14) 0.0404 (12) 0.0383 (14) 0.0086 (10) −0.0039 (11) −0.0043 (11)
C5 0.0569 (13) 0.0544 (14) 0.0479 (16) 0.0071 (11) −0.0051 (13) −0.0076 (15)
C6 0.0756 (18) 0.0536 (15) 0.0480 (17) 0.0056 (12) 0.0076 (13) −0.0061 (13)
C7 0.0550 (14) 0.0421 (13) 0.0423 (16) 0.0082 (11) −0.0046 (11) −0.0004 (11)
C8 0.0730 (18) 0.0689 (18) 0.0402 (16) −0.0056 (14) −0.0050 (12) −0.0040 (14)
C9 0.0650 (19) 0.0668 (18) 0.062 (2) −0.0003 (14) 0.0088 (15) 0.0067 (16)
C10 0.0597 (16) 0.0539 (16) 0.0426 (15) 0.0108 (12) −0.0054 (12) −0.0059 (12)
C11 0.0539 (15) 0.0619 (17) 0.063 (2) 0.0036 (13) −0.0089 (13) −0.0048 (14)
Cl1 0.0620 (4) 0.0905 (5) 0.1114 (6) −0.0092 (4) 0.0216 (5) −0.0273 (6)
F1 0.0695 (10) 0.1191 (15) 0.0811 (12) −0.0215 (10) 0.0192 (10) 0.0066 (10)
N1 0.0768 (16) 0.0824 (17) 0.0495 (15) −0.0109 (13) 0.0091 (13) −0.0003 (13)

Geometric parameters (Å, º)

C1—C2 1.374 (4) C6—H6 0.9300
C1—C6 1.375 (3) C7—C8 1.378 (3)
C1—Cl1 1.735 (3) C7—C10 1.388 (3)
C2—C3 1.376 (4) C8—N1 1.338 (3)
C2—H2 0.9300 C8—H8 0.9300
C3—C4 1.400 (3) C9—N1 1.306 (3)
C3—H3 0.9300 C9—F1 1.356 (3)
C4—C5 1.380 (3) C9—C11 1.357 (4)
C4—C7 1.479 (3) C10—C11 1.369 (3)
C5—C6 1.385 (3) C10—H10 0.9300
C5—H5 0.9300 C11—H11 0.9300
C2—C1—C6 120.8 (2) C5—C6—H6 120.5
C2—C1—Cl1 119.6 (2) C8—C7—C10 116.1 (2)
C6—C1—Cl1 119.6 (2) C8—C7—C4 122.2 (2)
C1—C2—C3 119.8 (2) C10—C7—C4 121.7 (2)
C1—C2—H2 120.1 N1—C8—C7 124.9 (2)
C3—C2—H2 120.1 N1—C8—H8 117.6
C2—C3—C4 121.0 (3) C7—C8—H8 117.6
C2—C3—H3 119.5 N1—C9—F1 114.6 (3)
C4—C3—H3 119.5 N1—C9—C11 126.4 (3)
C5—C4—C3 117.6 (2) F1—C9—C11 119.0 (3)
C5—C4—C7 120.9 (2) C11—C10—C7 120.4 (2)
C3—C4—C7 121.5 (2) C11—C10—H10 119.8
C4—C5—C6 121.8 (2) C7—C10—H10 119.8
C4—C5—H5 119.1 C9—C11—C10 116.8 (2)
C6—C5—H5 119.1 C9—C11—H11 121.6
C1—C6—C5 119.0 (3) C10—C11—H11 121.6
C1—C6—H6 120.5 C9—N1—C8 115.3 (2)
C6—C1—C2—C3 0.0 (4) C5—C4—C7—C10 37.1 (3)
Cl1—C1—C2—C3 178.4 (2) C3—C4—C7—C10 −142.3 (2)
C1—C2—C3—C4 0.1 (4) C10—C7—C8—N1 0.4 (4)
C2—C3—C4—C5 0.5 (4) C4—C7—C8—N1 178.6 (2)
C2—C3—C4—C7 179.9 (2) C8—C7—C10—C11 −1.5 (3)
C3—C4—C5—C6 −1.1 (3) C4—C7—C10—C11 −179.7 (2)
C7—C4—C5—C6 179.5 (2) N1—C9—C11—C10 0.7 (4)
C2—C1—C6—C5 −0.6 (4) F1—C9—C11—C10 179.0 (2)
Cl1—C1—C6—C5 −179.00 (17) C7—C10—C11—C9 1.0 (3)
C4—C5—C6—C1 1.2 (3) F1—C9—N1—C8 179.9 (2)
C5—C4—C7—C8 −140.9 (3) C11—C9—N1—C8 −1.7 (4)
C3—C4—C7—C8 39.6 (3) C7—C8—N1—C9 1.1 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2365).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Elahi, F., Adeel, M., Tahir, M. N., Langer, P. & Ahmad, S. (2012). Acta Cryst. E68, o2070. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025378/bq2365sup1.cif

e-68-o2043-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025378/bq2365Isup2.hkl

e-68-o2043-Isup2.hkl (78.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025378/bq2365Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES