Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2048. doi: 10.1107/S160053681202569X

(R)-4-Isopropyl-3-isopropyl­sulfanyl-5,5-diphenyl-1,3-oxazolidin-2-one

Gustavo Pozza Silveira a, Cassandra Bonfante de Carvallho a, Allen Oliver b,*
PMCID: PMC3393316  PMID: 22807873

Abstract

The title compound, C21H25NO2S, consists of a five-membered heterocyclic ring, with pendant phenyl groups, an isopropyl group and a thio­ether residue. The thio­ether bonds to the heterocycle via the N atom. The absolute configuration results from an inversion of the configuration of substrate during the synthesis.

Related literature  

For background to the preparation of chiral auxiliaries containing sulfilimine functionalities, see: Celentano et al. (1998). For a related structure, see: Valle et al. (1992). For the synthesis, see: Hinter­mann & Seebach (1998); Derbesy & Harpp (1995). For the structural characterization and absolute configuration analysis, see: Flack (1983); Hooft et al. (2008). For a description of the Cambridge Structural Database, see Allen (2002).graphic file with name e-68-o2048-scheme1.jpg

Experimental  

Crystal data  

  • C21H25NO2S

  • M r = 355.48

  • Orthorhombic, Inline graphic

  • a = 6.0621 (1) Å

  • b = 17.2963 (3) Å

  • c = 18.5398 (3) Å

  • V = 1943.93 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.58 mm−1

  • T = 100 K

  • 0.50 × 0.23 × 0.21 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008) T min = 0.720, T max = 0.964

  • 18292 measured reflections

  • 3008 independent reflections

  • 2887 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.071

  • S = 1.06

  • 3008 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983), 1165 Friedel pairs

  • Flack parameter: 0.039 (15)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202569X/tk5109sup1.cif

e-68-o2048-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202569X/tk5109Isup2.hkl

e-68-o2048-Isup2.hkl (147.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202569X/tk5109Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Notre Dame for its generous support of this program.

supplementary crystallographic information

Comment

Oxazolindinone compounds, such as the title compound, (R)-4-isopropyl-3-(isopropylthio)-5,5-diphenyloxazolidin-2-one (I), are synthesized as precursors for the preparation of chiral auxiliaries containing sulfilimine functionalities. Eventually, these auxiliaries are applied to the synthesis of new sulfimines in a high enantiomeric ratio (Celentano et al., 1998). To the best of our knowledge, the only other N-thioether-containing oxazolindinone is a dione (Valle et al., 1992). All other oxazoldininones that exhibit an N—S bond are sulfinyl- or sulfonyl-containing compounds (Allen, 2002).

An interesting feature of this compound is the conversion of S-isopropyl isopropanesulfonothioate to an R-isomer during the synthesis. Confirmation of the correct absolute stereochemistry of (I) was determined as described below.

Experimental

To a solution of the oxazolidinone (Hintermann & Seebach, 1998) (2.50 g, 8.80 mmol) in dry THF (40 ml) at 273 K was slowly added 1 equiv of n-BuLi (Celentano et al., 1998). The solution turned from colorless to dark-red. After the mixture was left to react for 30 min at 273 K, a solution of S-isopropyl isopropanesulfonothioate (Derbesy & Harpp, 1995) (1.58 g, 9.10 mmol) in dry THF (40 ml) was added by cannula, at once, and the reaction was left stirring overnight at room temperature. The white mixture was quenched with saturated NH4Cl (50 ml) and extracted with ethyl acetate (50 ml). The organic layer was washed with H2O (50 ml) and brine, dried with MgSO4 and then filtered. The solvent was removed at reduced pressure on a rotovap and the colorless oil was purified through flash chromatography with elution by (1:9 ethyl acetate/hexanes) to provide 2.28 g of the oxazolidine sulfide (73% yield) as colorless prisms after slow evaporation.

Refinement

All hydrogen atoms were included in geometrically calculated positions with C—H distances constrained to 0.95 Å for aromatic C–H and 0.98–1.00 Å for aliphatic C–H bonds. Hydrogen thermal parameters were tied to the occupancy of the atom to which they are bonded. The Uiso was set to 1.5 × Ueq for methyl H atoms and 1.2 × Ueq for all others.

The absolute configuration was determined by the known handedness of the molecule from synthesis, comparison of intensities of Friedel pairs of reflections (Flack, 1983) and by Bayesian analysis of Bijvoet pairs (Hooft et al., 2008). All three techniques agree and the correct configuration is depicted in Fig. 1. The Flack x parameter refined to 0.039 (15) based on 1165 Friedel pairs. The Hooft y parameter was 0.056 (6) based on 1170 Bijvoet pairs. P2(true) and P3(true) values were calculated at 1.000 and 1.000 indicative an an enantiopure crystal.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. H atoms are shown as idealized spheres of an arbitrary radius.

Crystal data

C21H25NO2S F(000) = 760
Mr = 355.48 Dx = 1.215 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 9921 reflections
a = 6.0621 (1) Å θ = 3.5–68.2°
b = 17.2963 (3) Å µ = 1.58 mm1
c = 18.5398 (3) Å T = 100 K
V = 1943.93 (6) Å3 Block, colourless
Z = 4 0.50 × 0.23 × 0.21 mm

Data collection

Bruker SMART APEX diffractometer 3008 independent reflections
Radiation source: fine-focus sealed tube 2887 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 8.33 pixels mm-1 θmax = 68.3°, θmin = 3.5°
combination of ω and φ–scans h = −7→5
Absorption correction: numerical (SADABS; Sheldrick, 2008) k = −20→19
Tmin = 0.720, Tmax = 0.964 l = −22→19
18292 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.4225P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.003
3008 reflections Δρmax = 0.19 e Å3
230 parameters Δρmin = −0.16 e Å3
0 restraints Absolute structure: Flack (1983), 1165 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.039 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.98999 (7) 0.85676 (3) 0.12949 (2) 0.02269 (12)
O1 1.4437 (2) 0.84260 (8) 0.20523 (7) 0.0278 (3)
O2 1.2940 (2) 0.88301 (7) 0.30979 (6) 0.0219 (3)
N1 1.0729 (2) 0.87582 (9) 0.21499 (7) 0.0209 (3)
C1 1.2833 (3) 0.86441 (11) 0.23819 (9) 0.0215 (4)
C2 0.9378 (3) 0.91505 (11) 0.26982 (8) 0.0201 (4)
H2A 0.7868 0.8918 0.2706 0.024*
C3 1.0683 (3) 0.88855 (11) 0.33765 (9) 0.0204 (4)
C4 0.8825 (3) 0.75865 (11) 0.13766 (10) 0.0262 (4)
H4A 0.7905 0.7549 0.1823 0.031*
C5 1.0669 (3) 0.69929 (12) 0.14156 (11) 0.0344 (5)
H5A 1.0033 0.6473 0.1440 0.052*
H5B 1.1563 0.7087 0.1847 0.052*
H5C 1.1600 0.7036 0.0985 0.052*
C6 0.7353 (4) 0.74711 (14) 0.07179 (11) 0.0376 (5)
H6A 0.6752 0.6945 0.0722 0.056*
H6B 0.8223 0.7549 0.0278 0.056*
H6C 0.6140 0.7845 0.0731 0.056*
C7 0.9201 (3) 1.00311 (11) 0.25872 (9) 0.0213 (4)
H7A 0.8672 1.0257 0.3053 0.026*
C8 1.1389 (3) 1.04238 (12) 0.24058 (10) 0.0283 (4)
H8A 1.2449 1.0330 0.2795 0.042*
H8B 1.1153 1.0981 0.2352 0.042*
H8C 1.1969 1.0212 0.1954 0.042*
C9 0.7481 (3) 1.02356 (12) 0.20090 (10) 0.0303 (5)
H9A 0.6098 0.9964 0.2112 0.045*
H9B 0.8029 1.0079 0.1534 0.045*
H9C 0.7218 1.0795 0.2012 0.045*
C10 1.0041 (3) 0.80762 (10) 0.36471 (8) 0.0215 (4)
C11 1.1590 (3) 0.76845 (12) 0.40647 (10) 0.0275 (5)
H11A 1.2999 0.7909 0.4145 0.033*
C12 1.1099 (4) 0.69714 (12) 0.43639 (10) 0.0345 (5)
H12A 1.2176 0.6709 0.4644 0.041*
C13 0.9050 (4) 0.66396 (12) 0.42565 (10) 0.0327 (5)
H13A 0.8709 0.6152 0.4464 0.039*
C14 0.7502 (3) 0.70267 (12) 0.38436 (10) 0.0300 (5)
H14A 0.6095 0.6800 0.3765 0.036*
C15 0.7983 (3) 0.77417 (11) 0.35432 (9) 0.0249 (4)
H15A 0.6900 0.8004 0.3265 0.030*
C16 1.0661 (3) 0.94454 (11) 0.40064 (9) 0.0205 (4)
C17 0.8725 (3) 0.95254 (12) 0.44058 (9) 0.0250 (4)
H17A 0.7449 0.9241 0.4271 0.030*
C18 0.8645 (3) 1.00158 (12) 0.49972 (9) 0.0287 (5)
H18A 0.7311 1.0070 0.5261 0.034*
C19 1.0499 (3) 1.04269 (12) 0.52041 (9) 0.0299 (5)
H19A 1.0454 1.0756 0.5614 0.036*
C20 1.2420 (3) 1.03529 (11) 0.48068 (9) 0.0266 (4)
H20A 1.3690 1.0639 0.4943 0.032*
C21 1.2520 (3) 0.98667 (11) 0.42123 (9) 0.0249 (4)
H21A 1.3852 0.9821 0.3946 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0304 (2) 0.0230 (3) 0.01463 (18) −0.00277 (19) −0.00080 (17) 0.00131 (18)
O1 0.0247 (7) 0.0330 (9) 0.0257 (6) 0.0008 (5) 0.0016 (5) −0.0044 (6)
O2 0.0207 (6) 0.0255 (8) 0.0193 (5) 0.0003 (5) −0.0009 (5) −0.0012 (5)
N1 0.0228 (8) 0.0238 (9) 0.0160 (6) 0.0004 (6) 0.0001 (5) −0.0017 (7)
C1 0.0253 (9) 0.0182 (11) 0.0208 (8) −0.0043 (8) 0.0007 (7) −0.0007 (8)
C2 0.0231 (9) 0.0195 (10) 0.0177 (8) −0.0017 (7) −0.0001 (6) −0.0002 (8)
C3 0.0196 (9) 0.0220 (11) 0.0196 (8) 0.0000 (7) 0.0006 (6) 0.0008 (8)
C4 0.0327 (11) 0.0224 (11) 0.0236 (8) −0.0059 (8) 0.0022 (8) −0.0020 (9)
C5 0.0399 (12) 0.0245 (12) 0.0389 (11) 0.0001 (9) −0.0032 (9) 0.0033 (10)
C6 0.0386 (12) 0.0356 (13) 0.0386 (11) 0.0019 (10) −0.0097 (9) −0.0143 (10)
C7 0.0257 (9) 0.0209 (11) 0.0173 (7) 0.0008 (7) −0.0006 (7) 0.0011 (8)
C8 0.0340 (11) 0.0229 (11) 0.0280 (9) −0.0017 (8) 0.0006 (8) 0.0064 (9)
C9 0.0315 (11) 0.0273 (13) 0.0320 (9) 0.0032 (8) −0.0049 (8) 0.0033 (9)
C10 0.0318 (9) 0.0180 (10) 0.0148 (7) 0.0020 (8) 0.0030 (8) −0.0020 (7)
C11 0.0350 (11) 0.0249 (12) 0.0227 (8) 0.0008 (8) −0.0038 (8) 0.0019 (9)
C12 0.0510 (13) 0.0273 (13) 0.0252 (9) 0.0087 (10) −0.0037 (9) 0.0036 (10)
C13 0.0575 (13) 0.0169 (12) 0.0236 (9) 0.0020 (9) 0.0091 (9) 0.0017 (9)
C14 0.0382 (11) 0.0240 (12) 0.0277 (9) −0.0029 (8) 0.0068 (8) −0.0015 (9)
C15 0.0291 (10) 0.0218 (11) 0.0237 (8) 0.0009 (8) 0.0024 (7) 0.0006 (9)
C16 0.0269 (10) 0.0179 (10) 0.0167 (7) 0.0017 (7) −0.0033 (6) 0.0044 (8)
C17 0.0284 (10) 0.0232 (11) 0.0234 (9) 0.0005 (8) −0.0008 (7) 0.0035 (9)
C18 0.0401 (11) 0.0256 (12) 0.0204 (8) 0.0071 (9) 0.0045 (8) 0.0010 (9)
C19 0.0483 (13) 0.0224 (11) 0.0190 (8) 0.0074 (9) −0.0063 (8) −0.0014 (9)
C20 0.0367 (11) 0.0187 (11) 0.0244 (9) −0.0006 (8) −0.0117 (8) −0.0003 (8)
C21 0.0298 (10) 0.0217 (11) 0.0231 (8) 0.0016 (8) −0.0035 (7) 0.0023 (9)

Geometric parameters (Å, º)

S1—N1 1.6952 (14) C20—C21 1.388 (3)
S1—C4 1.8240 (19) C2—H2A 1.0000
O1—C1 1.209 (2) C4—H4A 1.0000
O2—C1 1.367 (2) C5—H5A 0.9800
O2—C3 1.466 (2) C5—H5B 0.9800
N1—C1 1.361 (2) C5—H5C 0.9800
N1—C2 1.471 (2) C6—H6A 0.9800
C2—C7 1.541 (3) C6—H6B 0.9800
C2—C3 1.555 (2) C6—H6C 0.9800
C3—C16 1.517 (3) C7—H7A 1.0000
C3—C10 1.537 (3) C8—H8A 0.9800
C4—C5 1.519 (3) C8—H8B 0.9800
C4—C6 1.525 (3) C8—H8C 0.9800
C7—C8 1.528 (3) C9—H9A 0.9800
C7—C9 1.537 (2) C9—H9B 0.9800
C10—C15 1.388 (3) C9—H9C 0.9800
C10—C11 1.393 (3) C11—H11A 0.9500
C11—C12 1.385 (3) C12—H12A 0.9500
C12—C13 1.383 (3) C13—H13A 0.9500
C13—C14 1.384 (3) C14—H14A 0.9500
C14—C15 1.387 (3) C15—H15A 0.9500
C16—C17 1.395 (2) C17—H17A 0.9500
C16—C21 1.395 (3) C18—H18A 0.9500
C17—C18 1.387 (3) C19—H19A 0.9500
C18—C19 1.385 (3) C20—H20A 0.9500
C19—C20 1.384 (3) C21—H21A 0.9500
N1—S1—C4 102.07 (8) C4—C5—H5B 109.5
C1—O2—C3 108.25 (12) H5A—C5—H5B 109.5
C1—N1—C2 111.72 (13) C4—C5—H5C 109.5
C1—N1—S1 123.04 (12) H5A—C5—H5C 109.5
C2—N1—S1 124.82 (11) H5B—C5—H5C 109.5
O1—C1—N1 129.76 (16) C4—C6—H6A 109.5
O1—C1—O2 121.74 (15) C4—C6—H6B 109.5
N1—C1—O2 108.50 (14) H6A—C6—H6B 109.5
N1—C2—C7 113.74 (14) C4—C6—H6C 109.5
N1—C2—C3 98.05 (13) H6A—C6—H6C 109.5
C7—C2—C3 115.78 (14) H6B—C6—H6C 109.5
O2—C3—C16 108.72 (14) C8—C7—H7A 107.1
O2—C3—C10 106.96 (14) C9—C7—H7A 107.1
C16—C3—C10 109.14 (14) C2—C7—H7A 107.1
O2—C3—C2 102.07 (12) C7—C8—H8A 109.5
C16—C3—C2 115.48 (15) C7—C8—H8B 109.5
C10—C3—C2 113.81 (15) H8A—C8—H8B 109.5
C5—C4—C6 112.33 (16) C7—C8—H8C 109.5
C5—C4—S1 111.71 (13) H8A—C8—H8C 109.5
C6—C4—S1 105.32 (14) H8B—C8—H8C 109.5
C8—C7—C9 109.46 (15) C7—C9—H9A 109.5
C8—C7—C2 114.11 (15) C7—C9—H9B 109.5
C9—C7—C2 111.60 (15) H9A—C9—H9B 109.5
C15—C10—C11 118.71 (17) C7—C9—H9C 109.5
C15—C10—C3 124.17 (16) H9A—C9—H9C 109.5
C11—C10—C3 116.97 (17) H9B—C9—H9C 109.5
C12—C11—C10 120.71 (19) C12—C11—H11A 119.6
C13—C12—C11 120.3 (2) C10—C11—H11A 119.6
C12—C13—C14 119.21 (19) C13—C12—H12A 119.8
C13—C14—C15 120.7 (2) C11—C12—H12A 119.8
C14—C15—C10 120.31 (18) C12—C13—H13A 120.4
C17—C16—C21 118.85 (17) C14—C13—H13A 120.4
C17—C16—C3 118.63 (16) C13—C14—H14A 119.6
C21—C16—C3 122.49 (15) C15—C14—H14A 119.6
C18—C17—C16 120.67 (18) C14—C15—H15A 119.8
C19—C18—C17 120.29 (18) C10—C15—H15A 119.8
C18—C19—C20 119.23 (17) C18—C17—H17A 119.7
C19—C20—C21 121.05 (19) C16—C17—H17A 119.7
C20—C21—C16 119.90 (18) C19—C18—H18A 119.9
N1—C2—H2A 109.6 C17—C18—H18A 119.9
C7—C2—H2A 109.6 C18—C19—H19A 120.4
C3—C2—H2A 109.6 C20—C19—H19A 120.4
C5—C4—H4A 109.1 C19—C20—H20A 119.5
C6—C4—H4A 109.1 C21—C20—H20A 119.5
S1—C4—H4A 109.1 C20—C21—H21A 120.0
C4—C5—H5A 109.5 C16—C21—H21A 120.0
C4—S1—N1—C1 94.18 (16) C16—C3—C10—C15 103.39 (18)
C4—S1—N1—C2 −93.83 (15) C2—C3—C10—C15 −27.2 (2)
C2—N1—C1—O1 −170.44 (19) O2—C3—C10—C11 45.47 (19)
S1—N1—C1—O1 2.5 (3) C16—C3—C10—C11 −71.98 (19)
C2—N1—C1—O2 8.9 (2) C2—C3—C10—C11 157.40 (15)
S1—N1—C1—O2 −178.19 (11) C15—C10—C11—C12 0.7 (3)
C3—O2—C1—O1 −166.32 (17) C3—C10—C11—C12 176.36 (16)
C3—O2—C1—N1 14.3 (2) C10—C11—C12—C13 −0.5 (3)
C1—N1—C2—C7 96.89 (17) C11—C12—C13—C14 0.3 (3)
S1—N1—C2—C7 −75.89 (17) C12—C13—C14—C15 −0.4 (3)
C1—N1—C2—C3 −25.94 (18) C13—C14—C15—C10 0.7 (3)
S1—N1—C2—C3 161.28 (13) C11—C10—C15—C14 −0.8 (3)
C1—O2—C3—C16 −152.32 (15) C3—C10—C15—C14 −176.10 (16)
C1—O2—C3—C10 89.95 (16) O2—C3—C16—C17 −173.21 (15)
C1—O2—C3—C2 −29.84 (18) C10—C3—C16—C17 −56.9 (2)
N1—C2—C3—O2 31.85 (15) C2—C3—C16—C17 72.8 (2)
C7—C2—C3—O2 −89.47 (16) O2—C3—C16—C21 5.0 (2)
N1—C2—C3—C16 149.59 (15) C10—C3—C16—C21 121.36 (18)
C7—C2—C3—C16 28.3 (2) C2—C3—C16—C21 −108.93 (19)
N1—C2—C3—C10 −83.01 (16) C21—C16—C17—C18 0.1 (3)
C7—C2—C3—C10 155.67 (14) C3—C16—C17—C18 178.38 (17)
N1—S1—C4—C5 −76.73 (14) C16—C17—C18—C19 −0.7 (3)
N1—S1—C4—C6 161.06 (13) C17—C18—C19—C20 1.1 (3)
N1—C2—C7—C8 −44.64 (18) C18—C19—C20—C21 −0.9 (3)
C3—C2—C7—C8 67.84 (19) C19—C20—C21—C16 0.2 (3)
N1—C2—C7—C9 80.09 (18) C17—C16—C21—C20 0.2 (3)
C3—C2—C7—C9 −167.43 (14) C3—C16—C21—C20 −178.05 (17)
O2—C3—C10—C15 −139.16 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5109).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker. (2008). APEX2 and SAINT Bruker–Nonius AXS, Madison, Wisconsin, USA.
  3. Celentano, G., Colonna, S., Gaggero, N. & Richelmi, C. (1998). Chem. Commun. pp. 701–702.
  4. Derbesy, G. & Harpp, D. N. (1995). J. Org. Chem. 60, 4468–4474.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Hintermann, T. & Seebach, D. A. (1998). Helv. Chim. Acta, 81, 2093–2126.
  7. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Valle, G., Crisma, M., Formaggio, F., Toniolo, C., Redlinski, A. S., Kaczmarek, K. & Leplawy, M. T. (1992). Z. Kristallogr. 199, 229–237.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202569X/tk5109sup1.cif

e-68-o2048-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202569X/tk5109Isup2.hkl

e-68-o2048-Isup2.hkl (147.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202569X/tk5109Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES