Abstract
The title compound, C21H25NO2S, consists of a five-membered heterocyclic ring, with pendant phenyl groups, an isopropyl group and a thioether residue. The thioether bonds to the heterocycle via the N atom. The absolute configuration results from an inversion of the configuration of substrate during the synthesis.
Related literature
For background to the preparation of chiral auxiliaries containing sulfilimine functionalities, see: Celentano et al. (1998 ▶). For a related structure, see: Valle et al. (1992 ▶). For the synthesis, see: Hintermann & Seebach (1998 ▶); Derbesy & Harpp (1995 ▶). For the structural characterization and absolute configuration analysis, see: Flack (1983 ▶); Hooft et al. (2008 ▶). For a description of the Cambridge Structural Database, see Allen (2002 ▶).
Experimental
Crystal data
C21H25NO2S
M r = 355.48
Orthorhombic,
a = 6.0621 (1) Å
b = 17.2963 (3) Å
c = 18.5398 (3) Å
V = 1943.93 (6) Å3
Z = 4
Cu Kα radiation
μ = 1.58 mm−1
T = 100 K
0.50 × 0.23 × 0.21 mm
Data collection
Bruker SMART APEX diffractometer
Absorption correction: numerical (SADABS; Sheldrick, 2008 ▶) T min = 0.720, T max = 0.964
18292 measured reflections
3008 independent reflections
2887 reflections with I > 2σ(I)
R int = 0.026
Refinement
R[F 2 > 2σ(F 2)] = 0.027
wR(F 2) = 0.071
S = 1.06
3008 reflections
230 parameters
H-atom parameters constrained
Δρmax = 0.19 e Å−3
Δρmin = −0.16 e Å−3
Absolute structure: Flack (1983 ▶), 1165 Friedel pairs
Flack parameter: 0.039 (15)
Data collection: APEX2 (Bruker, 2008 ▶); cell refinement: SAINT (Bruker, 2008 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: XP in SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202569X/tk5109sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202569X/tk5109Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681202569X/tk5109Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank the University of Notre Dame for its generous support of this program.
supplementary crystallographic information
Comment
Oxazolindinone compounds, such as the title compound, (R)-4-isopropyl-3-(isopropylthio)-5,5-diphenyloxazolidin-2-one (I), are synthesized as precursors for the preparation of chiral auxiliaries containing sulfilimine functionalities. Eventually, these auxiliaries are applied to the synthesis of new sulfimines in a high enantiomeric ratio (Celentano et al., 1998). To the best of our knowledge, the only other N-thioether-containing oxazolindinone is a dione (Valle et al., 1992). All other oxazoldininones that exhibit an N—S bond are sulfinyl- or sulfonyl-containing compounds (Allen, 2002).
An interesting feature of this compound is the conversion of S-isopropyl isopropanesulfonothioate to an R-isomer during the synthesis. Confirmation of the correct absolute stereochemistry of (I) was determined as described below.
Experimental
To a solution of the oxazolidinone (Hintermann & Seebach, 1998) (2.50 g, 8.80 mmol) in dry THF (40 ml) at 273 K was slowly added 1 equiv of n-BuLi (Celentano et al., 1998). The solution turned from colorless to dark-red. After the mixture was left to react for 30 min at 273 K, a solution of S-isopropyl isopropanesulfonothioate (Derbesy & Harpp, 1995) (1.58 g, 9.10 mmol) in dry THF (40 ml) was added by cannula, at once, and the reaction was left stirring overnight at room temperature. The white mixture was quenched with saturated NH4Cl (50 ml) and extracted with ethyl acetate (50 ml). The organic layer was washed with H2O (50 ml) and brine, dried with MgSO4 and then filtered. The solvent was removed at reduced pressure on a rotovap and the colorless oil was purified through flash chromatography with elution by (1:9 ethyl acetate/hexanes) to provide 2.28 g of the oxazolidine sulfide (73% yield) as colorless prisms after slow evaporation.
Refinement
All hydrogen atoms were included in geometrically calculated positions with C—H distances constrained to 0.95 Å for aromatic C–H and 0.98–1.00 Å for aliphatic C–H bonds. Hydrogen thermal parameters were tied to the occupancy of the atom to which they are bonded. The Uiso was set to 1.5 × Ueq for methyl H atoms and 1.2 × Ueq for all others.
The absolute configuration was determined by the known handedness of the molecule from synthesis, comparison of intensities of Friedel pairs of reflections (Flack, 1983) and by Bayesian analysis of Bijvoet pairs (Hooft et al., 2008). All three techniques agree and the correct configuration is depicted in Fig. 1. The Flack x parameter refined to 0.039 (15) based on 1165 Friedel pairs. The Hooft y parameter was 0.056 (6) based on 1170 Bijvoet pairs. P2(true) and P3(true) values were calculated at 1.000 and 1.000 indicative an an enantiopure crystal.
Figures
Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. H atoms are shown as idealized spheres of an arbitrary radius.
Crystal data
| C21H25NO2S | F(000) = 760 |
| Mr = 355.48 | Dx = 1.215 Mg m−3 |
| Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 9921 reflections |
| a = 6.0621 (1) Å | θ = 3.5–68.2° |
| b = 17.2963 (3) Å | µ = 1.58 mm−1 |
| c = 18.5398 (3) Å | T = 100 K |
| V = 1943.93 (6) Å3 | Block, colourless |
| Z = 4 | 0.50 × 0.23 × 0.21 mm |
Data collection
| Bruker SMART APEX diffractometer | 3008 independent reflections |
| Radiation source: fine-focus sealed tube | 2887 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.026 |
| Detector resolution: 8.33 pixels mm-1 | θmax = 68.3°, θmin = 3.5° |
| combination of ω and φ–scans | h = −7→5 |
| Absorption correction: numerical (SADABS; Sheldrick, 2008) | k = −20→19 |
| Tmin = 0.720, Tmax = 0.964 | l = −22→19 |
| 18292 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
| wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0409P)2 + 0.4225P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.06 | (Δ/σ)max = 0.003 |
| 3008 reflections | Δρmax = 0.19 e Å−3 |
| 230 parameters | Δρmin = −0.16 e Å−3 |
| 0 restraints | Absolute structure: Flack (1983), 1165 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.039 (15) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.98999 (7) | 0.85676 (3) | 0.12949 (2) | 0.02269 (12) | |
| O1 | 1.4437 (2) | 0.84260 (8) | 0.20523 (7) | 0.0278 (3) | |
| O2 | 1.2940 (2) | 0.88301 (7) | 0.30979 (6) | 0.0219 (3) | |
| N1 | 1.0729 (2) | 0.87582 (9) | 0.21499 (7) | 0.0209 (3) | |
| C1 | 1.2833 (3) | 0.86441 (11) | 0.23819 (9) | 0.0215 (4) | |
| C2 | 0.9378 (3) | 0.91505 (11) | 0.26982 (8) | 0.0201 (4) | |
| H2A | 0.7868 | 0.8918 | 0.2706 | 0.024* | |
| C3 | 1.0683 (3) | 0.88855 (11) | 0.33765 (9) | 0.0204 (4) | |
| C4 | 0.8825 (3) | 0.75865 (11) | 0.13766 (10) | 0.0262 (4) | |
| H4A | 0.7905 | 0.7549 | 0.1823 | 0.031* | |
| C5 | 1.0669 (3) | 0.69929 (12) | 0.14156 (11) | 0.0344 (5) | |
| H5A | 1.0033 | 0.6473 | 0.1440 | 0.052* | |
| H5B | 1.1563 | 0.7087 | 0.1847 | 0.052* | |
| H5C | 1.1600 | 0.7036 | 0.0985 | 0.052* | |
| C6 | 0.7353 (4) | 0.74711 (14) | 0.07179 (11) | 0.0376 (5) | |
| H6A | 0.6752 | 0.6945 | 0.0722 | 0.056* | |
| H6B | 0.8223 | 0.7549 | 0.0278 | 0.056* | |
| H6C | 0.6140 | 0.7845 | 0.0731 | 0.056* | |
| C7 | 0.9201 (3) | 1.00311 (11) | 0.25872 (9) | 0.0213 (4) | |
| H7A | 0.8672 | 1.0257 | 0.3053 | 0.026* | |
| C8 | 1.1389 (3) | 1.04238 (12) | 0.24058 (10) | 0.0283 (4) | |
| H8A | 1.2449 | 1.0330 | 0.2795 | 0.042* | |
| H8B | 1.1153 | 1.0981 | 0.2352 | 0.042* | |
| H8C | 1.1969 | 1.0212 | 0.1954 | 0.042* | |
| C9 | 0.7481 (3) | 1.02356 (12) | 0.20090 (10) | 0.0303 (5) | |
| H9A | 0.6098 | 0.9964 | 0.2112 | 0.045* | |
| H9B | 0.8029 | 1.0079 | 0.1534 | 0.045* | |
| H9C | 0.7218 | 1.0795 | 0.2012 | 0.045* | |
| C10 | 1.0041 (3) | 0.80762 (10) | 0.36471 (8) | 0.0215 (4) | |
| C11 | 1.1590 (3) | 0.76845 (12) | 0.40647 (10) | 0.0275 (5) | |
| H11A | 1.2999 | 0.7909 | 0.4145 | 0.033* | |
| C12 | 1.1099 (4) | 0.69714 (12) | 0.43639 (10) | 0.0345 (5) | |
| H12A | 1.2176 | 0.6709 | 0.4644 | 0.041* | |
| C13 | 0.9050 (4) | 0.66396 (12) | 0.42565 (10) | 0.0327 (5) | |
| H13A | 0.8709 | 0.6152 | 0.4464 | 0.039* | |
| C14 | 0.7502 (3) | 0.70267 (12) | 0.38436 (10) | 0.0300 (5) | |
| H14A | 0.6095 | 0.6800 | 0.3765 | 0.036* | |
| C15 | 0.7983 (3) | 0.77417 (11) | 0.35432 (9) | 0.0249 (4) | |
| H15A | 0.6900 | 0.8004 | 0.3265 | 0.030* | |
| C16 | 1.0661 (3) | 0.94454 (11) | 0.40064 (9) | 0.0205 (4) | |
| C17 | 0.8725 (3) | 0.95254 (12) | 0.44058 (9) | 0.0250 (4) | |
| H17A | 0.7449 | 0.9241 | 0.4271 | 0.030* | |
| C18 | 0.8645 (3) | 1.00158 (12) | 0.49972 (9) | 0.0287 (5) | |
| H18A | 0.7311 | 1.0070 | 0.5261 | 0.034* | |
| C19 | 1.0499 (3) | 1.04269 (12) | 0.52041 (9) | 0.0299 (5) | |
| H19A | 1.0454 | 1.0756 | 0.5614 | 0.036* | |
| C20 | 1.2420 (3) | 1.03529 (11) | 0.48068 (9) | 0.0266 (4) | |
| H20A | 1.3690 | 1.0639 | 0.4943 | 0.032* | |
| C21 | 1.2520 (3) | 0.98667 (11) | 0.42123 (9) | 0.0249 (4) | |
| H21A | 1.3852 | 0.9821 | 0.3946 | 0.030* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0304 (2) | 0.0230 (3) | 0.01463 (18) | −0.00277 (19) | −0.00080 (17) | 0.00131 (18) |
| O1 | 0.0247 (7) | 0.0330 (9) | 0.0257 (6) | 0.0008 (5) | 0.0016 (5) | −0.0044 (6) |
| O2 | 0.0207 (6) | 0.0255 (8) | 0.0193 (5) | 0.0003 (5) | −0.0009 (5) | −0.0012 (5) |
| N1 | 0.0228 (8) | 0.0238 (9) | 0.0160 (6) | 0.0004 (6) | 0.0001 (5) | −0.0017 (7) |
| C1 | 0.0253 (9) | 0.0182 (11) | 0.0208 (8) | −0.0043 (8) | 0.0007 (7) | −0.0007 (8) |
| C2 | 0.0231 (9) | 0.0195 (10) | 0.0177 (8) | −0.0017 (7) | −0.0001 (6) | −0.0002 (8) |
| C3 | 0.0196 (9) | 0.0220 (11) | 0.0196 (8) | 0.0000 (7) | 0.0006 (6) | 0.0008 (8) |
| C4 | 0.0327 (11) | 0.0224 (11) | 0.0236 (8) | −0.0059 (8) | 0.0022 (8) | −0.0020 (9) |
| C5 | 0.0399 (12) | 0.0245 (12) | 0.0389 (11) | 0.0001 (9) | −0.0032 (9) | 0.0033 (10) |
| C6 | 0.0386 (12) | 0.0356 (13) | 0.0386 (11) | 0.0019 (10) | −0.0097 (9) | −0.0143 (10) |
| C7 | 0.0257 (9) | 0.0209 (11) | 0.0173 (7) | 0.0008 (7) | −0.0006 (7) | 0.0011 (8) |
| C8 | 0.0340 (11) | 0.0229 (11) | 0.0280 (9) | −0.0017 (8) | 0.0006 (8) | 0.0064 (9) |
| C9 | 0.0315 (11) | 0.0273 (13) | 0.0320 (9) | 0.0032 (8) | −0.0049 (8) | 0.0033 (9) |
| C10 | 0.0318 (9) | 0.0180 (10) | 0.0148 (7) | 0.0020 (8) | 0.0030 (8) | −0.0020 (7) |
| C11 | 0.0350 (11) | 0.0249 (12) | 0.0227 (8) | 0.0008 (8) | −0.0038 (8) | 0.0019 (9) |
| C12 | 0.0510 (13) | 0.0273 (13) | 0.0252 (9) | 0.0087 (10) | −0.0037 (9) | 0.0036 (10) |
| C13 | 0.0575 (13) | 0.0169 (12) | 0.0236 (9) | 0.0020 (9) | 0.0091 (9) | 0.0017 (9) |
| C14 | 0.0382 (11) | 0.0240 (12) | 0.0277 (9) | −0.0029 (8) | 0.0068 (8) | −0.0015 (9) |
| C15 | 0.0291 (10) | 0.0218 (11) | 0.0237 (8) | 0.0009 (8) | 0.0024 (7) | 0.0006 (9) |
| C16 | 0.0269 (10) | 0.0179 (10) | 0.0167 (7) | 0.0017 (7) | −0.0033 (6) | 0.0044 (8) |
| C17 | 0.0284 (10) | 0.0232 (11) | 0.0234 (9) | 0.0005 (8) | −0.0008 (7) | 0.0035 (9) |
| C18 | 0.0401 (11) | 0.0256 (12) | 0.0204 (8) | 0.0071 (9) | 0.0045 (8) | 0.0010 (9) |
| C19 | 0.0483 (13) | 0.0224 (11) | 0.0190 (8) | 0.0074 (9) | −0.0063 (8) | −0.0014 (9) |
| C20 | 0.0367 (11) | 0.0187 (11) | 0.0244 (9) | −0.0006 (8) | −0.0117 (8) | −0.0003 (8) |
| C21 | 0.0298 (10) | 0.0217 (11) | 0.0231 (8) | 0.0016 (8) | −0.0035 (7) | 0.0023 (9) |
Geometric parameters (Å, º)
| S1—N1 | 1.6952 (14) | C20—C21 | 1.388 (3) |
| S1—C4 | 1.8240 (19) | C2—H2A | 1.0000 |
| O1—C1 | 1.209 (2) | C4—H4A | 1.0000 |
| O2—C1 | 1.367 (2) | C5—H5A | 0.9800 |
| O2—C3 | 1.466 (2) | C5—H5B | 0.9800 |
| N1—C1 | 1.361 (2) | C5—H5C | 0.9800 |
| N1—C2 | 1.471 (2) | C6—H6A | 0.9800 |
| C2—C7 | 1.541 (3) | C6—H6B | 0.9800 |
| C2—C3 | 1.555 (2) | C6—H6C | 0.9800 |
| C3—C16 | 1.517 (3) | C7—H7A | 1.0000 |
| C3—C10 | 1.537 (3) | C8—H8A | 0.9800 |
| C4—C5 | 1.519 (3) | C8—H8B | 0.9800 |
| C4—C6 | 1.525 (3) | C8—H8C | 0.9800 |
| C7—C8 | 1.528 (3) | C9—H9A | 0.9800 |
| C7—C9 | 1.537 (2) | C9—H9B | 0.9800 |
| C10—C15 | 1.388 (3) | C9—H9C | 0.9800 |
| C10—C11 | 1.393 (3) | C11—H11A | 0.9500 |
| C11—C12 | 1.385 (3) | C12—H12A | 0.9500 |
| C12—C13 | 1.383 (3) | C13—H13A | 0.9500 |
| C13—C14 | 1.384 (3) | C14—H14A | 0.9500 |
| C14—C15 | 1.387 (3) | C15—H15A | 0.9500 |
| C16—C17 | 1.395 (2) | C17—H17A | 0.9500 |
| C16—C21 | 1.395 (3) | C18—H18A | 0.9500 |
| C17—C18 | 1.387 (3) | C19—H19A | 0.9500 |
| C18—C19 | 1.385 (3) | C20—H20A | 0.9500 |
| C19—C20 | 1.384 (3) | C21—H21A | 0.9500 |
| N1—S1—C4 | 102.07 (8) | C4—C5—H5B | 109.5 |
| C1—O2—C3 | 108.25 (12) | H5A—C5—H5B | 109.5 |
| C1—N1—C2 | 111.72 (13) | C4—C5—H5C | 109.5 |
| C1—N1—S1 | 123.04 (12) | H5A—C5—H5C | 109.5 |
| C2—N1—S1 | 124.82 (11) | H5B—C5—H5C | 109.5 |
| O1—C1—N1 | 129.76 (16) | C4—C6—H6A | 109.5 |
| O1—C1—O2 | 121.74 (15) | C4—C6—H6B | 109.5 |
| N1—C1—O2 | 108.50 (14) | H6A—C6—H6B | 109.5 |
| N1—C2—C7 | 113.74 (14) | C4—C6—H6C | 109.5 |
| N1—C2—C3 | 98.05 (13) | H6A—C6—H6C | 109.5 |
| C7—C2—C3 | 115.78 (14) | H6B—C6—H6C | 109.5 |
| O2—C3—C16 | 108.72 (14) | C8—C7—H7A | 107.1 |
| O2—C3—C10 | 106.96 (14) | C9—C7—H7A | 107.1 |
| C16—C3—C10 | 109.14 (14) | C2—C7—H7A | 107.1 |
| O2—C3—C2 | 102.07 (12) | C7—C8—H8A | 109.5 |
| C16—C3—C2 | 115.48 (15) | C7—C8—H8B | 109.5 |
| C10—C3—C2 | 113.81 (15) | H8A—C8—H8B | 109.5 |
| C5—C4—C6 | 112.33 (16) | C7—C8—H8C | 109.5 |
| C5—C4—S1 | 111.71 (13) | H8A—C8—H8C | 109.5 |
| C6—C4—S1 | 105.32 (14) | H8B—C8—H8C | 109.5 |
| C8—C7—C9 | 109.46 (15) | C7—C9—H9A | 109.5 |
| C8—C7—C2 | 114.11 (15) | C7—C9—H9B | 109.5 |
| C9—C7—C2 | 111.60 (15) | H9A—C9—H9B | 109.5 |
| C15—C10—C11 | 118.71 (17) | C7—C9—H9C | 109.5 |
| C15—C10—C3 | 124.17 (16) | H9A—C9—H9C | 109.5 |
| C11—C10—C3 | 116.97 (17) | H9B—C9—H9C | 109.5 |
| C12—C11—C10 | 120.71 (19) | C12—C11—H11A | 119.6 |
| C13—C12—C11 | 120.3 (2) | C10—C11—H11A | 119.6 |
| C12—C13—C14 | 119.21 (19) | C13—C12—H12A | 119.8 |
| C13—C14—C15 | 120.7 (2) | C11—C12—H12A | 119.8 |
| C14—C15—C10 | 120.31 (18) | C12—C13—H13A | 120.4 |
| C17—C16—C21 | 118.85 (17) | C14—C13—H13A | 120.4 |
| C17—C16—C3 | 118.63 (16) | C13—C14—H14A | 119.6 |
| C21—C16—C3 | 122.49 (15) | C15—C14—H14A | 119.6 |
| C18—C17—C16 | 120.67 (18) | C14—C15—H15A | 119.8 |
| C19—C18—C17 | 120.29 (18) | C10—C15—H15A | 119.8 |
| C18—C19—C20 | 119.23 (17) | C18—C17—H17A | 119.7 |
| C19—C20—C21 | 121.05 (19) | C16—C17—H17A | 119.7 |
| C20—C21—C16 | 119.90 (18) | C19—C18—H18A | 119.9 |
| N1—C2—H2A | 109.6 | C17—C18—H18A | 119.9 |
| C7—C2—H2A | 109.6 | C18—C19—H19A | 120.4 |
| C3—C2—H2A | 109.6 | C20—C19—H19A | 120.4 |
| C5—C4—H4A | 109.1 | C19—C20—H20A | 119.5 |
| C6—C4—H4A | 109.1 | C21—C20—H20A | 119.5 |
| S1—C4—H4A | 109.1 | C20—C21—H21A | 120.0 |
| C4—C5—H5A | 109.5 | C16—C21—H21A | 120.0 |
| C4—S1—N1—C1 | 94.18 (16) | C16—C3—C10—C15 | 103.39 (18) |
| C4—S1—N1—C2 | −93.83 (15) | C2—C3—C10—C15 | −27.2 (2) |
| C2—N1—C1—O1 | −170.44 (19) | O2—C3—C10—C11 | 45.47 (19) |
| S1—N1—C1—O1 | 2.5 (3) | C16—C3—C10—C11 | −71.98 (19) |
| C2—N1—C1—O2 | 8.9 (2) | C2—C3—C10—C11 | 157.40 (15) |
| S1—N1—C1—O2 | −178.19 (11) | C15—C10—C11—C12 | 0.7 (3) |
| C3—O2—C1—O1 | −166.32 (17) | C3—C10—C11—C12 | 176.36 (16) |
| C3—O2—C1—N1 | 14.3 (2) | C10—C11—C12—C13 | −0.5 (3) |
| C1—N1—C2—C7 | 96.89 (17) | C11—C12—C13—C14 | 0.3 (3) |
| S1—N1—C2—C7 | −75.89 (17) | C12—C13—C14—C15 | −0.4 (3) |
| C1—N1—C2—C3 | −25.94 (18) | C13—C14—C15—C10 | 0.7 (3) |
| S1—N1—C2—C3 | 161.28 (13) | C11—C10—C15—C14 | −0.8 (3) |
| C1—O2—C3—C16 | −152.32 (15) | C3—C10—C15—C14 | −176.10 (16) |
| C1—O2—C3—C10 | 89.95 (16) | O2—C3—C16—C17 | −173.21 (15) |
| C1—O2—C3—C2 | −29.84 (18) | C10—C3—C16—C17 | −56.9 (2) |
| N1—C2—C3—O2 | 31.85 (15) | C2—C3—C16—C17 | 72.8 (2) |
| C7—C2—C3—O2 | −89.47 (16) | O2—C3—C16—C21 | 5.0 (2) |
| N1—C2—C3—C16 | 149.59 (15) | C10—C3—C16—C21 | 121.36 (18) |
| C7—C2—C3—C16 | 28.3 (2) | C2—C3—C16—C21 | −108.93 (19) |
| N1—C2—C3—C10 | −83.01 (16) | C21—C16—C17—C18 | 0.1 (3) |
| C7—C2—C3—C10 | 155.67 (14) | C3—C16—C17—C18 | 178.38 (17) |
| N1—S1—C4—C5 | −76.73 (14) | C16—C17—C18—C19 | −0.7 (3) |
| N1—S1—C4—C6 | 161.06 (13) | C17—C18—C19—C20 | 1.1 (3) |
| N1—C2—C7—C8 | −44.64 (18) | C18—C19—C20—C21 | −0.9 (3) |
| C3—C2—C7—C8 | 67.84 (19) | C19—C20—C21—C16 | 0.2 (3) |
| N1—C2—C7—C9 | 80.09 (18) | C17—C16—C21—C20 | 0.2 (3) |
| C3—C2—C7—C9 | −167.43 (14) | C3—C16—C21—C20 | −178.05 (17) |
| O2—C3—C10—C15 | −139.16 (16) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5109).
References
- Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
- Bruker. (2008). APEX2 and SAINT Bruker–Nonius AXS, Madison, Wisconsin, USA.
- Celentano, G., Colonna, S., Gaggero, N. & Richelmi, C. (1998). Chem. Commun. pp. 701–702.
- Derbesy, G. & Harpp, D. N. (1995). J. Org. Chem. 60, 4468–4474.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Hintermann, T. & Seebach, D. A. (1998). Helv. Chim. Acta, 81, 2093–2126.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Valle, G., Crisma, M., Formaggio, F., Toniolo, C., Redlinski, A. S., Kaczmarek, K. & Leplawy, M. T. (1992). Z. Kristallogr. 199, 229–237.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202569X/tk5109sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202569X/tk5109Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681202569X/tk5109Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

