Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2055–o2056. doi: 10.1107/S1600536812025810

2-[(4-Chloro­benz­yl)sulfan­yl]-4-(2-methyl­prop­yl)-6-(phenyl­sulfan­yl)pyrimidine-5-carbonitrile

Ali A El-Emam a,, Omar A Al-Deeb a, Abdulghafoor A Al-Turkistani a, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3393322  PMID: 22807879

Abstract

In the title compound, C22H20ClN3S2, the S-bound benzene rings are inclined [dihedral angles = 78.13 (10) and 36.70 (9)°] with respect to the pyrimidine ring. The methyl­propyl group occupies a position normal to the pyrimidine ring [N—C—C—C torsion angle = 92.3 (2)°]. In the crystal, supra­molecular layers are formed in the bc plane, being consolidated by C—H⋯π and π—π inter­actions, the latter between the pyrimidine and S-bound benzene rings [inter-centroid distance = 3.7683 (12) Å].

Related literature  

For the chemotherapeutic activity of pyrimidine derivatives, see: Al-Abdullah et al. (2011); Brunelle et al. (2007); Ding et al. (2006); Al-Safarjalani et al. (2005). For a related pyrimidine structure, see: El-Emam et al. (2011).graphic file with name e-68-o2055-scheme1.jpg

Experimental  

Crystal data  

  • C22H20ClN3S2

  • M r = 425.98

  • Monoclinic, Inline graphic

  • a = 13.7771 (2) Å

  • b = 8.4961 (1) Å

  • c = 18.5878 (2) Å

  • β = 97.559 (1)°

  • V = 2156.82 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.47 mm−1

  • T = 294 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.611, T max = 1.000

  • 15819 measured reflections

  • 4512 independent reflections

  • 4113 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.117

  • S = 1.04

  • 4512 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536812025810/pv2554sup1.cif

e-68-o2055-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025810/pv2554Isup2.hkl

e-68-o2055-Isup2.hkl (216.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025810/pv2554Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.98 2.92 3.789 (2) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The chemotherapeutic efficacy of pyrimidine derivatives is related to their ability to inhibit vital enzymes responsible for DNA biosynthesis. Thus, several non-nucleoside pyrimidine derivatives exhibit anti-cancer (Al-Safarjalani et al., 2005), anti-viral (Brunelle et al., 2007; Ding et al., 2006) and anti-bacterial activities (Al-Abdullah et al., 2011). In continuation of our interest in the chemical, pharmacological and structural properties of pyrimidine derivatives (El-Emam et al., 2011), we synthesized the title compound as a potential chemotherapeutic agent.

With respect to the pyrimidine ring in the title molecule (Fig. 1), the S1- and S2-bound benzene rings form dihedral angles of 78.13 (10) and 36.70 (9)°, respectively, indicating orthogonal and splayed orientations, respectively; the dihedral angle between the benzene rings = 69.72 (11)°. The methylpropyl group occupies a position normal to the pyrimidine ring with the N2—C4—C5—C6 torsion angle being 92.3 (2)°.

In the crystal packing, supramolecular layers, consolidated by C—H···π, Table 1, and π—π interactions between the pyrimidine and the S1-bound benzene rings [ring centroid(N1,N2,C1–C4)···centroid(C10–C15) distance = 3.7683 (12) Å, angle of inclination = 5.52 (10)° for symmetry operation: 1 - x, -1/2 + y, 3/2 - z], are formed in the bc plane, Fig. 2.

Experimental

To a solution of 2-(4-chlorobenzylsulfanyl)-6-chloro-4-(2-methylpropyl)pyrimidine-5-carbonitrile (705 mg, 2 mmol) in dry pyridine (3 ml), thiophenol (220 mg, 2 mmol) was added and the mixture was heated under reflux for 6 h. On cooling, the solvent was distilled off in vacuo and water (5 ml) was added to the residue. The separated precipitate was filtered, washed with cold water, dried and crystallized from ethanol to yield 724 mg (85%) of the title compound as colourless crystals. M.pt: 394–396 K. Crystals for the X-ray analysis were obtained by slow evaporation of a solution of the title compound in CHCl3:EtOH (1:1, 5 ml) held at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view in projection down the b axis of the unit-cell contents for the title compound. The C—H···π and π—π interactions are shown as brown and purple dashed lines, respectively.

Crystal data

C22H20ClN3S2 F(000) = 888
Mr = 425.98 Dx = 1.312 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 8707 reflections
a = 13.7771 (2) Å θ = 3.8–76.4°
b = 8.4961 (1) Å µ = 3.47 mm1
c = 18.5878 (2) Å T = 294 K
β = 97.559 (1)° Prism, colourless
V = 2156.82 (5) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 4512 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 4113 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.018
Detector resolution: 10.4041 pixels mm-1 θmax = 76.6°, θmin = 4.8°
ω scan h = −16→17
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −10→10
Tmin = 0.611, Tmax = 1.000 l = −23→22
15819 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.7026P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4512 reflections Δρmax = 0.41 e Å3
254 parameters Δρmin = −0.46 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0033 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.54678 (4) 0.70944 (6) 0.73269 (3) 0.06701 (18)
S2 0.49600 (3) 0.22299 (6) 0.55116 (3) 0.06114 (16)
Cl1 0.03279 (4) 0.03665 (9) 0.36870 (4) 0.0973 (2)
N1 0.53172 (10) 0.46391 (16) 0.64164 (8) 0.0477 (3)
N2 0.66645 (10) 0.30012 (16) 0.61951 (8) 0.0505 (3)
N3 0.80681 (16) 0.6954 (3) 0.78507 (12) 0.0912 (7)
C1 0.57237 (12) 0.34328 (19) 0.61056 (9) 0.0466 (3)
C2 0.59250 (12) 0.55031 (19) 0.68709 (9) 0.0474 (4)
C3 0.69249 (12) 0.5177 (2) 0.70000 (9) 0.0483 (4)
C4 0.72740 (11) 0.3888 (2) 0.66431 (9) 0.0466 (4)
C5 0.83447 (12) 0.3509 (2) 0.67331 (10) 0.0541 (4)
H5A 0.8431 0.2392 0.6652 0.065*
H5B 0.8631 0.3749 0.7226 0.065*
C6 0.88789 (13) 0.4457 (2) 0.61966 (11) 0.0578 (4)
H6 0.8652 0.5549 0.6198 0.069*
C7 0.86479 (17) 0.3820 (3) 0.54342 (12) 0.0774 (6)
H7A 0.8969 0.4452 0.5109 0.116*
H7B 0.7953 0.3850 0.5289 0.116*
H7C 0.8874 0.2753 0.5421 0.116*
C8 0.99730 (16) 0.4440 (4) 0.64422 (16) 0.0962 (9)
H8A 1.0300 0.5050 0.6112 0.144*
H8B 1.0208 0.3375 0.6450 0.144*
H8C 1.0104 0.4882 0.6920 0.144*
C9 0.75677 (14) 0.6152 (3) 0.74776 (11) 0.0616 (5)
C10 0.42250 (13) 0.7160 (2) 0.69300 (10) 0.0532 (4)
C11 0.39312 (19) 0.8248 (3) 0.63982 (13) 0.0737 (6)
H11 0.4385 0.8918 0.6229 0.088*
C12 0.2950 (2) 0.8330 (3) 0.61170 (15) 0.0912 (8)
H12 0.2744 0.9069 0.5760 0.109*
C13 0.22799 (19) 0.7338 (3) 0.63589 (14) 0.0811 (7)
H13 0.1623 0.7404 0.6166 0.097*
C14 0.25756 (15) 0.6249 (3) 0.68832 (13) 0.0698 (5)
H14 0.2122 0.5564 0.7042 0.084*
C15 0.35460 (14) 0.6169 (2) 0.71770 (11) 0.0592 (4)
H15 0.3744 0.5445 0.7542 0.071*
C16 0.37985 (15) 0.3241 (3) 0.55162 (13) 0.0707 (6)
H16A 0.3653 0.3319 0.6011 0.085*
H16B 0.3852 0.4301 0.5331 0.085*
C17 0.29733 (13) 0.2398 (2) 0.50618 (10) 0.0530 (4)
C18 0.20723 (15) 0.2336 (3) 0.53091 (11) 0.0636 (5)
H18 0.2008 0.2733 0.5767 0.076*
C19 0.12653 (15) 0.1699 (3) 0.48935 (12) 0.0672 (5)
H19 0.0663 0.1673 0.5068 0.081*
C20 0.13592 (14) 0.1106 (2) 0.42242 (11) 0.0604 (5)
C21 0.22472 (16) 0.1110 (3) 0.39687 (11) 0.0685 (5)
H21 0.2309 0.0679 0.3517 0.082*
C22 0.30503 (15) 0.1760 (3) 0.43874 (11) 0.0636 (5)
H22 0.3653 0.1769 0.4213 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0521 (3) 0.0639 (3) 0.0867 (4) −0.0022 (2) 0.0151 (2) −0.0328 (2)
S2 0.0492 (3) 0.0598 (3) 0.0739 (3) 0.00163 (18) 0.0062 (2) −0.0236 (2)
Cl1 0.0661 (3) 0.0886 (4) 0.1270 (6) 0.0010 (3) −0.0249 (3) −0.0215 (4)
N1 0.0413 (7) 0.0467 (7) 0.0565 (8) −0.0006 (5) 0.0117 (6) −0.0069 (6)
N2 0.0446 (7) 0.0483 (7) 0.0603 (8) 0.0020 (6) 0.0134 (6) −0.0042 (6)
N3 0.0757 (13) 0.1114 (17) 0.0859 (13) −0.0333 (12) 0.0085 (10) −0.0302 (12)
C1 0.0442 (8) 0.0445 (8) 0.0527 (8) −0.0004 (6) 0.0123 (6) −0.0034 (7)
C2 0.0440 (8) 0.0463 (8) 0.0545 (9) −0.0042 (6) 0.0163 (7) −0.0049 (7)
C3 0.0430 (8) 0.0529 (9) 0.0506 (8) −0.0079 (7) 0.0123 (6) −0.0027 (7)
C4 0.0413 (8) 0.0495 (8) 0.0510 (8) −0.0007 (6) 0.0133 (6) 0.0049 (7)
C5 0.0421 (8) 0.0611 (10) 0.0600 (10) 0.0032 (7) 0.0099 (7) 0.0072 (8)
C6 0.0439 (9) 0.0626 (10) 0.0695 (11) 0.0016 (8) 0.0172 (8) 0.0068 (9)
C7 0.0677 (13) 0.1020 (18) 0.0650 (12) 0.0075 (12) 0.0184 (10) 0.0083 (12)
C8 0.0482 (11) 0.144 (3) 0.0971 (18) −0.0158 (14) 0.0143 (11) 0.0087 (18)
C9 0.0500 (9) 0.0742 (12) 0.0629 (11) −0.0112 (9) 0.0153 (8) −0.0114 (10)
C10 0.0537 (9) 0.0465 (9) 0.0624 (10) 0.0039 (7) 0.0183 (8) −0.0125 (7)
C11 0.0877 (15) 0.0614 (12) 0.0753 (13) −0.0019 (11) 0.0226 (12) 0.0039 (10)
C12 0.110 (2) 0.0811 (16) 0.0783 (15) 0.0204 (15) −0.0029 (14) 0.0126 (13)
C13 0.0647 (13) 0.0928 (17) 0.0828 (15) 0.0155 (12) −0.0022 (11) −0.0145 (13)
C14 0.0537 (11) 0.0739 (13) 0.0844 (14) −0.0014 (9) 0.0186 (10) −0.0115 (11)
C15 0.0572 (10) 0.0526 (10) 0.0701 (11) 0.0050 (8) 0.0168 (9) 0.0003 (8)
C16 0.0530 (10) 0.0725 (13) 0.0839 (14) 0.0089 (9) −0.0012 (9) −0.0261 (11)
C17 0.0493 (9) 0.0534 (9) 0.0558 (9) 0.0030 (7) 0.0048 (7) −0.0034 (8)
C18 0.0588 (11) 0.0810 (13) 0.0525 (10) 0.0087 (10) 0.0126 (8) −0.0025 (9)
C19 0.0480 (10) 0.0773 (13) 0.0777 (13) 0.0024 (9) 0.0139 (9) 0.0035 (11)
C20 0.0525 (10) 0.0521 (10) 0.0736 (12) 0.0029 (8) −0.0033 (8) 0.0005 (9)
C21 0.0693 (12) 0.0758 (13) 0.0603 (11) −0.0030 (10) 0.0081 (9) −0.0163 (10)
C22 0.0552 (10) 0.0750 (12) 0.0633 (11) −0.0053 (9) 0.0177 (8) −0.0113 (10)

Geometric parameters (Å, º)

S1—C2 1.7559 (16) C8—H8C 0.9600
S1—C10 1.774 (2) C10—C11 1.375 (3)
S2—C1 1.7508 (17) C10—C15 1.382 (3)
S2—C16 1.817 (2) C11—C12 1.386 (4)
Cl1—C20 1.743 (2) C11—H11 0.9300
N1—C2 1.330 (2) C12—C13 1.369 (4)
N1—C1 1.335 (2) C12—H12 0.9300
N2—C4 1.335 (2) C13—C14 1.366 (4)
N2—C1 1.336 (2) C13—H13 0.9300
N3—C9 1.138 (3) C14—C15 1.378 (3)
C2—C3 1.395 (2) C14—H14 0.9300
C3—C4 1.398 (2) C15—H15 0.9300
C3—C9 1.432 (2) C16—C17 1.505 (3)
C4—C5 1.498 (2) C16—H16A 0.9700
C5—C6 1.542 (2) C16—H16B 0.9700
C5—H5A 0.9700 C17—C18 1.380 (3)
C5—H5B 0.9700 C17—C22 1.382 (3)
C6—C7 1.511 (3) C18—C19 1.378 (3)
C6—C8 1.516 (3) C18—H18 0.9300
C6—H6 0.9800 C19—C20 1.364 (3)
C7—H7A 0.9600 C19—H19 0.9300
C7—H7B 0.9600 C20—C21 1.369 (3)
C7—H7C 0.9600 C21—C22 1.381 (3)
C8—H8A 0.9600 C21—H21 0.9300
C8—H8B 0.9600 C22—H22 0.9300
C2—S1—C10 102.20 (8) C11—C10—S1 119.80 (16)
C1—S2—C16 100.23 (9) C15—C10—S1 120.09 (15)
C2—N1—C1 115.71 (14) C10—C11—C12 119.1 (2)
C4—N2—C1 116.30 (14) C10—C11—H11 120.5
N1—C1—N2 127.73 (15) C12—C11—H11 120.5
N1—C1—S2 118.00 (12) C13—C12—C11 120.8 (2)
N2—C1—S2 114.27 (12) C13—C12—H12 119.6
N1—C2—C3 121.65 (15) C11—C12—H12 119.6
N1—C2—S1 119.73 (12) C14—C13—C12 120.0 (2)
C3—C2—S1 118.62 (13) C14—C13—H13 120.0
C2—C3—C4 117.89 (15) C12—C13—H13 120.0
C2—C3—C9 120.51 (16) C13—C14—C15 120.0 (2)
C4—C3—C9 121.59 (16) C13—C14—H14 120.0
N2—C4—C3 120.71 (15) C15—C14—H14 120.0
N2—C4—C5 118.54 (15) C14—C15—C10 120.1 (2)
C3—C4—C5 120.72 (16) C14—C15—H15 119.9
C4—C5—C6 111.24 (15) C10—C15—H15 119.9
C4—C5—H5A 109.4 C17—C16—S2 111.90 (14)
C6—C5—H5A 109.4 C17—C16—H16A 109.2
C4—C5—H5B 109.4 S2—C16—H16A 109.2
C6—C5—H5B 109.4 C17—C16—H16B 109.2
H5A—C5—H5B 108.0 S2—C16—H16B 109.2
C7—C6—C8 110.93 (18) H16A—C16—H16B 107.9
C7—C6—C5 111.11 (17) C18—C17—C22 117.82 (18)
C8—C6—C5 109.91 (18) C18—C17—C16 118.50 (17)
C7—C6—H6 108.3 C22—C17—C16 123.56 (18)
C8—C6—H6 108.3 C19—C18—C17 121.52 (18)
C5—C6—H6 108.3 C19—C18—H18 119.2
C6—C7—H7A 109.5 C17—C18—H18 119.2
C6—C7—H7B 109.5 C20—C19—C18 119.33 (19)
H7A—C7—H7B 109.5 C20—C19—H19 120.3
C6—C7—H7C 109.5 C18—C19—H19 120.3
H7A—C7—H7C 109.5 C19—C20—C21 120.78 (19)
H7B—C7—H7C 109.5 C19—C20—Cl1 119.19 (16)
C6—C8—H8A 109.5 C21—C20—Cl1 120.02 (16)
C6—C8—H8B 109.5 C20—C21—C22 119.44 (19)
H8A—C8—H8B 109.5 C20—C21—H21 120.3
C6—C8—H8C 109.5 C22—C21—H21 120.3
H8A—C8—H8C 109.5 C21—C22—C17 121.07 (18)
H8B—C8—H8C 109.5 C21—C22—H22 119.5
N3—C9—C3 178.5 (3) C17—C22—H22 119.5
C11—C10—C15 120.0 (2)
C2—N1—C1—N2 −0.4 (3) C2—S1—C10—C11 −100.58 (16)
C2—N1—C1—S2 179.05 (12) C2—S1—C10—C15 82.29 (16)
C4—N2—C1—N1 −0.7 (3) C15—C10—C11—C12 0.0 (3)
C4—N2—C1—S2 179.89 (12) S1—C10—C11—C12 −177.11 (19)
C16—S2—C1—N1 2.66 (17) C10—C11—C12—C13 −0.5 (4)
C16—S2—C1—N2 −177.85 (15) C11—C12—C13—C14 0.0 (4)
C1—N1—C2—C3 1.2 (2) C12—C13—C14—C15 1.1 (4)
C1—N1—C2—S1 −178.59 (12) C13—C14—C15—C10 −1.6 (3)
C10—S1—C2—N1 −5.74 (16) C11—C10—C15—C14 1.0 (3)
C10—S1—C2—C3 174.49 (14) S1—C10—C15—C14 178.16 (15)
N1—C2—C3—C4 −0.9 (2) C1—S2—C16—C17 −177.46 (16)
S1—C2—C3—C4 178.83 (12) S2—C16—C17—C18 141.33 (18)
N1—C2—C3—C9 178.32 (17) S2—C16—C17—C22 −42.7 (3)
S1—C2—C3—C9 −1.9 (2) C22—C17—C18—C19 −1.7 (3)
C1—N2—C4—C3 0.9 (2) C16—C17—C18—C19 174.6 (2)
C1—N2—C4—C5 −176.83 (15) C17—C18—C19—C20 0.4 (3)
C2—C3—C4—N2 −0.2 (2) C18—C19—C20—C21 1.3 (3)
C9—C3—C4—N2 −179.41 (16) C18—C19—C20—Cl1 −177.69 (17)
C2—C3—C4—C5 177.52 (15) C19—C20—C21—C22 −1.7 (3)
C9—C3—C4—C5 −1.7 (3) Cl1—C20—C21—C22 177.29 (18)
N2—C4—C5—C6 92.3 (2) C20—C21—C22—C17 0.4 (3)
C3—C4—C5—C6 −85.4 (2) C18—C17—C22—C21 1.2 (3)
C4—C5—C6—C7 −73.9 (2) C16—C17—C22—C21 −174.8 (2)
C4—C5—C6—C8 162.9 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C17–C22 ring.

D—H···A D—H H···A D···A D—H···A
C6—H6···Cg1i 0.98 2.92 3.789 (2) 148

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2554).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642–4647. [DOI] [PubMed]
  3. Al-Safarjalani, O. N., Zhou, X., Rais, R. H., Shi, J., Schinazi, R. F., Naguib, F. N. M. & El Kouni, M. H. (2005). Cancer Chemother. Pharmacol. 55, 541–551. [DOI] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Brunelle, M. N., Lucifora, J., Neyts, J., Villet, S., Holy, A., Trepo, C. & Zoulim, F. (2007). Antimicrob. Agents Chemother. 51, 2240–2243. [DOI] [PMC free article] [PubMed]
  6. Ding, Y., Girardet, J.-L., Smith, K. L., Larson, G., Prigaro, B., Wu, J. Z. & Yao, N. (2006). Bioorg. Chem. 34, 26–38. [DOI] [PubMed]
  7. El-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3126. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536812025810/pv2554sup1.cif

e-68-o2055-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025810/pv2554Isup2.hkl

e-68-o2055-Isup2.hkl (216.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025810/pv2554Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES