Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2066. doi: 10.1107/S160053681202555X

Methyl 2-{4-chloro-2-[5-chloro-2-(2-meth­oxy-2-oxoeth­oxy)benz­yl]phen­oxy}acetate

Michaela Pojarová a,*, Michal Dušek a, Zdeňka Sedláková b, Emanuel Makrlík c
PMCID: PMC3393330  PMID: 22807887

Abstract

In the crystal structure of the title compound, C19H18Cl2O6, mol­ecules are connected via weak C—H⋯π inter­actions into closely packed dimers.

Related literature  

For the synthesis, see: Ertul et al. (2009).graphic file with name e-68-o2066-scheme1.jpg

Experimental  

Crystal data  

  • C19H18Cl2O6

  • M r = 413.23

  • Triclinic, Inline graphic

  • a = 7.4727 (6) Å

  • b = 10.4704 (8) Å

  • c = 12.2796 (8) Å

  • α = 90.384 (6)°

  • β = 100.716 (6)°

  • γ = 94.365 (6)°

  • V = 941.08 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.41 mm−1

  • T = 120 K

  • 0.45 × 0.09 × 0.04 mm

Data collection  

  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.258, T max = 1.000

  • 8465 measured reflections

  • 3319 independent reflections

  • 2606 reflections with I > 2σ(I)

  • R int = 0.085

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.239

  • S = 1.02

  • 3319 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202555X/vm2175sup1.cif

e-68-o2066-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202555X/vm2175Isup2.hkl

e-68-o2066-Isup2.hkl (162.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202555X/vm2175Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.93 2.72 3.500 (3) 142
C17—H17ACg2i 0.97 2.67 3.450 (3) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was supported financially by the Praemium Academiae project of the Academy of Science of the Czech Republic, by the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 "Environmental Aspects of Sustainable Development of Society") and by the Czech Ministry of Education, Youth and Sports (project ME09058).

supplementary crystallographic information

Comment

The title compound is an intermediate in the synthesis of cyclic lactams (Ertul et al., 2009). The molecule consists of two phenyl rings substituted with a chlorine atom in para position (Fig. 1). The dihedral angle between the planes of the two aromatic rings is 72.40 (14)°. The arrangement of the molecules is influenced by C—H···π interactions between two neighbouring molecules leading to the formation of closely packed dimers (Table 1, Fig. 2). Due to the presence of aromatic rings, the molecules are also connected via system of π–π interactions (Cg1···Cg2i: 4.7735 (17) Å; Cg1 and Cg2 are the centroids of rings C1-C6 and C8-C13, respectively; symmetry code: (i) 1 -x, 1 - y, 2 - z).

Experimental

All chemicals used were purchased from Fluka and used without further purification. The title compound was synthesized by means of the method published by Ertul et al. (2009). Crystals were prepared by sublimation (mp. 125 °C, elemental analysis for C19H18Cl2O: calculated C 55.22, H 4.39; found C 55.20, H 4.41).

Refinement

The H atoms were all located in a difference map and repositioned geometrically. The distance between C and H atoms depends on the carbon atom type and are in a range of 0.93–0.97 Å. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

View of the title compound, together with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Projection along the c axis with highlighted C—H···π interactions.

Crystal data

C19H18Cl2O6 Z = 2
Mr = 413.23 F(000) = 428
Triclinic, P1 Dx = 1.458 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.5418 Å
a = 7.4727 (6) Å Cell parameters from 5088 reflections
b = 10.4704 (8) Å θ = 3.7–66.8°
c = 12.2796 (8) Å µ = 3.41 mm1
α = 90.384 (6)° T = 120 K
β = 100.716 (6)° Needle, colourless
γ = 94.365 (6)° 0.45 × 0.09 × 0.04 mm
V = 941.08 (12) Å3

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer 3319 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 2606 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.085
Detector resolution: 10.3784 pixels mm-1 θmax = 66.9°, θmin = 3.7°
Rotation method data acquisition using ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→12
Tmin = 0.258, Tmax = 1.000 l = −14→13
8465 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.184P)2] where P = (Fo2 + 2Fc2)/3
3319 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.92 e Å3
0 restraints Δρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The distance between C and H atoms depends on the carbon atom type and are in a range of 0.93–0.97 Å. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. Unfortunately, the quality of prepared crystals was very low, which lead to the higher R factors.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C16 0.2502 (6) 1.0126 (5) 1.4550 (4) 0.0432 (11)
H16A 0.1571 1.0210 1.4984 0.065*
H16B 0.3059 1.0958 1.4435 0.065*
H16C 0.3413 0.9607 1.4935 0.065*
Cl1 0.07945 (13) 0.74416 (9) 0.62990 (8) 0.0353 (4)
Cl2 0.79884 (14) 0.69660 (9) 1.38850 (8) 0.0377 (4)
O1 0.3117 (3) 0.8580 (2) 1.1050 (2) 0.0248 (6)
O4 0.6604 (3) 0.6107 (2) 0.9064 (2) 0.0238 (6)
O5 0.6164 (4) 0.5956 (3) 0.6838 (2) 0.0384 (7)
O6 0.7106 (4) 0.3966 (3) 0.6938 (2) 0.0343 (7)
O3 0.4473 (4) 0.9652 (3) 1.3038 (3) 0.0395 (7)
O2 0.1699 (4) 0.9529 (3) 1.3497 (2) 0.0361 (7)
C1 0.2473 (5) 0.8278 (3) 0.9956 (3) 0.0218 (7)
C13 0.6939 (5) 0.6230 (3) 1.0194 (3) 0.0215 (7)
C5 0.3291 (5) 0.7943 (3) 0.8183 (3) 0.0254 (8)
H5 0.4164 0.7883 0.7739 0.030*
C8 0.6565 (4) 0.7415 (3) 1.0613 (3) 0.0227 (8)
C4 0.1439 (5) 0.7769 (3) 0.7713 (3) 0.0258 (8)
C15 0.2866 (5) 0.9364 (3) 1.2822 (3) 0.0281 (8)
C6 0.3832 (5) 0.8203 (3) 0.9305 (3) 0.0224 (8)
C17 0.7040 (5) 0.4958 (3) 0.8609 (3) 0.0247 (8)
H17A 0.6289 0.4241 0.8823 0.030*
H17B 0.8311 0.4818 0.8885 0.030*
C7 0.5825 (5) 0.8440 (3) 0.9824 (3) 0.0223 (8)
H7A 0.6003 0.9256 1.0223 0.027*
H7B 0.6533 0.8509 0.9237 0.027*
C3 0.0112 (5) 0.7825 (3) 0.8353 (3) 0.0255 (8)
H3 −0.1118 0.7694 0.8031 0.031*
C2 0.0634 (5) 0.8080 (3) 0.9482 (3) 0.0234 (8)
H2 −0.0249 0.8118 0.9922 0.028*
C18 0.6699 (5) 0.5054 (3) 0.7362 (3) 0.0275 (8)
C10 0.7594 (5) 0.6685 (4) 1.2466 (3) 0.0279 (8)
C14 0.1824 (5) 0.8784 (3) 1.1734 (3) 0.0256 (8)
H14A 0.1171 0.7979 1.1860 0.031*
H14B 0.0945 0.9360 1.1381 0.031*
C11 0.7946 (5) 0.5516 (3) 1.2058 (3) 0.0275 (8)
H11 0.8394 0.4887 1.2543 0.033*
C12 0.7631 (5) 0.5283 (3) 1.0930 (3) 0.0251 (8)
H12 0.7876 0.4499 1.0654 0.030*
C9 0.6897 (5) 0.7628 (3) 1.1747 (3) 0.0239 (8)
H9 0.6654 0.8408 1.2033 0.029*
C19 0.6900 (7) 0.3897 (5) 0.5742 (4) 0.0423 (10)
H19A 0.7222 0.3076 0.5522 0.063*
H19B 0.7688 0.4560 0.5501 0.063*
H19C 0.5655 0.4008 0.5410 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C16 0.045 (2) 0.054 (3) 0.033 (2) 0.005 (2) 0.0143 (19) −0.012 (2)
Cl1 0.0456 (6) 0.0380 (6) 0.0222 (6) 0.0074 (4) 0.0048 (4) −0.0001 (4)
Cl2 0.0541 (7) 0.0351 (6) 0.0231 (6) 0.0083 (4) 0.0034 (4) −0.0029 (4)
O1 0.0295 (13) 0.0248 (13) 0.0223 (14) 0.0046 (10) 0.0094 (10) −0.0002 (10)
O4 0.0349 (13) 0.0184 (12) 0.0202 (13) 0.0044 (10) 0.0096 (10) 0.0001 (10)
O5 0.0581 (18) 0.0313 (15) 0.0285 (16) 0.0131 (13) 0.0108 (13) 0.0047 (12)
O6 0.0534 (17) 0.0296 (14) 0.0231 (15) 0.0105 (12) 0.0127 (12) −0.0013 (11)
O3 0.0335 (16) 0.0513 (18) 0.0335 (17) −0.0050 (13) 0.0101 (12) −0.0115 (14)
O2 0.0357 (14) 0.0468 (16) 0.0280 (16) 0.0029 (12) 0.0123 (11) −0.0084 (12)
C1 0.0345 (18) 0.0108 (15) 0.0220 (18) 0.0019 (13) 0.0098 (14) 0.0007 (13)
C13 0.0274 (16) 0.0176 (16) 0.0218 (18) 0.0018 (13) 0.0104 (13) 0.0025 (13)
C5 0.0326 (19) 0.0175 (16) 0.028 (2) 0.0039 (14) 0.0109 (15) 0.0040 (14)
C8 0.0233 (16) 0.0169 (16) 0.030 (2) 0.0003 (13) 0.0097 (14) 0.0040 (14)
C4 0.040 (2) 0.0153 (16) 0.0232 (19) 0.0047 (14) 0.0062 (15) 0.0002 (14)
C15 0.038 (2) 0.0222 (18) 0.027 (2) 0.0056 (15) 0.0122 (16) 0.0025 (15)
C6 0.0305 (17) 0.0118 (15) 0.0266 (19) 0.0029 (13) 0.0092 (14) 0.0021 (13)
C17 0.0327 (18) 0.0186 (16) 0.024 (2) 0.0036 (14) 0.0083 (15) −0.0041 (14)
C7 0.0289 (18) 0.0148 (15) 0.0255 (19) 0.0025 (13) 0.0104 (14) 0.0029 (14)
C3 0.0328 (18) 0.0183 (16) 0.026 (2) 0.0039 (14) 0.0069 (15) 0.0003 (14)
C2 0.0288 (17) 0.0184 (16) 0.0246 (19) 0.0006 (13) 0.0095 (14) −0.0005 (14)
C18 0.0324 (19) 0.0209 (18) 0.031 (2) −0.0004 (14) 0.0111 (15) −0.0014 (15)
C10 0.0318 (18) 0.0253 (18) 0.027 (2) 0.0013 (15) 0.0075 (15) −0.0006 (15)
C14 0.0319 (18) 0.0243 (18) 0.0230 (19) 0.0023 (14) 0.0116 (14) −0.0010 (14)
C11 0.0350 (19) 0.0246 (18) 0.024 (2) 0.0042 (15) 0.0068 (15) 0.0039 (15)
C12 0.0323 (18) 0.0172 (16) 0.027 (2) 0.0026 (14) 0.0091 (15) 0.0004 (14)
C9 0.0261 (17) 0.0204 (16) 0.0256 (19) 0.0001 (13) 0.0070 (14) −0.0020 (14)
C19 0.065 (3) 0.042 (2) 0.023 (2) 0.010 (2) 0.0153 (19) −0.0062 (18)

Geometric parameters (Å, º)

C16—O2 1.437 (6) C8—C7 1.517 (5)
C16—H16A 0.9600 C4—C3 1.380 (5)
C16—H16B 0.9600 C15—C14 1.513 (6)
C16—H16C 0.9600 C6—C7 1.508 (5)
Cl1—C4 1.738 (4) C17—C18 1.510 (5)
Cl2—C10 1.732 (4) C17—H17A 0.9700
O1—C1 1.367 (4) C17—H17B 0.9700
O1—C14 1.419 (4) C7—H7A 0.9700
O4—C13 1.368 (4) C7—H7B 0.9700
O4—C17 1.409 (4) C3—C2 1.386 (5)
O5—C18 1.198 (5) C3—H3 0.9300
O6—C18 1.328 (5) C2—H2 0.9300
O6—C19 1.449 (5) C10—C11 1.382 (5)
O3—C15 1.196 (5) C10—C9 1.394 (5)
O2—C15 1.330 (5) C14—H14A 0.9700
C1—C2 1.388 (5) C14—H14B 0.9700
C1—C6 1.411 (5) C11—C12 1.377 (5)
C13—C8 1.406 (5) C11—H11 0.9300
C13—C12 1.409 (5) C12—H12 0.9300
C5—C6 1.381 (5) C9—H9 0.9300
C5—C4 1.394 (6) C19—H19A 0.9600
C5—H5 0.9300 C19—H19B 0.9600
C8—C9 1.382 (5) C19—H19C 0.9600
O2—C16—H16A 109.5 C6—C7—H7A 108.6
O2—C16—H16B 109.5 C8—C7—H7A 108.6
H16A—C16—H16B 109.5 C6—C7—H7B 108.6
O2—C16—H16C 109.5 C8—C7—H7B 108.6
H16A—C16—H16C 109.5 H7A—C7—H7B 107.6
H16B—C16—H16C 109.5 C4—C3—C2 119.2 (3)
C1—O1—C14 117.9 (3) C4—C3—H3 120.4
C13—O4—C17 117.0 (3) C2—C3—H3 120.4
C18—O6—C19 116.1 (3) C3—C2—C1 120.1 (3)
C15—O2—C16 114.8 (3) C3—C2—H2 119.9
O1—C1—C2 124.3 (3) C1—C2—H2 119.9
O1—C1—C6 114.9 (3) O5—C18—O6 125.4 (4)
C2—C1—C6 120.8 (3) O5—C18—C17 126.2 (3)
O4—C13—C8 115.2 (3) O6—C18—C17 108.4 (3)
O4—C13—C12 124.9 (3) C11—C10—C9 120.6 (4)
C8—C13—C12 119.9 (3) C11—C10—Cl2 119.4 (3)
C6—C5—C4 120.2 (3) C9—C10—Cl2 119.9 (3)
C6—C5—H5 119.9 O1—C14—C15 107.4 (3)
C4—C5—H5 119.9 O1—C14—H14A 110.2
C9—C8—C13 119.0 (3) C15—C14—H14A 110.2
C9—C8—C7 120.9 (3) O1—C14—H14B 110.2
C13—C8—C7 120.1 (3) C15—C14—H14B 110.2
C3—C4—C5 121.3 (4) H14A—C14—H14B 108.5
C3—C4—Cl1 119.4 (3) C12—C11—C10 119.8 (3)
C5—C4—Cl1 119.3 (3) C12—C11—H11 120.1
O3—C15—O2 125.2 (4) C10—C11—H11 120.1
O3—C15—C14 125.8 (3) C11—C12—C13 120.2 (3)
O2—C15—C14 109.0 (3) C11—C12—H12 119.9
C5—C6—C1 118.4 (3) C13—C12—H12 119.9
C5—C6—C7 121.1 (3) C8—C9—C10 120.6 (3)
C1—C6—C7 120.4 (3) C8—C9—H9 119.7
O4—C17—C18 108.6 (3) C10—C9—H9 119.7
O4—C17—H17A 110.0 O6—C19—H19A 109.5
C18—C17—H17A 110.0 O6—C19—H19B 109.5
O4—C17—H17B 110.0 H19A—C19—H19B 109.5
C18—C17—H17B 110.0 O6—C19—H19C 109.5
H17A—C17—H17B 108.3 H19A—C19—H19C 109.5
C6—C7—C8 114.7 (3) H19B—C19—H19C 109.5

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.

D—H···A D—H H···A D···A D—H···A
C12—H12···Cg1i 0.93 2.72 3.500 (3) 142
C17—H17A···Cg2i 0.97 2.67 3.450 (3) 138

Symmetry code: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2175).

References

  1. Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Ertul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878–884.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202555X/vm2175sup1.cif

e-68-o2066-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202555X/vm2175Isup2.hkl

e-68-o2066-Isup2.hkl (162.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202555X/vm2175Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES