Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2070. doi: 10.1107/S1600536812025160

2-Fluoro-5-(4-fluoro­phen­yl)pyridine

Fazal Elahi a, Muhammad Adeel a, M Nawaz Tahir b,*, Peter Langer c, Saeed Ahmad a
PMCID: PMC3393334  PMID: 22807891

Abstract

In the title compound, C11H7F2N, the fluoro­benzene and the 2-fluoro­pyridine rings are oriented at a dihedral angle of 37.93 (5)°. In the crystal, only van der Waals inter­actions occur.

Related literature  

For a related structure, see: Siddle et al. (2010).graphic file with name e-68-o2070-scheme1.jpg

Experimental  

Crystal data  

  • C11H7F2N

  • M r = 191.18

  • Orthorhombic, Inline graphic

  • a = 20.365 (2) Å

  • b = 3.8303 (3) Å

  • c = 11.4835 (14) Å

  • V = 895.74 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.932, T max = 0.950

  • 3601 measured reflections

  • 1489 independent reflections

  • 1162 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.072

  • S = 1.03

  • 1489 reflections

  • 128 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.09 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025160/hb6833sup1.cif

e-68-o2070-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025160/hb6833Isup2.hkl

e-68-o2070-Isup2.hkl (71.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025160/hb6833Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. MA also acknowledges financial support from the World University Service, Germany, for an equipment grant and the Higher Education Commission, Pakistan, for a resource grant.

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1) is prepared as a precursor and for the study of biological activities.

The crystal structure of 6-fluoro-3-(4-methoxyphenyl)pyridin-2-ol (Siddle et al., 2010) has been published which is related to (I).

In (I) the fluorophenyl A (C1–C6/F1) and the 2-fluoropyridine B (C7—C11/N1/F2) are almost planar with r. m. s. deviations of 0.0025 Å and 0.0071 Å, rspectively. The dihedral angle between A/B is 37.93 (5)°. There does not exist any kind of π-interactions and the molecules must interact due to van Der Waals forces.

Experimental

To a 6 ml solution of 5-bromo-2-fluoropyridine (0.2 g, 1.136 mmol), 4-fluorophenylboronic acid (0.190 g, 1.36 mmol) in Dioxane and K3PO4 (0.361 g, 1.5 mmol, in 1 ml H2O) was added Pd(PPh3)4 (1.5 mole %) at 373 K under N2 atmosphere. The reaction mixture was refluxed for 8 h. Then 20 ml of distilled water was added. The aqueous layer was extracted three times with EtOAc (3×15 ml). The organic layer was evaporated in vacuo and title compound was obtained as a colourless solid. Yield: 0.185 g, 85%. M.p. 350–352 K. Crystallization from a saturated CHCl3 /CH3OH solution gave colorless rods of (I).

Refinement

The H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for all H-atoms. The absolute structure of the crystal used in this experiment was indeterminate.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C11H7F2N F(000) = 392
Mr = 191.18 Dx = 1.418 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1162 reflections
a = 20.365 (2) Å θ = 2.0–25.3°
b = 3.8303 (3) Å µ = 0.11 mm1
c = 11.4835 (14) Å T = 296 K
V = 895.74 (16) Å3 Rod, colorless
Z = 4 0.26 × 0.20 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 1489 independent reflections
Radiation source: fine-focus sealed tube 1162 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Detector resolution: 8.10 pixels mm-1 θmax = 25.5°, θmin = 2.0°
ω scans h = −21→24
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −2→4
Tmin = 0.932, Tmax = 0.950 l = −13→13
3601 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0344P)2] where P = (Fo2 + 2Fc2)/3
1489 reflections (Δ/σ)max < 0.001
128 parameters Δρmax = 0.11 e Å3
1 restraint Δρmin = −0.09 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.16885 (7) −0.0787 (5) 0.32200 (16) 0.1219 (8)
F2 0.60621 (6) 0.4445 (4) 0.58901 (13) 0.0984 (6)
N1 0.50519 (9) 0.2455 (5) 0.62465 (14) 0.0695 (7)
C1 0.35628 (9) 0.1391 (5) 0.43374 (16) 0.0497 (7)
C2 0.30232 (10) 0.2088 (6) 0.50519 (18) 0.0635 (9)
C3 0.23904 (11) 0.1346 (7) 0.4674 (2) 0.0767 (10)
C4 0.23116 (11) −0.0048 (7) 0.3597 (2) 0.0785 (11)
C5 0.28211 (11) −0.0803 (6) 0.28686 (19) 0.0713 (9)
C6 0.34494 (10) −0.0045 (5) 0.32527 (18) 0.0586 (8)
C7 0.42374 (9) 0.2219 (5) 0.47208 (15) 0.0468 (7)
C8 0.47047 (9) 0.3501 (6) 0.39465 (17) 0.0560 (8)
C9 0.53273 (10) 0.4268 (5) 0.43285 (19) 0.0609 (8)
C10 0.54517 (11) 0.3685 (6) 0.54736 (19) 0.0636 (9)
C11 0.44444 (10) 0.1735 (5) 0.58562 (18) 0.0603 (8)
H2 0.30881 0.30545 0.57858 0.0761*
H3 0.20297 0.17943 0.51471 0.0918*
H5 0.27490 −0.17911 0.21400 0.0855*
H6 0.38044 −0.05144 0.27678 0.0703*
H8 0.45950 0.38384 0.31684 0.0672*
H9 0.56470 0.51406 0.38289 0.0731*
H11 0.41423 0.08497 0.63868 0.0723*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0663 (9) 0.1613 (16) 0.1380 (14) −0.0246 (9) −0.0268 (10) 0.0455 (14)
F2 0.0764 (9) 0.1291 (14) 0.0898 (10) −0.0286 (8) −0.0211 (9) 0.0164 (9)
N1 0.0759 (13) 0.0821 (15) 0.0506 (10) −0.0147 (10) −0.0079 (10) 0.0035 (9)
C1 0.0565 (12) 0.0413 (12) 0.0512 (11) 0.0046 (9) 0.0032 (9) 0.0085 (9)
C2 0.0662 (15) 0.0613 (17) 0.0629 (13) 0.0067 (11) 0.0106 (11) 0.0089 (10)
C3 0.0576 (15) 0.086 (2) 0.0864 (18) 0.0097 (12) 0.0101 (13) 0.0230 (16)
C4 0.0586 (16) 0.082 (2) 0.095 (2) −0.0085 (11) −0.0191 (14) 0.0332 (15)
C5 0.0751 (16) 0.0737 (18) 0.0650 (14) −0.0054 (12) −0.0149 (12) 0.0147 (12)
C6 0.0617 (13) 0.0589 (15) 0.0551 (12) 0.0015 (10) −0.0007 (10) 0.0079 (10)
C7 0.0552 (12) 0.0393 (12) 0.0459 (10) 0.0062 (8) 0.0027 (9) 0.0011 (8)
C8 0.0600 (14) 0.0609 (14) 0.0471 (11) 0.0077 (10) 0.0020 (10) 0.0078 (9)
C9 0.0595 (14) 0.0634 (16) 0.0599 (14) −0.0003 (10) 0.0094 (10) 0.0089 (10)
C10 0.0596 (15) 0.0635 (16) 0.0678 (14) −0.0058 (10) −0.0088 (11) 0.0024 (12)
C11 0.0667 (14) 0.0627 (15) 0.0514 (12) −0.0080 (10) 0.0065 (10) 0.0050 (10)

Geometric parameters (Å, º)

F1—C4 1.370 (3) C7—C8 1.392 (3)
F2—C10 1.363 (3) C7—C11 1.383 (3)
N1—C10 1.293 (3) C8—C9 1.374 (3)
N1—C11 1.344 (3) C9—C10 1.358 (3)
C1—C2 1.397 (3) C2—H2 0.9300
C1—C6 1.381 (3) C3—H3 0.9300
C1—C7 1.477 (3) C5—H5 0.9300
C2—C3 1.389 (3) C6—H6 0.9300
C3—C4 1.357 (3) C8—H8 0.9300
C4—C5 1.364 (3) C9—H9 0.9300
C5—C6 1.384 (3) C11—H11 0.9300
C10—N1—C11 115.17 (18) F2—C10—C9 118.35 (19)
C2—C1—C6 118.31 (18) N1—C10—C9 127.4 (2)
C2—C1—C7 121.03 (17) N1—C11—C7 124.57 (18)
C6—C1—C7 120.66 (17) C1—C2—H2 120.00
C1—C2—C3 120.47 (19) C3—C2—H2 120.00
C2—C3—C4 118.4 (2) C2—C3—H3 121.00
F1—C4—C3 118.6 (2) C4—C3—H3 121.00
F1—C4—C5 117.8 (2) C4—C5—H5 121.00
C3—C4—C5 123.6 (2) C6—C5—H5 121.00
C4—C5—C6 117.6 (2) C1—C6—H6 119.00
C1—C6—C5 121.70 (19) C5—C6—H6 119.00
C1—C7—C8 121.42 (16) C7—C8—H8 120.00
C1—C7—C11 122.40 (17) C9—C8—H8 120.00
C8—C7—C11 116.18 (17) C8—C9—H9 122.00
C7—C8—C9 120.17 (18) C10—C9—H9 122.00
C8—C9—C10 116.52 (19) N1—C11—H11 118.00
F2—C10—N1 114.27 (19) C7—C11—H11 118.00
C11—N1—C10—F2 179.11 (18) C2—C3—C4—F1 180.0 (2)
C11—N1—C10—C9 −1.0 (3) C2—C3—C4—C5 0.8 (4)
C10—N1—C11—C7 0.1 (3) F1—C4—C5—C6 179.9 (2)
C6—C1—C2—C3 0.0 (3) C3—C4—C5—C6 −1.0 (4)
C7—C1—C2—C3 179.0 (2) C4—C5—C6—C1 0.7 (3)
C2—C1—C6—C5 −0.2 (3) C1—C7—C8—C9 179.62 (19)
C7—C1—C6—C5 −179.19 (19) C11—C7—C8—C9 −1.1 (3)
C2—C1—C7—C8 −142.1 (2) C1—C7—C11—N1 −179.87 (18)
C2—C1—C7—C11 38.7 (3) C8—C7—C11—N1 0.9 (3)
C6—C1—C7—C8 36.9 (3) C7—C8—C9—C10 0.4 (3)
C6—C1—C7—C11 −142.3 (2) C8—C9—C10—F2 −179.37 (19)
C1—C2—C3—C4 −0.3 (4) C8—C9—C10—N1 0.7 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6833).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siddle, J. S., Batsanov, A. S., Caldwell, S. T., Cooke, G. & Bryce, M. R. (2010). Tetrahedron, 66, 6138–6149.
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025160/hb6833sup1.cif

e-68-o2070-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025160/hb6833Isup2.hkl

e-68-o2070-Isup2.hkl (71.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025160/hb6833Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES