Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2071. doi: 10.1107/S1600536812025299

(2E)-2-(4-Hy­droxy-3-meth­oxy­benzyl­idene)hydrazinecarboxamide

M Nawaz Tahir a,*, Akbar Ali b, M Naveed Umar b, Ishtiaq Hussain c, Hazoor Ahmad Shad d
PMCID: PMC3393335  PMID: 22807892

Abstract

In the title compound, C9H11N3O3, two mol­ecules are present in the asymmetric unit in which the 4-hy­droxy-3-meth­oxy­benzaldehyde and hydrazinecarboxamide units are almost planar [with r.m.s. deviations 0.0212 and 0.0066 Å, respectively, in one mol­ecule and 0.0346 and 0.0095 Å, respectively, in the other] and are oriented at dihedral angles of 9.7 (3) and 16.6 (3)°. In both mol­ecules, two S(5) ring motifs are present due to N—H⋯N and O—H⋯O hydrogen bonds. In the crystal, the mol­ecules are dimerized with each other due to pairs of N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. O—H⋯O hydrogen bonds lead to the formation of a three-dimensional network.

Related literature  

For a related structure, see: Tahir et al. (2012). For graph–set notation, see: Bernstein et al. (1995).graphic file with name e-68-o2071-scheme1.jpg

Experimental  

Crystal data  

  • C9H11N3O3

  • M r = 209.21

  • Orthorhombic, Inline graphic

  • a = 13.9945 (14) Å

  • b = 5.0440 (4) Å

  • c = 27.286 (2) Å

  • V = 1926.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.16 × 0.14 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.957, T max = 0.966

  • 8297 measured reflections

  • 1931 independent reflections

  • 1046 reflections with I > 2σ(I)

  • R int = 0.081

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.113

  • S = 0.98

  • 1931 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025299/bq2364sup1.cif

e-68-o2071-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025299/bq2364Isup2.hkl

e-68-o2071-Isup2.hkl (93.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025299/bq2364Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 2.17 2.627 (6) 115
O2—H2A⋯O5i 0.82 2.34 3.108 (7) 156
N2—H2B⋯O6ii 0.86 2.11 2.923 (7) 158
N3—H3A⋯O6iii 0.86 2.16 2.987 (7) 162
N3—H3B⋯N1 0.86 2.31 2.674 (8) 106
O5—H5A⋯O4 0.82 2.18 2.632 (6) 115
N5—H5B⋯O3iv 0.86 2.08 2.909 (7) 161
N6—H6A⋯O3v 0.86 2.13 2.965 (7) 164
N6—H6B⋯N4 0.86 2.32 2.677 (7) 105

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1) has been synthesized as a derivative. Recently we have reported the crystal structure of (2E)-2-(3,4-dimethoxybenzylidene)hydrazinecarboxamide (Tahir et al., 2012) which is related to the title compound.

In (I), two molecules are present in the asymmetric unit, which differ slightly from each other geometrically. In one molecule, the parts of 4-hydroxy-3-methoxybenzaldehyde and hydrazinecarboxamide A (C1—C8/O1/O2) and B (N1/N2/C9/N3/O3), are almost planar with r.m.s. deviations of 0.0212 Å and 0.0066 Å, respectively. The dihedral angle between A/B is 16.57 (26)°. In the second molecule, the similar groups C (C10—C17/O4/O5) and D (N4/N5/C18/N6/O6) are also planar with r.m.s. deviations of 0.0346 Å and 0.0095 Å, respectively, and the dihedral angle between C/D is 9.74 (28)°. In both molecules two S(5) ring motifs (Bernstein et al., 1995) are present due to H–bonding of N—H···N and O—H···O types (Table 1, Fig. 1). The molecules are dimerized with each other due to N—H···O type of H-bondings and form R22(8) ring motifs (Table 1, Fig. 2). The molecules are stabilized in the form of three-dimensional polymeric network.

Experimental

Equimolar quantities of 4-hydroxy-3-methoxybenzaldehyde and hydrazinecarboxamide were refluxed in methanol along with few drops of acetic acid as catalyst for 45 min resulting in light orange solution. The solution was kept at room temperature which afforded light orange needles after few days.

Refinement

In the absence of anomalous scattering all Friedel pairs were merged. The H-atoms were positioned geometrically (C–H = 0.93—0.96 Å, N—H = 0.86 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy and methyl and x = 1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The partial packing (PLATON; Spek, 2009) which shows that molecules form ring motifs in three-dimensional polymeric network.

Crystal data

C9H11N3O3 F(000) = 880
Mr = 209.21 Dx = 1.443 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 2704 reflections
a = 13.9945 (14) Å θ = 1.8–26.0°
b = 5.0440 (4) Å µ = 0.11 mm1
c = 27.286 (2) Å T = 296 K
V = 1926.0 (3) Å3 Needle, colorless
Z = 8 0.30 × 0.16 × 0.14 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 1931 independent reflections
Radiation source: fine-focus sealed tube 1046 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.081
Detector resolution: 8.00 pixels mm-1 θmax = 26.0°, θmin = 2.9°
ω scans h = −17→17
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −3→6
Tmin = 0.957, Tmax = 0.966 l = −33→33
8297 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.039P)2] where P = (Fo2 + 2Fc2)/3
1931 reflections (Δ/σ)max < 0.001
275 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1256 (3) −0.4282 (10) 0.51673 (17) 0.051 (2)
O2 0.3120 (3) −0.4570 (10) 0.52664 (17) 0.0437 (19)
O3 −0.0668 (3) 0.7125 (10) 0.3095 (2) 0.0423 (16)
N1 0.0730 (4) 0.3033 (11) 0.38554 (19) 0.035 (2)
N2 0.0463 (3) 0.5085 (12) 0.3552 (2) 0.041 (2)
N3 −0.1032 (4) 0.3268 (12) 0.3479 (2) 0.048 (2)
C1 0.1988 (4) 0.0965 (14) 0.4299 (2) 0.031 (3)
C2 0.1392 (5) −0.0745 (13) 0.4553 (3) 0.035 (3)
C3 0.1765 (4) −0.2580 (13) 0.4879 (2) 0.031 (3)
C4 0.2739 (5) −0.2735 (12) 0.4950 (2) 0.031 (2)
C5 0.3343 (4) −0.1063 (13) 0.4703 (2) 0.039 (3)
C6 0.2965 (4) 0.0792 (13) 0.4384 (2) 0.037 (3)
C7 0.0252 (4) −0.4398 (15) 0.5100 (3) 0.049 (3)
C8 0.1602 (5) 0.2916 (13) 0.3966 (2) 0.032 (2)
C9 −0.0445 (4) 0.5255 (14) 0.3362 (2) 0.031 (2)
O4 −0.0199 (3) 0.9504 (9) 0.10503 (17) 0.0413 (16)
O5 −0.2032 (3) 0.8811 (10) 0.08760 (18) 0.049 (2)
O6 0.2021 (3) −0.1888 (9) 0.31097 (17) 0.0430 (17)
N4 0.0595 (3) 0.2198 (10) 0.23612 (18) 0.0307 (17)
N5 0.0884 (4) 0.0189 (11) 0.2668 (2) 0.040 (2)
N6 0.2384 (4) 0.1926 (10) 0.2705 (2) 0.044 (2)
C10 −0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2)
C11 −0.0188 (4) 0.5961 (13) 0.1670 (2) 0.029 (2)
C12 −0.0626 (5) 0.7582 (13) 0.1326 (2) 0.030 (2)
C13 −0.1603 (4) 0.7257 (13) 0.1226 (2) 0.032 (3)
C14 −0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)
C15 −0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2)
C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3)
C17 −0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2)
C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)
H2 0.07352 −0.06591 0.45048 0.0424*
H2A 0.26884 −0.54591 0.53860 0.0649*
H2B 0.08747 0.62892 0.34795 0.0490*
H3A −0.16059 0.32439 0.33656 0.0569*
H3B −0.08372 0.20124 0.36668 0.0569*
H5 0.40001 −0.11747 0.47486 0.0464*
H6 0.33740 0.19515 0.42224 0.0444*
H7A 0.01136 −0.49086 0.47685 0.0593*
H7B −0.00207 −0.26864 0.51642 0.0593*
H7C −0.00159 −0.56760 0.53213 0.0593*
H8 0.20166 0.41433 0.38265 0.0377*
H5A −0.16623 0.99847 0.07909 0.0729*
H5B 0.04750 −0.10020 0.27510 0.0479*
H6A 0.29709 0.18908 0.27988 0.0534*
H6B 0.21835 0.31947 0.25217 0.0534*
H11 0.04595 0.61546 0.17385 0.0351*
H14 −0.27877 0.52269 0.14088 0.0458*
H15 −0.20577 0.25249 0.19730 0.0421*
H16A 0.11246 0.81983 0.10266 0.0675*
H16B 0.09561 1.03701 0.14284 0.0675*
H16C 0.10226 1.11826 0.08749 0.0675*
H17 −0.06819 0.08711 0.23996 0.0368*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.028 (3) 0.070 (4) 0.055 (4) −0.003 (3) −0.004 (3) 0.032 (3)
O2 0.030 (3) 0.052 (4) 0.049 (3) 0.005 (2) −0.003 (2) 0.013 (3)
O3 0.028 (2) 0.039 (3) 0.060 (3) 0.000 (2) −0.011 (2) 0.016 (3)
N1 0.031 (3) 0.031 (4) 0.042 (4) 0.001 (3) −0.010 (3) 0.012 (3)
N2 0.024 (3) 0.036 (4) 0.062 (4) −0.005 (3) −0.013 (3) 0.013 (3)
N3 0.026 (3) 0.055 (5) 0.062 (4) −0.003 (3) −0.010 (3) 0.020 (4)
C1 0.025 (4) 0.038 (5) 0.030 (4) 0.000 (3) 0.001 (3) 0.005 (3)
C2 0.029 (4) 0.037 (5) 0.040 (4) 0.007 (4) −0.007 (3) 0.001 (4)
C3 0.029 (4) 0.039 (5) 0.026 (4) 0.000 (3) 0.003 (3) 0.003 (3)
C4 0.036 (4) 0.033 (4) 0.023 (4) 0.010 (4) −0.005 (3) −0.002 (3)
C5 0.024 (4) 0.039 (5) 0.054 (5) 0.001 (3) −0.004 (3) 0.007 (4)
C6 0.029 (4) 0.033 (5) 0.049 (5) −0.002 (3) 0.003 (3) 0.007 (4)
C7 0.027 (4) 0.074 (6) 0.047 (5) −0.009 (4) −0.003 (4) 0.006 (4)
C8 0.033 (4) 0.032 (4) 0.030 (4) −0.005 (4) 0.003 (3) 0.000 (3)
C9 0.023 (4) 0.032 (4) 0.038 (4) 0.001 (3) 0.002 (3) −0.005 (4)
O4 0.026 (2) 0.045 (3) 0.053 (3) 0.002 (2) 0.004 (2) 0.018 (3)
O5 0.036 (3) 0.056 (4) 0.054 (4) 0.008 (3) −0.008 (3) 0.023 (3)
O6 0.037 (3) 0.037 (3) 0.055 (3) 0.006 (2) −0.013 (3) 0.016 (3)
N4 0.033 (3) 0.032 (3) 0.027 (3) 0.001 (3) −0.003 (2) 0.008 (3)
N5 0.037 (3) 0.035 (4) 0.048 (4) −0.008 (3) −0.009 (3) 0.019 (3)
N6 0.028 (3) 0.041 (4) 0.064 (5) −0.004 (3) −0.007 (3) 0.011 (3)
C10 0.035 (4) 0.033 (4) 0.024 (4) −0.001 (4) −0.006 (3) −0.004 (3)
C11 0.023 (3) 0.038 (4) 0.027 (4) −0.001 (3) −0.003 (3) −0.001 (4)
C12 0.031 (4) 0.025 (4) 0.035 (4) −0.002 (3) −0.001 (3) −0.002 (3)
C13 0.029 (4) 0.040 (5) 0.027 (4) 0.006 (4) −0.002 (3) 0.005 (4)
C14 0.022 (3) 0.050 (5) 0.043 (5) 0.000 (4) −0.005 (3) −0.001 (4)
C15 0.026 (3) 0.039 (4) 0.041 (4) −0.006 (4) 0.001 (3) 0.012 (4)
C16 0.027 (4) 0.052 (5) 0.056 (6) −0.008 (4) 0.000 (4) 0.005 (4)
C17 0.027 (4) 0.031 (4) 0.033 (4) 0.004 (3) −0.007 (3) 0.004 (3)
C18 0.030 (4) 0.032 (4) 0.038 (4) −0.004 (4) −0.002 (3) −0.005 (4)

Geometric parameters (Å, º)

O1—C3 1.365 (8) C1—C8 1.444 (9)
O1—C7 1.418 (7) C2—C3 1.386 (9)
O2—C4 1.373 (8) C3—C4 1.379 (9)
O3—C9 1.232 (8) C4—C5 1.371 (9)
O2—H2A 0.8200 C5—C6 1.383 (8)
O4—C12 1.365 (8) C2—H2 0.9300
O4—C16 1.426 (7) C5—H5 0.9300
O5—C13 1.374 (8) C6—H6 0.9300
O6—C18 1.244 (8) C7—H7C 0.9600
O5—H5A 0.8200 C7—H7A 0.9600
N1—C8 1.259 (9) C7—H7B 0.9600
N1—N2 1.377 (8) C8—H8 0.9300
N2—C9 1.375 (7) C10—C11 1.409 (9)
N3—C9 1.335 (9) C10—C15 1.384 (8)
N2—H2B 0.8600 C10—C17 1.456 (8)
N3—H3B 0.8600 C11—C12 1.388 (9)
N3—H3A 0.8600 C12—C13 1.404 (9)
N4—N5 1.375 (7) C13—C14 1.373 (9)
N4—C17 1.282 (7) C14—C15 1.372 (10)
N5—C18 1.353 (9) C11—H11 0.9300
N6—C18 1.336 (9) C14—H14 0.9300
N5—H5B 0.8600 C15—H15 0.9300
N6—H6B 0.8600 C16—H16A 0.9600
N6—H6A 0.8600 C16—H16B 0.9600
C1—C2 1.386 (9) C16—H16C 0.9600
C1—C6 1.390 (8) C17—H17 0.9300
C3—O1—C7 117.9 (5) C5—C6—H6 119.00
C4—O2—H2A 109.00 H7A—C7—H7C 109.00
C12—O4—C16 117.8 (5) H7A—C7—H7B 109.00
C13—O5—H5A 109.00 O1—C7—H7B 109.00
N2—N1—C8 116.3 (5) O1—C7—H7C 109.00
N1—N2—C9 121.6 (5) O1—C7—H7A 109.00
C9—N2—H2B 119.00 H7B—C7—H7C 110.00
N1—N2—H2B 119.00 C1—C8—H8 119.00
C9—N3—H3A 120.00 N1—C8—H8 118.00
H3A—N3—H3B 120.00 C11—C10—C15 119.1 (5)
C9—N3—H3B 120.00 C15—C10—C17 119.2 (5)
N5—N4—C17 114.3 (5) C11—C10—C17 121.6 (5)
N4—N5—C18 122.7 (5) C10—C11—C12 119.4 (5)
C18—N5—H5B 119.00 C11—C12—C13 119.5 (6)
N4—N5—H5B 119.00 O4—C12—C11 126.7 (6)
H6A—N6—H6B 120.00 O4—C12—C13 113.7 (5)
C18—N6—H6A 120.00 O5—C13—C14 119.4 (5)
C18—N6—H6B 120.00 O5—C13—C12 119.6 (5)
C2—C1—C6 118.0 (6) C12—C13—C14 121.0 (6)
C2—C1—C8 120.9 (6) C13—C14—C15 119.0 (6)
C6—C1—C8 121.1 (6) C10—C15—C14 121.9 (6)
C1—C2—C3 120.7 (6) N4—C17—C10 122.8 (5)
O1—C3—C2 126.4 (5) N5—C18—N6 115.7 (6)
C2—C3—C4 120.0 (6) O6—C18—N5 120.4 (6)
O1—C3—C4 113.5 (5) O6—C18—N6 123.8 (6)
O2—C4—C5 119.0 (6) C10—C11—H11 120.00
O2—C4—C3 120.7 (6) C12—C11—H11 120.00
C3—C4—C5 120.4 (6) C13—C14—H14 120.00
C4—C5—C6 119.3 (5) C15—C14—H14 120.00
C1—C6—C5 121.6 (6) C10—C15—H15 119.00
N1—C8—C1 123.1 (6) C14—C15—H15 119.00
O3—C9—N2 120.3 (6) O4—C16—H16A 110.00
N2—C9—N3 115.6 (6) O4—C16—H16B 109.00
O3—C9—N3 124.1 (5) O4—C16—H16C 110.00
C3—C2—H2 120.00 H16A—C16—H16B 109.00
C1—C2—H2 120.00 H16A—C16—H16C 109.00
C6—C5—H5 120.00 H16B—C16—H16C 109.00
C4—C5—H5 120.00 N4—C17—H17 119.00
C1—C6—H6 119.00 C10—C17—H17 119.00
C7—O1—C3—C2 6.5 (9) O1—C3—C4—O2 3.3 (8)
C7—O1—C3—C4 −176.1 (6) O1—C3—C4—C5 −177.0 (5)
C16—O4—C12—C11 2.9 (9) C2—C3—C4—C5 0.6 (9)
C16—O4—C12—C13 −175.3 (6) C3—C4—C5—C6 0.4 (9)
C8—N1—N2—C9 172.7 (6) O2—C4—C5—C6 −180.0 (5)
N2—N1—C8—C1 176.9 (5) C4—C5—C6—C1 −1.5 (9)
N1—N2—C9—N3 −2.0 (8) C15—C10—C11—C12 −0.8 (9)
N1—N2—C9—O3 179.3 (6) C17—C10—C11—C12 175.9 (6)
C17—N4—N5—C18 −175.8 (6) C11—C10—C15—C14 0.5 (9)
N5—N4—C17—C10 −176.6 (5) C17—C10—C15—C14 −176.2 (6)
N4—N5—C18—O6 −177.8 (5) C11—C10—C17—N4 1.8 (9)
N4—N5—C18—N6 0.3 (9) C15—C10—C17—N4 178.5 (6)
C6—C1—C8—N1 175.4 (6) C10—C11—C12—O4 −178.3 (6)
C2—C1—C6—C5 1.5 (9) C10—C11—C12—C13 −0.2 (9)
C6—C1—C2—C3 −0.4 (10) O4—C12—C13—O5 0.2 (8)
C8—C1—C2—C3 −178.8 (6) O4—C12—C13—C14 179.8 (6)
C8—C1—C6—C5 179.8 (6) C11—C12—C13—O5 −178.2 (5)
C2—C1—C8—N1 −6.3 (10) C11—C12—C13—C14 1.4 (9)
C1—C2—C3—C4 −0.6 (10) O5—C13—C14—C15 178.0 (6)
C1—C2—C3—O1 176.7 (6) C12—C13—C14—C15 −1.7 (10)
C2—C3—C4—O2 −179.0 (6) C13—C14—C15—C10 0.7 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1 0.82 2.17 2.627 (6) 115
O2—H2A···O5i 0.82 2.34 3.108 (7) 156
N2—H2B···O6ii 0.86 2.11 2.923 (7) 158
N3—H3A···O6iii 0.86 2.16 2.987 (7) 162
N3—H3B···N1 0.86 2.31 2.674 (8) 106
O5—H5A···O4 0.82 2.18 2.632 (6) 115
N5—H5B···O3iv 0.86 2.08 2.909 (7) 161
N6—H6A···O3v 0.86 2.13 2.965 (7) 164
N6—H6B···N4 0.86 2.32 2.677 (7) 105

Symmetry codes: (i) −x, −y, z+1/2; (ii) x, y+1, z; (iii) x−1/2, −y, z; (iv) x, y−1, z; (v) x+1/2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2364).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Tahir, M. N., Umar, M. N., Ali, A. & Shad, H. A. (2012). Acta Cryst. E68, o1724. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025299/bq2364sup1.cif

e-68-o2071-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025299/bq2364Isup2.hkl

e-68-o2071-Isup2.hkl (93.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025299/bq2364Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES