Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2072. doi: 10.1107/S1600536812025822

3-[(E)-(Pyridin-3-yl­imino)­meth­yl]phenol

M Nawaz Tahir a,*, Akbar Ali b, M Naveed Umar b, Ishtiaq Hussain c, Hazoor Ahmad Shad d
PMCID: PMC3393889  PMID: 22798754

Abstract

Two independent mol­ecules are present in the asymmetric unit of the title compound, C12H10N2O, in which the 3-hy­droxy­benzaldehyde and the pyridin-3-amine units are almost planar [r.m.s. deviations of 0.0236 and 0.0116Å, respectively, in one mol­ecule and 0.0245 and 0.0162Å, respectively, in the other] and are oriented at dihedral angles of 7.21 (7) and 14.77 (7)°. In the crystal, mol­ecules of the same type form inversion dimers via pairs of O—H⋯N hydrogen bonds, forming R 2 2(20) ring motifs. There exist π–π inter­actions between the benzene and pyridine rings of molecules of the same type with centroid–centroid distances of 3.7127 (10) and 3.8439 (10) Å.

Related literature  

For a related structure, see: Wiebcke & Mootz (1982). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o2072-scheme1.jpg

Experimental  

Crystal data  

  • C12H10N2O

  • M r = 198.22

  • Triclinic, Inline graphic

  • a = 5.7768 (5) Å

  • b = 12.1450 (11) Å

  • c = 14.8194 (13) Å

  • α = 78.207 (4)°

  • β = 89.641 (3)°

  • γ = 77.601 (4)°

  • V = 993.26 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.957, T max = 0.966

  • 14798 measured reflections

  • 3876 independent reflections

  • 2704 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.118

  • S = 1.04

  • 3876 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025822/rk2365sup1.cif

e-68-o2072-sup1.cif (27.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025822/rk2365Isup2.hkl

e-68-o2072-Isup2.hkl (186.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025822/rk2365Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 2.00 2.810 (2) 172
O2—H2A⋯N4ii 0.82 1.99 2.8058 (12) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

In the crystal structure, (Fig. 1), of title compound, two molecules in the asymmetric unit are present, which differ slightly from each other geometrically. In one molecule, the 3-hydroxybenzaldehyde group A (C1–C7/O1) and the pyridin-3-amine moiety B (C8–C12/N1/N2) are planar with r.m.s. deviation of 0.0236Å and 0.0116Å, respectively. The dihedral angle between A/B is 14.78 (7)°. In second molecule, the similar groups C (C13–C19/O2) and D (C20–C24/N3/N4) are also planar with r.m.s. deviation of 0.0245Å and 0.0162Å, respectively and the dihedral angle between C/D is 7.21 (7)°. Both molecules are dimerized with themselves due to intermolecular H-bonding of O—H···N type (Table 1, Fig. 2) and form R22(20) ring motif (Bernstein et al., 1995). There exist π···π interaction between Cg1···Cg2iii and Cg2···Cg1iii at a distance of 3.8439 (11)Å. Similarly, there exist π···π interaction between Cg3···Cg4iv and Cg4···Cg3iv at a distance of 3.7126 (10)Å. Cg1, Cg2, Cg3 and Cg4 are the centroids of (C8–C12/N2), (C1–C6), (C20–C24/N4) and (C13–C18) rings, respectively. Symmetry codes: (iii) = -x, -y, -z; (iv) = -x, -y, -z+1.

The structure of related compounds - trans-N-benzylidene-3-pyridinamine has been published by Wiebcke & Mootz, 1982.

Experimental

The title compound has been synthesized as a derivative. Equimolar quantities of 3-hydroxybenzaldehyde and pyridin-3-amine were refluxed in methanol along with few drops of acetic acid as catalyst for 30 min resulting in colourless solution. The solution was kept at room temperature which affoarded colourless prisms after three days.

Refinement

The H-atoms were positioned geometrically (C—H = 0.93Å, O—H = 0.82Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy and x = 1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are shown as small circles of arbitrary radii.

Fig. 2.

Fig. 2.

The partial packing which shows that molecules form dimers. Symmetry codes: (i) = -x+1, -y, -z; (ii) = -x+1, -y, -z+1.

Crystal data

C12H10N2O Z = 4
Mr = 198.22 F(000) = 416
Triclinic, P1 Dx = 1.326 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.7768 (5) Å Cell parameters from 2704 reflections
b = 12.1450 (11) Å θ = 1.8–26.0°
c = 14.8194 (13) Å µ = 0.09 mm1
α = 78.207 (4)° T = 296 K
β = 89.641 (3)° Prism, colourless
γ = 77.601 (4)° 0.30 × 0.25 × 0.20 mm
V = 993.26 (15) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 3876 independent reflections
Radiation source: fine-focus sealed tube 2704 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 8.00 pixels mm-1 θmax = 26.0°, θmin = 1.8°
ω–scans h = −6→7
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −14→14
Tmin = 0.957, Tmax = 0.966 l = −18→18
14798 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1521P] where P = (Fo2 + 2Fc2)/3
3876 reflections (Δ/σ)max < 0.001
261 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3002 (3) −0.38329 (11) 0.13058 (10) 0.0720 (6)
N1 0.1603 (3) 0.05071 (12) 0.10067 (9) 0.0500 (5)
N2 0.4028 (3) 0.29991 (13) 0.00539 (10) 0.0566 (6)
C1 0.1241 (3) −0.29847 (16) 0.15019 (12) 0.0525 (6)
C2 0.1340 (3) −0.18383 (14) 0.12760 (11) 0.0470 (6)
C3 −0.0509 (3) −0.09881 (15) 0.14672 (11) 0.0453 (6)
C4 −0.2498 (3) −0.13042 (17) 0.18808 (12) 0.0562 (7)
C5 −0.2555 (3) −0.24564 (19) 0.21309 (13) 0.0622 (8)
C6 −0.0716 (3) −0.32902 (17) 0.19536 (12) 0.0603 (7)
C7 −0.0320 (3) 0.02167 (15) 0.12514 (11) 0.0478 (6)
C8 0.1768 (3) 0.16709 (14) 0.08358 (11) 0.0450 (5)
C9 0.0388 (3) 0.25436 (16) 0.12042 (12) 0.0574 (7)
C10 0.0867 (4) 0.36199 (16) 0.09900 (13) 0.0642 (7)
C11 0.2672 (3) 0.38158 (16) 0.04216 (13) 0.0609 (7)
C12 0.3563 (3) 0.19524 (15) 0.02750 (12) 0.0506 (6)
O2 −0.01543 (13) 0.39654 (6) 0.38845 (7) 0.0683 (5)
N3 0.19245 (12) −0.03508 (6) 0.39821 (6) 0.0500 (5)
N4 0.64794 (12) −0.29360 (6) 0.47831 (6) 0.0537 (5)
C13 −0.12229 (13) 0.31831 (6) 0.36181 (7) 0.0512 (6)
C14 −0.02002 (12) 0.20228 (6) 0.37886 (6) 0.0467 (6)
C15 −0.1372 (3) 0.12369 (15) 0.35433 (11) 0.0451 (6)
C16 −0.3621 (3) 0.16340 (18) 0.31206 (12) 0.0573 (7)
C17 −0.4595 (3) 0.28010 (19) 0.29175 (13) 0.0638 (7)
C18 −0.3421 (3) 0.35724 (17) 0.31563 (12) 0.0598 (7)
C19 −0.0232 (3) 0.00155 (15) 0.37155 (11) 0.0480 (6)
C20 0.3013 (3) −0.15308 (14) 0.41181 (11) 0.0436 (5)
C21 0.2182 (3) −0.23740 (15) 0.37925 (12) 0.0516 (6)
C22 0.3527 (3) −0.34747 (15) 0.39586 (12) 0.0553 (7)
C23 0.5661 (3) −0.37225 (15) 0.44406 (12) 0.0547 (6)
C24 0.5160 (3) −0.18691 (15) 0.46091 (12) 0.0491 (6)
H1 0.38859 −0.35466 0.09392 0.1080*
H2 0.26668 −0.16302 0.09910 0.0564*
H4 −0.37822 −0.07438 0.19884 0.0674*
H5 −0.38665 −0.26689 0.24252 0.0747*
H6 −0.07728 −0.40633 0.21353 0.0723*
H7 −0.16522 0.07872 0.12950 0.0574*
H9 −0.08377 0.23995 0.15891 0.0689*
H10 −0.00331 0.42169 0.12306 0.0771*
H11 0.29688 0.45537 0.02849 0.0732*
H12 0.45151 0.13687 0.00348 0.0606*
H2A 0.09555 0.36277 0.42494 0.1024*
H14 0.13035 0.17617 0.40734 0.0560*
H16 −0.44634 0.11167 0.29759 0.0688*
H17 −0.60742 0.30686 0.26131 0.0765*
H18 −0.40970 0.43573 0.30089 0.0717*
H19 −0.11186 −0.05113 0.36265 0.0576*
H21 0.07331 −0.21935 0.34665 0.0620*
H22 0.29991 −0.40511 0.37463 0.0663*
H23 0.65766 −0.44690 0.45330 0.0656*
H24 0.57225 −0.13110 0.48342 0.0589*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0813 (10) 0.0476 (8) 0.0915 (11) −0.0207 (7) 0.0199 (8) −0.0179 (7)
N1 0.0536 (9) 0.0454 (9) 0.0502 (9) −0.0099 (7) 0.0086 (7) −0.0094 (7)
N2 0.0648 (9) 0.0486 (10) 0.0605 (10) −0.0178 (8) 0.0029 (7) −0.0147 (8)
C1 0.0600 (11) 0.0510 (11) 0.0503 (11) −0.0189 (9) 0.0007 (8) −0.0123 (9)
C2 0.0508 (10) 0.0507 (11) 0.0430 (10) −0.0191 (8) 0.0057 (7) −0.0093 (8)
C3 0.0466 (9) 0.0554 (11) 0.0358 (9) −0.0146 (8) −0.0006 (7) −0.0099 (8)
C4 0.0474 (10) 0.0757 (14) 0.0498 (11) −0.0184 (9) 0.0040 (8) −0.0180 (10)
C5 0.0592 (12) 0.0834 (16) 0.0531 (12) −0.0352 (11) 0.0082 (9) −0.0145 (10)
C6 0.0728 (13) 0.0638 (13) 0.0529 (12) −0.0372 (11) 0.0017 (9) −0.0083 (9)
C7 0.0481 (10) 0.0534 (11) 0.0406 (10) −0.0049 (8) 0.0003 (8) −0.0132 (8)
C8 0.0507 (9) 0.0424 (10) 0.0400 (9) −0.0059 (8) −0.0024 (7) −0.0087 (8)
C9 0.0662 (12) 0.0530 (12) 0.0500 (11) −0.0053 (9) 0.0103 (9) −0.0120 (9)
C10 0.0836 (14) 0.0471 (12) 0.0605 (12) −0.0029 (10) 0.0044 (10) −0.0198 (10)
C11 0.0778 (13) 0.0447 (11) 0.0613 (12) −0.0143 (10) −0.0061 (10) −0.0120 (9)
C12 0.0550 (10) 0.0472 (11) 0.0514 (11) −0.0103 (8) 0.0046 (8) −0.0156 (8)
O2 0.0658 (8) 0.0451 (8) 0.0890 (10) −0.0024 (6) −0.0092 (7) −0.0127 (7)
N3 0.0533 (9) 0.0449 (9) 0.0511 (9) −0.0079 (7) −0.0042 (7) −0.0112 (7)
N4 0.0559 (9) 0.0460 (9) 0.0565 (9) −0.0070 (7) 0.0029 (7) −0.0089 (7)
C13 0.0488 (10) 0.0517 (11) 0.0492 (10) −0.0036 (8) 0.0047 (8) −0.0096 (8)
C14 0.0430 (9) 0.0482 (11) 0.0441 (10) −0.0014 (8) −0.0026 (7) −0.0075 (8)
C15 0.0454 (9) 0.0539 (11) 0.0352 (9) −0.0067 (8) 0.0054 (7) −0.0121 (8)
C16 0.0438 (10) 0.0779 (14) 0.0521 (11) −0.0082 (9) 0.0017 (8) −0.0230 (10)
C17 0.0444 (10) 0.0849 (16) 0.0539 (12) 0.0083 (10) −0.0056 (8) −0.0191 (11)
C18 0.0546 (11) 0.0592 (12) 0.0540 (11) 0.0103 (9) 0.0030 (9) −0.0092 (10)
C19 0.0526 (10) 0.0538 (11) 0.0422 (10) −0.0158 (8) 0.0053 (8) −0.0159 (8)
C20 0.0506 (9) 0.0428 (10) 0.0385 (9) −0.0111 (8) 0.0044 (7) −0.0100 (8)
C21 0.0586 (10) 0.0509 (11) 0.0470 (10) −0.0135 (9) −0.0027 (8) −0.0122 (8)
C22 0.0721 (12) 0.0460 (11) 0.0512 (11) −0.0168 (9) 0.0018 (9) −0.0140 (9)
C23 0.0675 (12) 0.0404 (10) 0.0540 (11) −0.0093 (9) 0.0101 (9) −0.0075 (8)
C24 0.0526 (10) 0.0442 (10) 0.0521 (11) −0.0122 (8) 0.0020 (8) −0.0122 (8)

Geometric parameters (Å, º)

O1—C1 1.360 (2) C6—H6 0.9300
O1—H1 0.8200 C7—H7 0.9300
O2—C13 1.3594 (11) C9—H9 0.9300
O2—H2A 0.8200 C10—H10 0.9300
N1—C7 1.265 (2) C11—H11 0.9300
N1—C8 1.408 (2) C12—H12 0.9300
N2—C11 1.333 (2) C13—C14 1.3775 (11)
N2—C12 1.331 (2) C13—C18 1.388 (2)
N3—C20 1.4094 (19) C14—C15 1.3870 (19)
N3—C19 1.2658 (19) C15—C16 1.389 (3)
N4—C23 1.3374 (19) C15—C19 1.459 (3)
N4—C24 1.330 (2) C16—C17 1.379 (3)
C1—C6 1.390 (3) C17—C18 1.369 (3)
C1—C2 1.377 (3) C20—C21 1.389 (2)
C2—C3 1.389 (2) C20—C24 1.381 (2)
C3—C4 1.388 (3) C21—C22 1.369 (3)
C3—C7 1.460 (3) C22—C23 1.373 (3)
C4—C5 1.380 (3) C14—H14 0.9300
C5—C6 1.366 (3) C16—H16 0.9300
C8—C12 1.381 (2) C17—H17 0.9300
C8—C9 1.388 (3) C18—H18 0.9300
C9—C10 1.368 (3) C19—H19 0.9300
C10—C11 1.366 (3) C21—H21 0.9300
C2—H2 0.9300 C22—H22 0.9300
C4—H4 0.9300 C23—H23 0.9300
C5—H5 0.9300 C24—H24 0.9300
C1—O1—H1 109.00 C10—C11—H11 118.00
C13—O2—H2A 109.00 C8—C12—H12 118.00
C7—N1—C8 120.93 (16) N2—C12—H12 118.00
C11—N2—C12 116.56 (16) O2—C13—C18 118.56 (11)
C19—N3—C20 121.28 (12) C14—C13—C18 119.06 (11)
C23—N4—C24 116.83 (12) O2—C13—C14 122.38 (8)
C2—C1—C6 119.03 (17) C13—C14—C15 121.21 (10)
O1—C1—C6 118.63 (17) C14—C15—C19 120.14 (14)
O1—C1—C2 122.33 (16) C16—C15—C19 120.83 (17)
C1—C2—C3 121.07 (16) C14—C15—C16 119.02 (16)
C2—C3—C7 119.93 (16) C15—C16—C17 119.49 (18)
C2—C3—C4 119.13 (17) C16—C17—C18 121.11 (17)
C4—C3—C7 120.93 (17) C13—C18—C17 119.99 (17)
C3—C4—C5 119.48 (18) N3—C19—C15 122.14 (15)
C4—C5—C6 121.09 (17) N3—C20—C24 115.98 (14)
C1—C6—C5 120.09 (19) C21—C20—C24 117.11 (16)
N1—C7—C3 121.91 (16) N3—C20—C21 126.89 (15)
C9—C8—C12 117.15 (16) C20—C21—C22 119.00 (16)
N1—C8—C12 116.06 (15) C21—C22—C23 119.57 (17)
N1—C8—C9 126.72 (16) N4—C23—C22 122.80 (16)
C8—C9—C10 118.67 (17) N4—C24—C20 124.66 (16)
C9—C10—C11 119.83 (18) C13—C14—H14 119.00
N2—C11—C10 123.09 (18) C15—C14—H14 119.00
N2—C12—C8 124.68 (17) C15—C16—H16 120.00
C3—C2—H2 119.00 C17—C16—H16 120.00
C1—C2—H2 119.00 C16—C17—H17 119.00
C3—C4—H4 120.00 C18—C17—H17 119.00
C5—C4—H4 120.00 C13—C18—H18 120.00
C4—C5—H5 119.00 C17—C18—H18 120.00
C6—C5—H5 119.00 N3—C19—H19 119.00
C1—C6—H6 120.00 C15—C19—H19 119.00
C5—C6—H6 120.00 C20—C21—H21 120.00
N1—C7—H7 119.00 C22—C21—H21 121.00
C3—C7—H7 119.00 C21—C22—H22 120.00
C8—C9—H9 121.00 C23—C22—H22 120.00
C10—C9—H9 121.00 N4—C23—H23 119.00
C11—C10—H10 120.00 C22—C23—H23 119.00
C9—C10—H10 120.00 N4—C24—H24 118.00
N2—C11—H11 118.00 C20—C24—H24 118.00
C8—N1—C7—C3 −177.57 (15) C12—C8—C9—C10 0.4 (3)
C7—N1—C8—C9 25.4 (3) C9—C8—C12—N2 −1.2 (3)
C7—N1—C8—C12 −157.68 (16) N1—C8—C12—N2 −178.40 (16)
C12—N2—C11—C10 −0.7 (3) C8—C9—C10—C11 0.2 (3)
C11—N2—C12—C8 1.3 (3) C9—C10—C11—N2 0.0 (3)
C20—N3—C19—C15 −178.07 (14) O2—C13—C14—C15 177.30 (11)
C19—N3—C20—C21 16.4 (2) C18—C13—C14—C15 −2.84 (17)
C19—N3—C20—C24 −165.28 (15) O2—C13—C18—C17 −176.90 (14)
C23—N4—C24—C20 1.1 (2) C14—C13—C18—C17 3.2 (2)
C24—N4—C23—C22 −2.3 (2) C13—C14—C15—C16 −0.2 (2)
C6—C1—C2—C3 −2.0 (3) C13—C14—C15—C19 178.83 (12)
O1—C1—C6—C5 −177.63 (17) C14—C15—C16—C17 2.8 (2)
O1—C1—C2—C3 178.60 (16) C19—C15—C16—C17 −176.18 (16)
C2—C1—C6—C5 2.9 (3) C14—C15—C19—N3 −8.8 (2)
C1—C2—C3—C4 −0.9 (3) C16—C15—C19—N3 170.20 (15)
C1—C2—C3—C7 177.73 (16) C15—C16—C17—C18 −2.5 (3)
C2—C3—C7—N1 −9.6 (2) C16—C17—C18—C13 −0.6 (3)
C4—C3—C7—N1 169.05 (16) N3—C20—C21—C22 177.27 (15)
C2—C3—C4—C5 2.9 (3) C24—C20—C21—C22 −1.0 (2)
C7—C3—C4—C5 −175.76 (16) N3—C20—C24—N4 −177.97 (14)
C3—C4—C5—C6 −2.0 (3) C21—C20—C24—N4 0.5 (3)
C4—C5—C6—C1 −1.0 (3) C20—C21—C22—C23 −0.1 (3)
N1—C8—C9—C10 177.26 (17) C21—C22—C23—N4 1.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2i 0.82 2.00 2.810 (2) 172
O2—H2A···N4ii 0.82 1.99 2.8058 (12) 174

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2365).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wiebcke, M. & Mootz, D. (1982). Acta Cryst. B38, 2008–2013.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025822/rk2365sup1.cif

e-68-o2072-sup1.cif (27.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025822/rk2365Isup2.hkl

e-68-o2072-Isup2.hkl (186.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025822/rk2365Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES