Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2081. doi: 10.1107/S1600536812024841

3,9′-Bi(9H-fluorene)

Jie Liu a,*, Wentao Yu a
PMCID: PMC3393897  PMID: 22798762

Abstract

The title compound [systematic name: 9-(9H-fluoren-3-yl)-9H-fluorene], C26H18, was obtained unintentionally as the product of the synthesis of a compound based on fluorene–thio­phene units. The two fluorene rings are connected through C atoms in the 3- and 9′-positions, and the dihedral angle between the mean planes of the two fluorene units is 78.57 (6)°.

Related literature  

For the crystal structures of related compounds, see: Dougherty et al. (1978); Sridevi et al. (2006). For the synthesis of the compound, see: Stille et al. (1993, 1998); Grasa & Nolan (2001). For the inter­molecular C—H⋯π inter­actions, see: Tsuzuki et al. (2000); Nishio (2004).graphic file with name e-68-o2081-scheme1.jpg

Experimental  

Crystal data  

  • C26H18

  • M r = 330.40

  • Orthorhombic, Inline graphic

  • a = 6.22600 (1) Å

  • b = 8.3968 (2) Å

  • c = 33.5357 (7) Å

  • V = 1753.20 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.45 × 0.22 × 0.16 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005) T min = 0.969, T max = 0.989

  • 15454 measured reflections

  • 2352 independent reflections

  • 2014 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.091

  • S = 1.04

  • 2352 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024841/zj2080sup1.cif

e-68-o2081-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024841/zj2080Isup2.hkl

e-68-o2081-Isup2.hkl (113.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024841/zj2080Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812024841/zj2080Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (grant No. 51021062) and the 973 program of the People’s Republic of China (grant No. 2010CB630702).

supplementary crystallographic information

Comment

The molecule of the title complound (I) (Fig. 1) as the isomer of 9,9'-bi-9H-fluorene (9,9'-BF) is noncentrosymmetric, and the space group is P212121. The two fluorene groups of the compound are like the letter 'T' in shape with a dihedral angle of 78.57 (6)°. Also, it is found that benzene rings of the fluorene units are not in the same plane, and the dihedral angles are 10.54 (6) and 5.84 (6)°, respectively. The crystal packing is stabilized by intermolecular C—-H···π interactions (Fig. 3).

Experimental

The title compound, 3,9'-BF, was obtained unintentionally as the product of an attempted synthesis of 2,5-bis(9H-fluoren-9-yl)thiophene through Still reaction method. n-Butyllithium (20 ml, 2.5 M in hexane, 50 mmol) was added dropwise at -78 °C into a consistently stirred mixture of thiophene (22 mmol, 1.8 ml) and dry THF (80 ml), and the mixture would be with further stirring for 2 h at room temperature under an atmosphere of dry argon. After cooling the reaction mixture to -78 °C tri-n-butyltin chloride (15 ml) was added drop-wise to the mixture system. Then, the mixture was stirred continuously over one night before being poured into saturated NH4Cl water solution (100 ml). After extraction with diethyl ether, the organic layer was dried over anhydrous MgSO4 and the yellow fluid bis[tri-n-butyltin] thiophene (TBSB) was obtained. Furthermore, DMF (10 ml) was added to the mixture of TBSB (2.5 mmol, 1.654 g), 9-bromo-fluorene (6.25 mmol, 1.53 g) and potassium fluoride (2.5 mmol, 0.145 g) with stirring about 15 min. Appropriate amount of tetrakis (triphenylphosphine) palladium (0) was added to the stirring system and refluxed at 100 °C for 16 h under an atmosphere of dry argon. After extraction with dichloromethane (30 ml), the mixture was purified by silica-gel column chromatography to give 3,9'-BF, 9,9'-BF and 2,5-bis(9H-fluoren-9-yl)thiophene. Finally, single crystals of 3,9'-BF were obtained by recrystallizing from dichloromethane.

Refinement

All the H atoms were positioned geometrically [C–H = 0.93, 0.96 and 0.98 Å] and refined using a riding model with Uiso (H) = 1.2 Ueq (C). In the absence of significant anomalous scattering, Friedel pairs were merged; the absolute configuration was not determined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Part of the packing of the title compound, viewed down the a direction.

Fig. 3.

Fig. 3.

A view of the C—H ··· π interactions (dotted lines) in the crystal structure of the title compound.

Fig. 4.

Fig. 4.

Reaction scheme showing the formation of 3,9'-BF, 9,9'-BF and 2,5-bis(9H-fluoren-9-yl)thiophene (BFT).

Crystal data

C26H18 F(000) = 696
Mr = 330.40 Dx = 1.252 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac2ab Cell parameters from 5140 reflections
a = 6.22600 (1) Å θ = 2.4–24.1°
b = 8.3968 (2) Å µ = 0.07 mm1
c = 33.5357 (7) Å T = 293 K
V = 1753.20 (6) Å3 Prism, colourless
Z = 4 0.45 × 0.22 × 0.16 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2352 independent reflections
Radiation source: fine-focus sealed tube 2014 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (APEX2; Bruker,2005) h = −8→8
Tmin = 0.969, Tmax = 0.989 k = −10→9
15454 measured reflections l = −43→43

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1328P] where P = (Fo2 + 2Fc2)/3
2352 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6920 (3) 0.3409 (2) 0.20770 (5) 0.0533 (5)
H1 0.6063 0.2764 0.1917 0.064*
C2 0.8720 (4) 0.4144 (2) 0.19215 (5) 0.0578 (5)
H2 0.9063 0.4002 0.1654 0.069*
C3 1.0021 (3) 0.5087 (3) 0.21587 (5) 0.0581 (5)
H3 1.1234 0.5565 0.2050 0.070*
C4 0.9531 (3) 0.5326 (2) 0.25577 (5) 0.0503 (4)
H4 1.0414 0.5950 0.2718 0.060*
C5 0.7212 (3) 0.5705 (2) 0.34358 (4) 0.0424 (4)
H5 0.8501 0.6264 0.3441 0.051*
C6 0.5806 (3) 0.5777 (2) 0.37597 (5) 0.0451 (4)
C7 0.3899 (3) 0.4923 (3) 0.37462 (5) 0.0572 (5)
H7 0.2957 0.4980 0.3961 0.069*
C8 0.3361 (3) 0.3984 (3) 0.34195 (5) 0.0599 (5)
H8 0.2081 0.3413 0.3416 0.072*
C9 0.4518 (3) 0.3053 (2) 0.27093 (5) 0.0527 (5)
H9A 0.4584 0.1908 0.2746 0.063*
H9B 0.3175 0.3326 0.2579 0.063*
C10 0.6411 (3) 0.36460 (19) 0.24736 (5) 0.0445 (4)
C11 0.7703 (3) 0.46193 (19) 0.27133 (4) 0.0409 (4)
C12 0.6660 (3) 0.47883 (19) 0.31054 (4) 0.0394 (4)
C13 0.4749 (3) 0.3913 (2) 0.31014 (5) 0.0457 (4)
C1' 0.6708 (4) 0.9656 (3) 0.38487 (6) 0.0685 (6)
H1' 0.5425 0.9613 0.3707 0.082*
C2' 0.7935 (6) 1.1033 (3) 0.38502 (7) 0.0870 (9)
H2' 0.7461 1.1922 0.3710 0.104*
C3' 0.9840 (6) 1.1101 (3) 0.40558 (7) 0.0895 (9)
H3' 1.0644 1.2035 0.4051 0.107*
C4' 1.0581 (4) 0.9809 (3) 0.42685 (6) 0.0748 (7)
H4' 1.1876 0.9861 0.4406 0.090*
C5' 1.1220 (4) 0.6453 (3) 0.47611 (6) 0.0678 (6)
H5' 1.2371 0.7117 0.4821 0.081*
C6' 1.1042 (5) 0.4983 (3) 0.49389 (6) 0.0810 (7)
H6' 1.2075 0.4656 0.5122 0.097*
C7' 0.9355 (5) 0.3993 (3) 0.48493 (6) 0.0841 (8)
H7' 0.9269 0.2998 0.4970 0.101*
C8' 0.7779 (4) 0.4454 (3) 0.45821 (5) 0.0665 (6)
H8' 0.6643 0.3776 0.4522 0.080*
C9' 0.6353 (3) 0.6749 (2) 0.41279 (5) 0.0484 (4)
H9' 0.5018 0.6934 0.4276 0.058*
C10' 0.7422 (3) 0.8349 (2) 0.40610 (5) 0.0514 (5)
C11' 0.9357 (3) 0.8430 (2) 0.42730 (5) 0.0539 (5)
C12' 0.9652 (3) 0.6932 (2) 0.44908 (5) 0.0512 (5)
C13' 0.7921 (3) 0.5934 (2) 0.44068 (4) 0.0486 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0685 (12) 0.0461 (10) 0.0453 (9) 0.0044 (10) −0.0133 (9) −0.0061 (8)
C2 0.0726 (12) 0.0581 (11) 0.0425 (9) 0.0099 (11) 0.0001 (9) −0.0040 (8)
C3 0.0576 (11) 0.0652 (12) 0.0515 (10) 0.0027 (11) 0.0064 (8) −0.0017 (9)
C4 0.0454 (9) 0.0568 (10) 0.0487 (9) −0.0012 (9) −0.0007 (7) −0.0064 (8)
C5 0.0395 (8) 0.0459 (9) 0.0418 (8) −0.0055 (8) −0.0037 (7) −0.0027 (7)
C6 0.0460 (9) 0.0486 (10) 0.0406 (8) −0.0027 (8) −0.0032 (7) 0.0011 (7)
C7 0.0518 (10) 0.0723 (13) 0.0474 (9) −0.0129 (11) 0.0049 (8) −0.0008 (9)
C8 0.0533 (11) 0.0703 (13) 0.0560 (10) −0.0224 (11) −0.0015 (9) 0.0000 (9)
C9 0.0563 (10) 0.0489 (10) 0.0527 (9) −0.0080 (9) −0.0127 (9) −0.0048 (8)
C10 0.0519 (9) 0.0358 (8) 0.0457 (8) 0.0059 (8) −0.0106 (7) 0.0003 (7)
C11 0.0444 (8) 0.0365 (8) 0.0417 (8) 0.0053 (8) −0.0071 (7) −0.0017 (7)
C12 0.0402 (8) 0.0372 (8) 0.0409 (8) 0.0011 (7) −0.0052 (6) 0.0010 (7)
C13 0.0477 (9) 0.0439 (9) 0.0456 (8) −0.0082 (9) −0.0078 (7) 0.0014 (7)
C1' 0.0966 (17) 0.0588 (12) 0.0499 (10) 0.0056 (14) 0.0028 (11) −0.0061 (9)
C2' 0.148 (3) 0.0539 (13) 0.0587 (13) −0.0025 (18) 0.0172 (16) −0.0040 (11)
C3' 0.141 (3) 0.0634 (15) 0.0643 (13) −0.0384 (18) 0.0314 (17) −0.0150 (12)
C4' 0.0866 (15) 0.0826 (16) 0.0553 (11) −0.0337 (15) 0.0164 (11) −0.0219 (12)
C5' 0.0586 (11) 0.0961 (17) 0.0488 (10) 0.0035 (13) −0.0035 (9) −0.0247 (12)
C6' 0.0970 (17) 0.0944 (18) 0.0515 (11) 0.0283 (17) −0.0225 (12) −0.0155 (13)
C7' 0.130 (2) 0.0692 (14) 0.0530 (11) 0.0115 (17) −0.0230 (14) −0.0030 (11)
C8' 0.0916 (16) 0.0617 (12) 0.0463 (9) −0.0063 (13) −0.0088 (11) −0.0038 (9)
C9' 0.0479 (9) 0.0566 (11) 0.0406 (8) −0.0019 (9) 0.0039 (7) −0.0064 (8)
C10' 0.0649 (12) 0.0515 (10) 0.0379 (8) −0.0024 (10) 0.0085 (8) −0.0105 (8)
C11' 0.0619 (11) 0.0610 (11) 0.0389 (8) −0.0110 (10) 0.0108 (8) −0.0151 (8)
C12' 0.0499 (10) 0.0679 (12) 0.0359 (7) −0.0042 (10) 0.0060 (7) −0.0145 (8)
C13' 0.0566 (10) 0.0562 (10) 0.0330 (7) −0.0004 (9) 0.0022 (7) −0.0087 (7)

Geometric parameters (Å, º)

C1—C2 1.382 (3) C1'—C10' 1.382 (3)
C1—C10 1.382 (2) C1'—C2' 1.385 (4)
C1—H1 0.9300 C1'—H1' 0.9300
C2—C3 1.384 (3) C2'—C3' 1.374 (4)
C2—H2 0.9300 C2'—H2' 0.9300
C3—C4 1.387 (2) C3'—C4' 1.378 (4)
C3—H3 0.9300 C3'—H3' 0.9300
C4—C11 1.386 (2) C4'—C11' 1.387 (3)
C4—H4 0.9300 C4'—H4' 0.9300
C5—C12 1.392 (2) C5'—C6' 1.375 (4)
C5—C6 1.396 (2) C5'—C12' 1.392 (3)
C5—H5 0.9300 C5'—H5' 0.9300
C6—C7 1.388 (3) C6'—C7' 1.373 (4)
C6—C9' 1.519 (2) C6'—H6' 0.9300
C7—C8 1.391 (3) C7'—C8' 1.384 (3)
C7—H7 0.9300 C7'—H7' 0.9300
C8—C13 1.374 (3) C8'—C13' 1.378 (3)
C8—H8 0.9300 C8'—H8' 0.9300
C9—C10 1.504 (2) C9'—C13' 1.515 (2)
C9—C13 1.507 (2) C9'—C10' 1.516 (3)
C9—H9A 0.9700 C9'—H9' 0.9800
C9—H9B 0.9700 C10'—C11' 1.401 (3)
C10—C11 1.400 (2) C11'—C12' 1.466 (3)
C11—C12 1.473 (2) C12'—C13' 1.394 (3)
C12—C13 1.399 (2)
C2—C1—C10 119.00 (17) C10'—C1'—C2' 118.9 (2)
C2—C1—H1 120.5 C10'—C1'—H1' 120.5
C10—C1—H1 120.5 C2'—C1'—H1' 120.5
C1—C2—C3 120.87 (17) C3'—C2'—C1' 120.9 (3)
C1—C2—H2 119.6 C3'—C2'—H2' 119.6
C3—C2—H2 119.6 C1'—C2'—H2' 119.6
C2—C3—C4 120.59 (18) C2'—C3'—C4' 121.1 (2)
C2—C3—H3 119.7 C2'—C3'—H3' 119.5
C4—C3—H3 119.7 C4'—C3'—H3' 119.5
C11—C4—C3 118.81 (18) C3'—C4'—C11' 118.6 (2)
C11—C4—H4 120.6 C3'—C4'—H4' 120.7
C3—C4—H4 120.6 C11'—C4'—H4' 120.7
C12—C5—C6 119.22 (15) C6'—C5'—C12' 119.1 (2)
C12—C5—H5 120.4 C6'—C5'—H5' 120.5
C6—C5—H5 120.4 C12'—C5'—H5' 120.5
C7—C6—C5 119.27 (15) C7'—C6'—C5' 120.7 (2)
C7—C6—C9' 119.73 (16) C7'—C6'—H6' 119.7
C5—C6—C9' 120.99 (15) C5'—C6'—H6' 119.7
C6—C7—C8 121.63 (17) C6'—C7'—C8' 121.0 (2)
C6—C7—H7 119.2 C6'—C7'—H7' 119.5
C8—C7—H7 119.2 C8'—C7'—H7' 119.5
C13—C8—C7 119.00 (17) C13'—C8'—C7' 118.9 (2)
C13—C8—H8 120.5 C13'—C8'—H8' 120.6
C7—C8—H8 120.5 C7'—C8'—H8' 120.6
C10—C9—C13 103.00 (14) C13'—C9'—C10' 102.05 (15)
C10—C9—H9A 111.2 C13'—C9'—C6 113.82 (15)
C13—C9—H9A 111.2 C10'—C9'—C6 117.03 (14)
C10—C9—H9B 111.2 C13'—C9'—H9' 107.8
C13—C9—H9B 111.2 C10'—C9'—H9' 107.8
H9A—C9—H9B 109.1 C6—C9'—H9' 107.8
C1—C10—C11 120.33 (17) C1'—C10'—C11' 120.0 (2)
C1—C10—C9 129.63 (17) C1'—C10'—C9' 129.7 (2)
C11—C10—C9 109.98 (14) C11'—C10'—C9' 110.21 (17)
C4—C11—C10 120.37 (15) C4'—C11'—C10' 120.5 (2)
C4—C11—C12 131.06 (15) C4'—C11'—C12' 130.8 (2)
C10—C11—C12 108.38 (15) C10'—C11'—C12' 108.59 (17)
C5—C12—C13 120.54 (15) C5'—C12'—C13' 120.0 (2)
C5—C12—C11 130.90 (15) C5'—C12'—C11' 131.35 (19)
C13—C12—C11 108.41 (14) C13'—C12'—C11' 108.56 (16)
C8—C13—C12 120.32 (16) C8'—C13'—C12' 120.38 (19)
C8—C13—C9 129.64 (16) C8'—C13'—C9' 128.99 (19)
C12—C13—C9 109.97 (15) C12'—C13'—C9' 110.59 (16)
C10—C1—C2—C3 0.9 (3) C12'—C5'—C6'—C7' 0.6 (3)
C1—C2—C3—C4 −0.6 (3) C5'—C6'—C7'—C8' −0.8 (4)
C2—C3—C4—C11 −0.7 (3) C6'—C7'—C8'—C13' −0.2 (3)
C12—C5—C6—C7 0.5 (3) C7—C6—C9'—C13' 100.0 (2)
C12—C5—C6—C9' 179.39 (16) C5—C6—C9'—C13' −78.9 (2)
C5—C6—C7—C8 0.7 (3) C7—C6—C9'—C10' −141.21 (18)
C9'—C6—C7—C8 −178.28 (19) C5—C6—C9'—C10' 39.9 (2)
C6—C7—C8—C13 −0.5 (3) C2'—C1'—C10'—C11' 0.0 (3)
C2—C1—C10—C11 0.1 (3) C2'—C1'—C10'—C9' 176.29 (18)
C2—C1—C10—C9 177.08 (18) C13'—C9'—C10'—C1' −176.25 (18)
C13—C9—C10—C1 −172.24 (18) C6—C9'—C10'—C1' 58.8 (3)
C13—C9—C10—C11 4.98 (19) C13'—C9'—C10'—C11' 0.32 (17)
C3—C4—C11—C10 1.7 (3) C6—C9'—C10'—C11' −124.61 (17)
C3—C4—C11—C12 −172.68 (18) C3'—C4'—C11'—C10' 0.8 (3)
C1—C10—C11—C4 −1.4 (2) C3'—C4'—C11'—C12' −175.29 (19)
C9—C10—C11—C4 −178.95 (15) C1'—C10'—C11'—C4' −0.7 (3)
C1—C10—C11—C12 174.13 (15) C9'—C10'—C11'—C4' −177.67 (16)
C9—C10—C11—C12 −3.39 (18) C1'—C10'—C11'—C12' 176.20 (17)
C6—C5—C12—C13 −1.7 (2) C9'—C10'—C11'—C12' −0.76 (18)
C6—C5—C12—C11 173.23 (16) C6'—C5'—C12'—C13' 0.6 (3)
C4—C11—C12—C5 −0.3 (3) C6'—C5'—C12'—C11' 176.7 (2)
C10—C11—C12—C5 −175.22 (17) C4'—C11'—C12'—C5' 1.0 (3)
C4—C11—C12—C13 175.13 (17) C10'—C11'—C12'—C5' −175.45 (17)
C10—C11—C12—C13 0.20 (18) C4'—C11'—C12'—C13' 177.41 (18)
C7—C8—C13—C12 −0.8 (3) C10'—C11'—C12'—C13' 0.92 (18)
C7—C8—C13—C9 −177.28 (19) C7'—C8'—C13'—C12' 1.5 (3)
C5—C12—C13—C8 1.9 (2) C7'—C8'—C13'—C9' −175.90 (19)
C11—C12—C13—C8 −174.10 (17) C5'—C12'—C13'—C8' −1.7 (3)
C5—C12—C13—C9 179.04 (16) C11'—C12'—C13'—C8' −178.54 (17)
C11—C12—C13—C9 3.06 (18) C5'—C12'—C13'—C9' 176.14 (15)
C10—C9—C13—C8 171.96 (19) C11'—C12'—C13'—C9' −0.72 (18)
C10—C9—C13—C12 −4.86 (19) C10'—C9'—C13'—C8' 177.84 (18)
C10'—C1'—C2'—C3' 0.6 (3) C6—C9'—C13'—C8' −55.1 (2)
C1'—C2'—C3'—C4' −0.4 (4) C10'—C9'—C13'—C12' 0.26 (17)
C2'—C3'—C4'—C11' −0.3 (3) C6—C9'—C13'—C12' 127.29 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2080).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dougherty, D. A., LIort, F. M., Mislow, K. & Blount, J. F. (1978). Tetrahedron, 34, 1285–1300.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Grasa, G. A. & Nolan, S. P. (2001). Org. Lett. 3, 119–122. [DOI] [PubMed]
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Nishio, M. (2004). CrystEngComm, 6, 130–158.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sridevi, V. S., Leong, W. K. & Zhu, Y. H. (2006). Organometallics, 25, 283–288.
  10. Stille, J. K., Echavarren, A. M., Williams, R. M. & Hendrix, J. A. (1993). Org. Synth. 71, 97.
  11. Stille, J. K., Echavarren, A. M., Williams, R. M. & Hendrix, J. A. (1998). Org. Synth. Coll. 9, 553.
  12. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746–3753.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024841/zj2080sup1.cif

e-68-o2081-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024841/zj2080Isup2.hkl

e-68-o2081-Isup2.hkl (113.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024841/zj2080Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812024841/zj2080Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES