Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2087. doi: 10.1107/S1600536812025524

(E,E)-1,2-Bis[3-(prop-2-yn-1-yl­oxy)benzyl­idene]hydrazine

Wisam Naji Atiyah Al-Mehana a, Rosiyah Yahya a, Faridah Sonsudin b, Kong Mun Lo a,*
PMCID: PMC3393903  PMID: 22798768

Abstract

The mol­ecule of the title compound, C20H16N2O2, is centrosymmetric, the inversion center being located at the mid-point of the central azine bond. The conformation around the C=N bond is E. The whole mol­ecule (except for the H atoms) is essentially planar, with an r.m.s. deviation of 0.07 Å. In the crystal, mol­ecules are linked head-to-tail by pairs of C—H⋯O hydrogen bonds, forming inversion dimers, and resulting in the formation of chains propagating along [011].

Related literature  

For biological properties and practical appplications of diacetyl­ene compounds, see: Zloh et al. (2007); Buckley & Neumeister (1992). For the structure of (E,E)-1,2-bis­[3-(prop-2-yn-1-yl­oxy)benzyl­indene]­hydrazine see: Al-Mehana et al. (2011).graphic file with name e-68-o2087-scheme1.jpg

Experimental  

Crystal data  

  • C20H16N2O2

  • M r = 316.35

  • Triclinic, Inline graphic

  • a = 4.5700 (3) Å

  • b = 9.4947 (7) Å

  • c = 9.8920 (8) Å

  • α = 67.986 (7)°

  • β = 77.487 (6)°

  • γ = 84.132 (6)°

  • V = 388.37 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.1 × 0.08 × 0.08 mm

Data collection  

  • Agilent SuperNova Dual (Cu) Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.440, T max = 1.000

  • 2956 measured reflections

  • 1710 independent reflections

  • 1508 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.122

  • S = 1.02

  • 1710 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025524/su2430sup1.cif

e-68-o2087-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025524/su2430Isup2.hkl

e-68-o2087-Isup2.hkl (84.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025524/su2430Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.52 3.4467 (16) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the University of Malaya (FRGS grant No. FP001/2010 A) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

supplementary crystallographic information

Comment

Diacetylene compounds are known to have antitumour and antimicrobial activities (Zloh et al., 2007). In addition to their biological activities, diacetylenes are also used as coating and surface treatment agents and as inner cladding material for silica fibre-optic cores (Buckley & Neumeister, 1992). A recent study detailed the crystal structure of (E,E)-1,2-Bis[4-(prop-2-yn-1-yloxy)benzylindene]hydrazine (Al-Mehana et al., 2011). Herein we report on the synthesis and crystal structure of the 3-substituted isomer of this diacetylene compound.

Like the above mentioned compound, the title compound, Fig. 1, is also centrosymmetric around the central azine bond [N1—N1i = 1.415 (1) Å; Symmetry code: (i) -x+2, -y+1, -z+2], with an E conformation about the N1═C10 bond [1.2810 (18) Å].

The title compound differs from the 4-substituted isomer (Al-Mehana et al., 2011) as it adopts a different type of C—H···O interaction in its crystal packing. Here, one of the aromatic H atoms is a hydrogen bond donor to the adjacent phenoxy O atom resulting in the formation of an infinite polymeric chain propagating along [011] (Table 1 and Fig. 2).

Experimental

3,3'-(E, E)-hydrazine-1,2-diylidene bis(methan-1-yl-1-ylidene)diphenol (L1) was prepared by stirring 3-hydroxybenzaldehyde (3 g, 24.5 mmol), hydrazine sulfate (1.65 g, 12.6 mmol) and 1.5 ml of concentrated ammonium solution in a mixture of ethanol and water (20 ml) for 3 h. The product was obtained as a yellow crystalline solid, m.p. 487 - 488 K. A mixture of the diphenol, L1 (2 g, 8.3 mmol) and anhydrous potassium carbonate (1.84 g, 8.6 mmol) in 20 ml of dry acetone was stirred for 30 minutes. Then an excess of propargyl bromide (2.28 g, 19.2 mmol) was added drop wise and the resulting mixture was left under reflux for 48 h. The solvent was then evaporated under reduced pressure. The product was extracted with 100 ml of diethyl ether. The organic layer was washed with brine and dried with MgSO4. A yellow amorphous solid was obtained upon slow evaporation of the ethereal solution and was recrystallized with a 1:1 ethyl acetate-methanol mixture, to yield pure yellow block-like crystals of the title compound [M.p. 401 - 403 K].

Refinement

Hydrogen atoms were included in calculated positions and treated as riding atoms: C–H 0.93 Å (CH) and 0.97 Å (CH2) with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x+2, -y+1, -z+2].

Fig. 2.

Fig. 2.

A partial view along the a axis of the crystal packing of the title compound, illustrating the formation of the intermolecular chain along [011]. The C—H···O interactions are shown as red lines; see Table 1 for details.

Crystal data

C20H16N2O2 Z = 1
Mr = 316.35 F(000) = 166
Triclinic, P1 Dx = 1.353 Mg m3
Hall symbol: -P 1 Melting point = 401–403 K
a = 4.5700 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.4947 (7) Å Cell parameters from 1636 reflections
c = 9.8920 (8) Å θ = 2.3–29.1°
α = 67.986 (7)° µ = 0.09 mm1
β = 77.487 (6)° T = 100 K
γ = 84.132 (6)° Block, colourless
V = 388.37 (5) Å3 0.1 × 0.08 × 0.08 mm

Data collection

Agilent SuperNova Dual (Cu at zero) Atlas diffractometer 1710 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1508 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) h = −5→4
Tmin = 0.440, Tmax = 1.000 k = −12→12
2956 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.0718P] where P = (Fo2 + 2Fc2)/3
1710 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.26162 (18) 0.81143 (9) 0.53750 (8) 0.0186 (3)
N1 0.9141 (2) 0.53809 (10) 0.94457 (10) 0.0154 (3)
C1 0.1926 (3) 0.64779 (13) 0.28726 (13) 0.0223 (3)
C2 0.2727 (3) 0.67068 (13) 0.38360 (13) 0.0201 (3)
C3 0.3877 (3) 0.68058 (13) 0.50670 (13) 0.0202 (3)
C4 0.3322 (2) 0.82703 (12) 0.65948 (12) 0.0150 (3)
C5 0.1900 (3) 0.94943 (13) 0.69477 (13) 0.0173 (3)
C6 0.2352 (3) 0.97068 (12) 0.81942 (13) 0.0186 (3)
C7 0.4213 (3) 0.87082 (13) 0.90930 (13) 0.0176 (3)
C8 0.5677 (2) 0.75107 (12) 0.87209 (12) 0.0151 (3)
C9 0.5252 (2) 0.72894 (12) 0.74544 (12) 0.0148 (3)
C10 0.7639 (2) 0.65050 (12) 0.96900 (12) 0.0150 (3)
H1 0.13000 0.62990 0.21190 0.0270*
H3A 0.33630 0.59000 0.59440 0.0240*
H3B 0.60440 0.68700 0.48080 0.0240*
H5 0.06580 1.01620 0.63490 0.0210*
H6 0.14090 1.05210 0.84350 0.0220*
H7 0.44750 0.88440 0.99420 0.0210*
H9 0.62480 0.64970 0.71920 0.0180*
H10 0.78030 0.66930 1.05280 0.0180*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0223 (5) 0.0187 (4) 0.0173 (4) 0.0091 (3) −0.0109 (3) −0.0080 (3)
N1 0.0141 (5) 0.0152 (5) 0.0162 (5) 0.0017 (4) −0.0086 (4) −0.0022 (4)
C1 0.0254 (6) 0.0225 (6) 0.0209 (6) 0.0061 (5) −0.0105 (5) −0.0083 (5)
C2 0.0206 (6) 0.0183 (6) 0.0204 (6) 0.0069 (4) −0.0071 (4) −0.0061 (5)
C3 0.0218 (6) 0.0209 (6) 0.0208 (6) 0.0085 (5) −0.0101 (5) −0.0098 (5)
C4 0.0146 (5) 0.0156 (5) 0.0135 (5) −0.0005 (4) −0.0045 (4) −0.0027 (4)
C5 0.0166 (6) 0.0146 (5) 0.0184 (6) 0.0037 (4) −0.0076 (4) −0.0021 (4)
C6 0.0205 (6) 0.0132 (5) 0.0225 (6) 0.0049 (4) −0.0069 (5) −0.0069 (4)
C7 0.0194 (6) 0.0170 (5) 0.0184 (5) 0.0014 (4) −0.0082 (4) −0.0065 (4)
C8 0.0126 (5) 0.0136 (5) 0.0175 (5) −0.0001 (4) −0.0050 (4) −0.0028 (4)
C9 0.0142 (5) 0.0128 (5) 0.0166 (5) 0.0026 (4) −0.0044 (4) −0.0044 (4)
C10 0.0150 (5) 0.0152 (5) 0.0160 (5) 0.0000 (4) −0.0067 (4) −0.0050 (4)

Geometric parameters (Å, º)

O1—C3 1.4247 (16) C8—C9 1.4009 (16)
O1—C4 1.3763 (13) C8—C10 1.4649 (15)
N1—C10 1.2808 (15) C1—H1 0.9300
N1—N1i 1.4158 (13) C3—H3A 0.9700
C1—C2 1.1883 (18) C3—H3B 0.9700
C2—C3 1.4632 (18) C5—H5 0.9300
C4—C5 1.3951 (18) C6—H6 0.9300
C4—C9 1.3899 (15) C7—H7 0.9300
C5—C6 1.3817 (17) C9—H9 0.9300
C6—C7 1.3941 (18) C10—H10 0.9300
C7—C8 1.3883 (18)
C3—O1—C4 115.61 (9) O1—C3—H3A 110.00
N1i—N1—C10 111.29 (9) O1—C3—H3B 110.00
C1—C2—C3 173.13 (14) C2—C3—H3A 110.00
O1—C3—C2 109.82 (11) C2—C3—H3B 110.00
O1—C4—C5 115.01 (10) H3A—C3—H3B 108.00
O1—C4—C9 124.05 (11) C4—C5—H5 120.00
C5—C4—C9 120.93 (11) C6—C5—H5 120.00
C4—C5—C6 119.44 (12) C5—C6—H6 120.00
C5—C6—C7 120.38 (12) C7—C6—H6 120.00
C6—C7—C8 120.04 (11) C6—C7—H7 120.00
C7—C8—C9 120.09 (10) C8—C7—H7 120.00
C7—C8—C10 117.97 (10) C4—C9—H9 120.00
C9—C8—C10 121.94 (10) C8—C9—H9 120.00
C4—C9—C8 119.08 (11) N1—C10—H10 118.00
N1—C10—C8 123.54 (10) C8—C10—H10 118.00
C2—C1—H1 180.00
C3—O1—C4—C9 3.31 (15) C4—C5—C6—C7 0.0 (2)
C4—O1—C3—C2 174.74 (10) C5—C6—C7—C8 1.4 (2)
C3—O1—C4—C5 −175.53 (10) C6—C7—C8—C10 179.20 (11)
C10—N1—N1i—C10i 179.98 (10) C6—C7—C8—C9 −0.97 (18)
N1i—N1—C10—C8 179.47 (9) C7—C8—C9—C4 −0.85 (16)
O1—C4—C5—C6 177.00 (11) C7—C8—C10—N1 −178.79 (11)
C9—C4—C5—C6 −1.88 (18) C9—C8—C10—N1 1.38 (17)
C5—C4—C9—C8 2.29 (16) C10—C8—C9—C4 178.97 (10)
O1—C4—C9—C8 −176.49 (10)

Symmetry code: (i) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O1ii 0.93 2.52 3.4467 (16) 177

Symmetry code: (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2430).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al-Mehana, W. N. A., Yahya, R. & Lo, K. M. (2011). Acta Cryst. E67, o2900. [DOI] [PMC free article] [PubMed]
  3. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  4. Buckley, L. J. & Neumeister, G. C. (1992). J. Smart Mat. Struct. pp. 1–4.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  7. Zloh, M., Bucar, F. & Gibbons, S. (2007). J. Theor. Chem. Acc. 117, 247-252.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025524/su2430sup1.cif

e-68-o2087-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025524/su2430Isup2.hkl

e-68-o2087-Isup2.hkl (84.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025524/su2430Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES