Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2088–o2089. doi: 10.1107/S1600536812025123

6-Bromo-4-(2-cyclo­hexyl­idenehydrazin-1-yl­idene)-1-methyl-2,2-dioxo-3,4-dihydro-1H-2λ6,1-benzothia­zine

Muhammad Shafiq a,*, Islam Ullah Khan b, Muhammad Zia-ur-Rehman c, Muhammad Nadeem Arshad d, Muhammad Safder a, Zeeshan Haider b
PMCID: PMC3393904  PMID: 22798769

Abstract

The asymmetric unit of the title compound, C15H18BrN3O2S, contains two independent mol­ecules in both of which the (thia­zine)C=N—N double bond exhibits an E conformation. The cyclo­hexyl rings adopt chair conformations while the thia­zine rings are in sofa conformations. The mean planes of these rings are oriented at dihedral angles of 64.43 (13) and 28.6 (2)° in the two independent mol­ecules while the aromatic and thia­zine rings are twisted by dihedral angles of 8.73 (8) and 13.07 (2)°, respectively. In the crystal, C—H⋯O and C—H⋯Br inter­actions connect mol­ecules into chains propagating along the a axis.

Related literature  

For the synthesis of benzothia­zines and their derivatives, see: Arshad et al. (2010); Shafiq et al. (2011a ,b ). For their biological activity, see: Zia-ur-Rehman et al. (2009). For related structures, see: Shafiq et al. (2011c ,d ). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o2088-scheme1.jpg

Experimental  

Crystal data  

  • C15H18BrN3O2S

  • M r = 384.29

  • Triclinic, Inline graphic

  • a = 9.9357 (2) Å

  • b = 11.2614 (3) Å

  • c = 15.8263 (3) Å

  • α = 110.625 (1)°

  • β = 91.525 (3)°

  • γ = 102.879 (4)°

  • V = 1604.85 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.70 mm−1

  • T = 296 K

  • 0.25 × 0.21 × 0.13 mm

Data collection  

  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.552, T max = 0.720

  • 28996 measured reflections

  • 7939 independent reflections

  • 4380 reflections with I > 2σ(I)

  • R int = 0.083

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.125

  • S = 0.90

  • 7939 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.82 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025123/im2384sup1.cif

e-68-o2088-sup1.cif (36.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025123/im2384Isup2.hkl

e-68-o2088-Isup2.hkl (388.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025123/im2384Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25A⋯Br2i 0.97 2.84 3.752 (4) 157
C8—H8A⋯Br1ii 0.97 3.21 4.081 (3) 151
C18—H18⋯O1iii 0.93 2.59 3.332 (4) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MS acknowledges the Higher Education Commission of Pakistan for supporting funds, GC University Lahore, Pakistan for laboratory facilities and Dr Michael Harmata (University of Missouri, USA) for guidance during his PhD studies.

supplementary crystallographic information

Comment

In perpetuation of our research regarding the synthesis of benzothiazines (Shafiq et al., 2011a), (Arshad et al., 2010), their derivatives (Shafiq et al., 2011b) and biological evaluations (Zia-ur-Rehman et al., 2009) we herein report the structural analysis of the title compound.

The present structure is closely related to 6-bromo-4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011c) and 6-bromo-1-methyl-4-[2- (4-methylbenzylidene) hydrazinylidene]-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011d). The crystal structure comprises of two independent molecules A (C1—C15) and B (C16—C30) per asymmetric unit. The cyclohexyl moieties adopt chair conformations with r. m. s. deviations of 0.228 (3)° and 0.223 (4)° while sofa conformations are observed for the thiazine rings with r. m. s. deviavtions of 0.235 (2)° and 0.236 (2)° in A and B, respectively (Fig. 1). The point of difference between the two molecules is the dihedral angles between the fused aromatic and thiazine rings which are 8.73 (8)° and 13.07 (2)°. Moreover, cyclohexyl rings are oriented at dihedral angles of 64.43 (13)° and 28.64 (20)° with respect to thiazine rings in molecules A and B, respectively (Fig. 2). Both thiazine rings show different total ring puckering amplitude values as QT = 0.576 Å with (θ) = 50.8 (3)° and (π) = 353.7 (4)° for molecule A and QT = 0.578 Å with (θ) = 122.6 (3)° and (π) = 186.2 (4)° for molecule B (Cremer & Pople, 1975). The molecules do not show any classical hydrogen bonding although weak intermolecular interactions of the C—H···O and C—H···Br type have been observed (Table. 1, Fig. 3).

Experimental

In the synthesis of title compound, 6-Bromo-4-hydrazinylidene-1- methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011c) was subjected to react with cyclohexanone according to a literature procedure (yield: 56.7%, Shafiq et al., 2011b). The product obtained was then recrystallized from ethyl acetate by slow evaporation of the solvent to obtain suitable crystals for diffraction studies.

Refinement

All hydrogen atoms were positioned with idealized geometry with C—H = 0.96 Å for the methyl group, C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methylene groups and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic & methylene and Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms. Six reflections (-1 0 1), (0 - 1 1), (0 1 0), (0 0 1), (1 0 0), (1 - 1 1) have been omitted in the final refinement as these were obscured by the beam stop.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with thermal allipsoids drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Perspective view showing the difference in dihedral angles between cyclohexyl rings with thiazine rings in both molecules.

Fig. 3.

Fig. 3.

Unit cell packing showing weak interactions of hydrogen bonds using dashed lines.

Crystal data

C15H18BrN3O2S Z = 4
Mr = 384.29 F(000) = 784
Triclinic, P1 Dx = 1.591 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9357 (2) Å Cell parameters from 8531 reflections
b = 11.2614 (3) Å θ = 2.6–24.9°
c = 15.8263 (3) Å µ = 2.70 mm1
α = 110.625 (1)° T = 296 K
β = 91.525 (3)° Block, light yellow
γ = 102.879 (4)° 0.25 × 0.21 × 0.13 mm
V = 1604.85 (7) Å3

Data collection

Bruker KAPPA APEXII CCD diffractometer 7939 independent reflections
Radiation source: fine-focus sealed tube 4380 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.083
φ and ω scans θmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −13→13
Tmin = 0.552, Tmax = 0.720 k = −14→15
28996 measured reflections l = −21→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0673P)2] where P = (Fo2 + 2Fc2)/3
7939 reflections (Δ/σ)max = 0.001
399 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.82 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.15281 (3) 0.37923 (4) 0.62774 (3) 0.06860 (15)
Br2 0.91986 (3) 0.07710 (3) 0.13278 (3) 0.06029 (14)
S1 0.87214 (8) 0.61054 (8) 0.64609 (6) 0.0502 (2)
S2 0.35514 (8) 0.29988 (8) 0.04039 (6) 0.0484 (2)
O1 0.8657 (2) 0.5997 (2) 0.73305 (15) 0.0632 (6)
O2 0.9971 (2) 0.6817 (2) 0.62658 (19) 0.0695 (7)
O3 0.3870 (2) 0.2295 (2) −0.04815 (15) 0.0605 (6)
O4 0.2674 (2) 0.3874 (2) 0.04923 (19) 0.0701 (7)
N1 0.7451 (3) 0.6722 (3) 0.62437 (18) 0.0496 (7)
N2 0.6362 (3) 0.2653 (3) 0.55860 (18) 0.0500 (7)
N3 0.7411 (3) 0.1977 (3) 0.53974 (19) 0.0553 (7)
N4 0.4992 (3) 0.3844 (2) 0.1089 (2) 0.0530 (7)
N5 0.3694 (3) 0.0088 (3) 0.11621 (19) 0.0500 (7)
N6 0.2248 (3) −0.0462 (3) 0.1053 (2) 0.0602 (8)
C1 0.6078 (3) 0.6025 (3) 0.62716 (19) 0.0390 (7)
C2 0.5052 (3) 0.6705 (3) 0.6535 (2) 0.0463 (8)
H2 0.5286 0.7612 0.6714 0.056*
C3 0.3695 (3) 0.6060 (3) 0.6537 (2) 0.0479 (8)
H3 0.3018 0.6522 0.6710 0.058*
C4 0.3370 (3) 0.4723 (3) 0.6278 (2) 0.0438 (7)
C5 0.4364 (3) 0.4031 (3) 0.6025 (2) 0.0424 (7)
H5 0.4120 0.3126 0.5862 0.051*
C6 0.5730 (3) 0.4666 (3) 0.60093 (18) 0.0365 (7)
C7 0.6755 (3) 0.3872 (3) 0.57341 (18) 0.0401 (7)
C8 0.8190 (3) 0.4518 (3) 0.5629 (2) 0.0483 (8)
H8A 0.8209 0.4565 0.5029 0.058*
H8B 0.8826 0.4005 0.5690 0.058*
C9 0.7090 (3) 0.0879 (3) 0.4734 (2) 0.0500 (8)
C10 0.8150 (4) 0.0082 (4) 0.4558 (3) 0.0683 (10)
H10A 0.8998 0.0582 0.4962 0.082*
H10B 0.7803 −0.0707 0.4685 0.082*
C11 0.8463 (4) −0.0284 (4) 0.3592 (3) 0.0821 (13)
H11A 0.9064 −0.0882 0.3477 0.099*
H11B 0.8957 0.0496 0.3496 0.099*
C12 0.7159 (5) −0.0924 (4) 0.2927 (3) 0.0837 (13)
H12A 0.6692 −0.1738 0.2989 0.100*
H12B 0.7399 −0.1124 0.2311 0.100*
C13 0.6195 (5) −0.0004 (4) 0.3113 (3) 0.0828 (12)
H13A 0.6654 0.0797 0.3031 0.099*
H13B 0.5360 −0.0414 0.2684 0.099*
C14 0.5809 (4) 0.0316 (4) 0.4074 (3) 0.0654 (10)
H14A 0.5237 0.0939 0.4196 0.078*
H14B 0.5276 −0.0474 0.4140 0.078*
C15 0.7765 (4) 0.8096 (4) 0.6379 (3) 0.0755 (12)
H15A 0.7728 0.8600 0.7006 0.113*
H15B 0.7097 0.8245 0.6004 0.113*
H15C 0.8680 0.8356 0.6219 0.113*
C16 0.5950 (3) 0.3106 (3) 0.1156 (2) 0.0401 (7)
C17 0.7380 (3) 0.3686 (3) 0.1268 (2) 0.0498 (8)
H17 0.7686 0.4541 0.1290 0.060*
C18 0.8332 (3) 0.3004 (3) 0.1347 (2) 0.0500 (8)
H18 0.9280 0.3397 0.1434 0.060*
C19 0.7868 (3) 0.1732 (3) 0.1296 (2) 0.0430 (7)
C20 0.6479 (3) 0.1149 (3) 0.11944 (18) 0.0388 (7)
H20 0.6187 0.0288 0.1161 0.047*
C21 0.5492 (3) 0.1845 (3) 0.11393 (18) 0.0367 (7)
C22 0.4002 (3) 0.1204 (3) 0.10748 (19) 0.0382 (7)
C23 0.2919 (3) 0.1877 (3) 0.0914 (2) 0.0475 (8)
H23A 0.2612 0.2328 0.1490 0.057*
H23B 0.2121 0.1223 0.0529 0.057*
C24 0.1940 (3) −0.1601 (4) 0.1095 (3) 0.0572 (9)
C25 0.0414 (4) −0.2278 (4) 0.0967 (3) 0.0832 (14)
H25A −0.0134 −0.1680 0.0931 0.100*
H25B 0.0201 −0.3028 0.0399 0.100*
C26 0.0037 (5) −0.2716 (5) 0.1723 (4) 0.1089 (18)
H26A −0.0917 −0.3237 0.1587 0.131*
H26B 0.0096 −0.1956 0.2272 0.131*
C27 0.0976 (5) −0.3516 (5) 0.1886 (4) 0.1043 (17)
H27A 0.0738 −0.3734 0.2413 0.125*
H27B 0.0838 −0.4328 0.1365 0.125*
C28 0.2471 (4) −0.2771 (5) 0.2039 (3) 0.0858 (13)
H28A 0.2620 −0.1995 0.2588 0.103*
H28B 0.3056 −0.3312 0.2126 0.103*
C29 0.2878 (4) −0.2377 (4) 0.1263 (3) 0.0639 (10)
H29A 0.2817 −0.3150 0.0723 0.077*
H29B 0.3831 −0.1856 0.1397 0.077*
C30 0.5410 (5) 0.5235 (3) 0.1337 (3) 0.0853 (14)
H30A 0.5847 0.5634 0.1952 0.128*
H30B 0.4609 0.5560 0.1286 0.128*
H30C 0.6055 0.5445 0.0939 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0334 (2) 0.0842 (3) 0.0951 (3) 0.01748 (19) 0.01696 (18) 0.0388 (2)
Br2 0.03317 (19) 0.0630 (2) 0.0787 (3) 0.01020 (16) −0.00475 (16) 0.02066 (19)
S1 0.0331 (4) 0.0531 (5) 0.0562 (5) 0.0042 (4) −0.0052 (4) 0.0148 (4)
S2 0.0372 (4) 0.0466 (5) 0.0631 (5) 0.0076 (4) −0.0008 (4) 0.0244 (4)
O1 0.0537 (15) 0.0742 (16) 0.0523 (14) 0.0061 (13) −0.0159 (11) 0.0196 (12)
O2 0.0376 (14) 0.0679 (16) 0.095 (2) −0.0009 (12) 0.0068 (13) 0.0282 (14)
O3 0.0568 (15) 0.0702 (15) 0.0562 (14) 0.0085 (12) −0.0007 (11) 0.0302 (12)
O4 0.0488 (15) 0.0611 (15) 0.109 (2) 0.0164 (12) −0.0021 (14) 0.0413 (15)
N1 0.0383 (15) 0.0487 (16) 0.0631 (17) 0.0087 (13) 0.0031 (13) 0.0237 (13)
N2 0.0390 (15) 0.0467 (16) 0.0614 (17) 0.0168 (13) 0.0036 (13) 0.0128 (13)
N3 0.0438 (16) 0.0534 (17) 0.0643 (18) 0.0243 (14) 0.0001 (13) 0.0093 (15)
N4 0.0394 (16) 0.0354 (15) 0.0760 (19) 0.0021 (12) −0.0052 (14) 0.0161 (13)
N5 0.0254 (13) 0.0530 (17) 0.0722 (19) −0.0032 (12) 0.0004 (12) 0.0320 (15)
N6 0.0285 (15) 0.0593 (19) 0.098 (2) −0.0002 (13) 0.0013 (14) 0.0416 (18)
C1 0.0361 (17) 0.0449 (18) 0.0365 (16) 0.0088 (14) −0.0001 (12) 0.0166 (13)
C2 0.050 (2) 0.0460 (18) 0.0438 (17) 0.0181 (16) 0.0061 (15) 0.0143 (14)
C3 0.0431 (19) 0.059 (2) 0.0473 (18) 0.0260 (17) 0.0089 (14) 0.0182 (16)
C4 0.0361 (17) 0.057 (2) 0.0405 (16) 0.0123 (15) 0.0063 (13) 0.0201 (15)
C5 0.0359 (17) 0.0468 (18) 0.0452 (17) 0.0126 (14) 0.0050 (13) 0.0163 (14)
C6 0.0322 (16) 0.0442 (17) 0.0320 (14) 0.0127 (13) 0.0006 (12) 0.0111 (13)
C7 0.0315 (16) 0.051 (2) 0.0338 (15) 0.0125 (14) −0.0008 (12) 0.0095 (14)
C8 0.0338 (17) 0.0529 (19) 0.0552 (19) 0.0145 (15) 0.0023 (14) 0.0143 (16)
C9 0.050 (2) 0.053 (2) 0.0495 (19) 0.0191 (17) 0.0053 (15) 0.0184 (17)
C10 0.067 (3) 0.062 (2) 0.077 (3) 0.034 (2) 0.002 (2) 0.0162 (19)
C11 0.072 (3) 0.079 (3) 0.096 (3) 0.031 (2) 0.028 (3) 0.023 (3)
C12 0.110 (4) 0.079 (3) 0.054 (2) 0.024 (3) 0.027 (2) 0.013 (2)
C13 0.081 (3) 0.093 (3) 0.060 (3) 0.013 (3) −0.009 (2) 0.017 (2)
C14 0.049 (2) 0.069 (2) 0.071 (2) 0.0138 (19) 0.0004 (18) 0.0177 (19)
C15 0.058 (2) 0.063 (3) 0.112 (3) 0.008 (2) 0.010 (2) 0.044 (2)
C16 0.0337 (16) 0.0363 (17) 0.0435 (17) 0.0012 (14) −0.0001 (13) 0.0114 (13)
C17 0.0394 (18) 0.0411 (18) 0.061 (2) −0.0049 (15) −0.0010 (15) 0.0181 (16)
C18 0.0311 (17) 0.054 (2) 0.054 (2) −0.0029 (15) −0.0071 (14) 0.0152 (16)
C19 0.0295 (16) 0.0491 (19) 0.0459 (17) 0.0037 (14) 0.0015 (13) 0.0160 (14)
C20 0.0325 (16) 0.0373 (16) 0.0390 (16) 0.0012 (13) 0.0010 (12) 0.0098 (13)
C21 0.0257 (15) 0.0414 (17) 0.0351 (15) −0.0005 (13) 0.0011 (12) 0.0100 (13)
C22 0.0294 (15) 0.0422 (18) 0.0399 (16) 0.0022 (13) 0.0032 (12) 0.0156 (13)
C23 0.0316 (17) 0.0493 (19) 0.062 (2) 0.0033 (14) 0.0055 (15) 0.0249 (16)
C24 0.0360 (19) 0.061 (2) 0.080 (2) −0.0020 (17) 0.0003 (17) 0.042 (2)
C25 0.038 (2) 0.074 (3) 0.145 (4) −0.0092 (19) 0.003 (2) 0.063 (3)
C26 0.067 (3) 0.098 (4) 0.181 (5) 0.020 (3) 0.065 (3) 0.071 (4)
C27 0.083 (3) 0.110 (4) 0.165 (5) 0.033 (3) 0.058 (3) 0.097 (4)
C28 0.075 (3) 0.109 (3) 0.109 (4) 0.037 (3) 0.030 (3) 0.073 (3)
C29 0.048 (2) 0.070 (2) 0.074 (2) 0.0146 (19) 0.0162 (18) 0.027 (2)
C30 0.091 (3) 0.041 (2) 0.110 (3) 0.010 (2) −0.036 (3) 0.018 (2)

Geometric parameters (Å, º)

Br1—C4 1.895 (3) C12—H12A 0.9700
Br2—C19 1.896 (3) C12—H12B 0.9700
S1—O2 1.425 (2) C13—C14 1.516 (5)
S1—O1 1.426 (2) C13—H13A 0.9700
S1—N1 1.652 (3) C13—H13B 0.9700
S1—C8 1.758 (3) C14—H14A 0.9700
S2—O4 1.429 (2) C14—H14B 0.9700
S2—O3 1.430 (2) C15—H15A 0.9600
S2—N4 1.647 (3) C15—H15B 0.9600
S2—C23 1.742 (3) C15—H15C 0.9600
N1—C1 1.425 (4) C16—C21 1.382 (4)
N1—C15 1.444 (4) C16—C17 1.403 (4)
N2—C7 1.273 (4) C17—C18 1.374 (4)
N2—N3 1.403 (3) C17—H17 0.9300
N3—C9 1.275 (4) C18—C19 1.376 (4)
N4—C16 1.420 (4) C18—H18 0.9300
N4—C30 1.432 (4) C19—C20 1.368 (4)
N5—C22 1.283 (4) C20—C21 1.404 (4)
N5—N6 1.411 (3) C20—H20 0.9300
N6—C24 1.276 (4) C21—C22 1.479 (4)
C1—C6 1.394 (4) C22—C23 1.510 (4)
C1—C2 1.395 (4) C23—H23A 0.9700
C2—C3 1.382 (4) C23—H23B 0.9700
C2—H2 0.9300 C24—C29 1.489 (5)
C3—C4 1.371 (4) C24—C25 1.510 (5)
C3—H3 0.9300 C25—C26 1.474 (6)
C4—C5 1.374 (4) C25—H25A 0.9700
C5—C6 1.392 (4) C25—H25B 0.9700
C5—H5 0.9300 C26—C27 1.509 (6)
C6—C7 1.477 (4) C26—H26A 0.9700
C7—C8 1.491 (4) C26—H26B 0.9700
C8—H8A 0.9700 C27—C28 1.500 (6)
C8—H8B 0.9700 C27—H27A 0.9700
C9—C14 1.488 (5) C27—H27B 0.9700
C9—C10 1.502 (4) C28—C29 1.483 (5)
C10—C11 1.498 (5) C28—H28A 0.9700
C10—H10A 0.9700 C28—H28B 0.9700
C10—H10B 0.9700 C29—H29A 0.9700
C11—C12 1.510 (6) C29—H29B 0.9700
C11—H11A 0.9700 C30—H30A 0.9600
C11—H11B 0.9700 C30—H30B 0.9600
C12—C13 1.523 (6) C30—H30C 0.9600
O2—S1—O1 119.64 (16) C9—C14—H14A 109.7
O2—S1—N1 107.23 (15) C13—C14—H14A 109.7
O1—S1—N1 110.06 (14) C9—C14—H14B 109.7
O2—S1—C8 110.50 (16) C13—C14—H14B 109.7
O1—S1—C8 107.92 (15) H14A—C14—H14B 108.2
N1—S1—C8 99.65 (15) N1—C15—H15A 109.5
O4—S2—O3 118.78 (15) N1—C15—H15B 109.5
O4—S2—N4 107.06 (15) H15A—C15—H15B 109.5
O3—S2—N4 110.31 (14) N1—C15—H15C 109.5
O4—S2—C23 110.93 (15) H15A—C15—H15C 109.5
O3—S2—C23 108.25 (15) H15B—C15—H15C 109.5
N4—S2—C23 99.86 (15) C21—C16—C17 119.9 (3)
C1—N1—C15 121.1 (3) C21—C16—N4 120.9 (3)
C1—N1—S1 116.1 (2) C17—C16—N4 119.2 (3)
C15—N1—S1 118.5 (2) C18—C17—C16 120.6 (3)
C7—N2—N3 115.1 (3) C18—C17—H17 119.7
C9—N3—N2 115.5 (3) C16—C17—H17 119.7
C16—N4—C30 121.9 (3) C17—C18—C19 119.2 (3)
C16—N4—S2 115.3 (2) C17—C18—H18 120.4
C30—N4—S2 119.6 (2) C19—C18—H18 120.4
C22—N5—N6 113.0 (3) C20—C19—C18 121.3 (3)
C24—N6—N5 113.2 (3) C20—C19—Br2 120.2 (2)
C6—C1—C2 119.3 (3) C18—C19—Br2 118.5 (2)
C6—C1—N1 121.0 (3) C19—C20—C21 120.3 (3)
C2—C1—N1 119.6 (3) C19—C20—H20 119.9
C3—C2—C1 121.4 (3) C21—C20—H20 119.9
C3—C2—H2 119.3 C16—C21—C20 118.7 (3)
C1—C2—H2 119.3 C16—C21—C22 122.6 (3)
C4—C3—C2 118.6 (3) C20—C21—C22 118.7 (3)
C4—C3—H3 120.7 N5—C22—C21 117.5 (3)
C2—C3—H3 120.7 N5—C22—C23 123.1 (3)
C3—C4—C5 121.2 (3) C21—C22—C23 119.5 (3)
C3—C4—Br1 120.3 (2) C22—C23—S2 112.2 (2)
C5—C4—Br1 118.6 (2) C22—C23—H23A 109.2
C4—C5—C6 120.9 (3) S2—C23—H23A 109.2
C4—C5—H5 119.6 C22—C23—H23B 109.2
C6—C5—H5 119.6 S2—C23—H23B 109.2
C5—C6—C1 118.6 (3) H23A—C23—H23B 107.9
C5—C6—C7 118.5 (3) N6—C24—C29 129.2 (3)
C1—C6—C7 122.9 (3) N6—C24—C25 116.9 (3)
N2—C7—C6 117.9 (3) C29—C24—C25 114.0 (3)
N2—C7—C8 122.9 (3) C26—C25—C24 111.2 (4)
C6—C7—C8 119.2 (3) C26—C25—H25A 109.4
C7—C8—S1 110.1 (2) C24—C25—H25A 109.4
C7—C8—H8A 109.6 C26—C25—H25B 109.4
S1—C8—H8A 109.6 C24—C25—H25B 109.4
C7—C8—H8B 109.6 H25A—C25—H25B 108.0
S1—C8—H8B 109.6 C25—C26—C27 111.9 (3)
H8A—C8—H8B 108.2 C25—C26—H26A 109.2
N3—C9—C14 127.6 (3) C27—C26—H26A 109.2
N3—C9—C10 116.9 (3) C25—C26—H26B 109.2
C14—C9—C10 115.4 (3) C27—C26—H26B 109.2
C11—C10—C9 110.9 (3) H26A—C26—H26B 107.9
C11—C10—H10A 109.5 C28—C27—C26 110.7 (4)
C9—C10—H10A 109.5 C28—C27—H27A 109.5
C11—C10—H10B 109.5 C26—C27—H27A 109.5
C9—C10—H10B 109.5 C28—C27—H27B 109.5
H10A—C10—H10B 108.0 C26—C27—H27B 109.5
C10—C11—C12 112.1 (3) H27A—C27—H27B 108.1
C10—C11—H11A 109.2 C29—C28—C27 111.8 (4)
C12—C11—H11A 109.2 C29—C28—H28A 109.3
C10—C11—H11B 109.2 C27—C28—H28A 109.3
C12—C11—H11B 109.2 C29—C28—H28B 109.3
H11A—C11—H11B 107.9 C27—C28—H28B 109.3
C11—C12—C13 109.6 (3) H28A—C28—H28B 107.9
C11—C12—H12A 109.7 C28—C29—C24 109.7 (3)
C13—C12—H12A 109.7 C28—C29—H29A 109.7
C11—C12—H12B 109.7 C24—C29—H29A 109.7
C13—C12—H12B 109.7 C28—C29—H29B 109.7
H12A—C12—H12B 108.2 C24—C29—H29B 109.7
C14—C13—C12 110.3 (3) H29A—C29—H29B 108.2
C14—C13—H13A 109.6 N4—C30—H30A 109.5
C12—C13—H13A 109.6 N4—C30—H30B 109.5
C14—C13—H13B 109.6 H30A—C30—H30B 109.5
C12—C13—H13B 109.6 N4—C30—H30C 109.5
H13A—C13—H13B 108.1 H30A—C30—H30C 109.5
C9—C14—C13 109.9 (3) H30B—C30—H30C 109.5
O2—S1—N1—C1 171.4 (2) C14—C9—C10—C11 50.5 (5)
O1—S1—N1—C1 −57.0 (3) C9—C10—C11—C12 −52.2 (5)
C8—S1—N1—C1 56.3 (2) C10—C11—C12—C13 57.8 (5)
O2—S1—N1—C15 −31.5 (3) C11—C12—C13—C14 −59.5 (5)
O1—S1—N1—C15 100.1 (3) N3—C9—C14—C13 123.9 (4)
C8—S1—N1—C15 −146.7 (3) C10—C9—C14—C13 −52.7 (4)
C7—N2—N3—C9 −135.3 (3) C12—C13—C14—C9 56.2 (5)
O4—S2—N4—C16 174.6 (2) C30—N4—C16—C21 163.4 (3)
O3—S2—N4—C16 −54.8 (3) S2—N4—C16—C21 −36.6 (4)
C23—S2—N4—C16 59.0 (3) C30—N4—C16—C17 −14.6 (5)
O4—S2—N4—C30 −24.9 (4) S2—N4—C16—C17 145.4 (3)
O3—S2—N4—C30 105.7 (3) C21—C16—C17—C18 1.1 (5)
C23—S2—N4—C30 −140.5 (3) N4—C16—C17—C18 179.2 (3)
C22—N5—N6—C24 176.7 (3) C16—C17—C18—C19 1.3 (5)
C15—N1—C1—C6 170.4 (3) C17—C18—C19—C20 −1.8 (5)
S1—N1—C1—C6 −33.2 (4) C17—C18—C19—Br2 176.0 (2)
C15—N1—C1—C2 −7.4 (4) C18—C19—C20—C21 0.0 (4)
S1—N1—C1—C2 149.0 (2) Br2—C19—C20—C21 −177.8 (2)
C6—C1—C2—C3 −0.4 (4) C17—C16—C21—C20 −2.9 (4)
N1—C1—C2—C3 177.4 (3) N4—C16—C21—C20 179.1 (3)
C1—C2—C3—C4 0.5 (4) C17—C16—C21—C22 176.5 (3)
C2—C3—C4—C5 0.2 (4) N4—C16—C21—C22 −1.5 (4)
C2—C3—C4—Br1 179.5 (2) C19—C20—C21—C16 2.4 (4)
C3—C4—C5—C6 −1.0 (5) C19—C20—C21—C22 −177.0 (2)
Br1—C4—C5—C6 179.7 (2) N6—N5—C22—C21 −177.6 (2)
C4—C5—C6—C1 1.1 (4) N6—N5—C22—C23 2.6 (4)
C4—C5—C6—C7 179.8 (3) C16—C21—C22—N5 −172.7 (3)
C2—C1—C6—C5 −0.4 (4) C20—C21—C22—N5 6.7 (4)
N1—C1—C6—C5 −178.2 (3) C16—C21—C22—C23 7.1 (4)
C2—C1—C6—C7 −179.0 (3) C20—C21—C22—C23 −173.5 (3)
N1—C1—C6—C7 3.1 (4) N5—C22—C23—S2 −157.0 (3)
N3—N2—C7—C6 −175.2 (2) C21—C22—C23—S2 23.1 (3)
N3—N2—C7—C8 5.6 (4) O4—S2—C23—C22 −163.5 (2)
C5—C6—C7—N2 −4.9 (4) O3—S2—C23—C22 64.5 (3)
C1—C6—C7—N2 173.8 (3) N4—S2—C23—C22 −50.9 (3)
C5—C6—C7—C8 174.3 (3) N5—N6—C24—C29 1.8 (5)
C1—C6—C7—C8 −7.0 (4) N5—N6—C24—C25 −178.8 (3)
N2—C7—C8—S1 −144.3 (3) N6—C24—C25—C26 −127.0 (4)
C6—C7—C8—S1 36.6 (3) C29—C24—C25—C26 52.5 (5)
O2—S1—C8—C7 −169.1 (2) C24—C25—C26—C27 −52.1 (6)
O1—S1—C8—C7 58.4 (3) C25—C26—C27—C28 55.2 (6)
N1—S1—C8—C7 −56.5 (2) C26—C27—C28—C29 −57.4 (6)
N2—N3—C9—C14 8.1 (5) C27—C28—C29—C24 56.2 (5)
N2—N3—C9—C10 −175.5 (3) N6—C24—C29—C28 125.5 (4)
N3—C9—C10—C11 −126.4 (4) C25—C24—C29—C28 −53.9 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C25—H25A···Br2i 0.97 2.84 3.752 (4) 157
C8—H8A···Br1ii 0.97 3.21 4.081 (3) 151
C18—H18···O1iii 0.93 2.59 3.332 (4) 137

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2384).

References

  1. Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2010). Acta Cryst. E66, o1070. [DOI] [PMC free article] [PubMed]
  2. Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011a). Asian J. Chem. 23, 2101–2105.
  6. Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011c). Acta Cryst. E67, o2078. [DOI] [PMC free article] [PubMed]
  7. Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011d). Acta Cryst. E67, o2092. [DOI] [PMC free article] [PubMed]
  8. Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011b). J. Chil. Chem. Soc. 56, 527–531.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025123/im2384sup1.cif

e-68-o2088-sup1.cif (36.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025123/im2384Isup2.hkl

e-68-o2088-Isup2.hkl (388.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025123/im2384Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES