Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2090. doi: 10.1107/S160053681202483X

N-(4-Meth­oxy-2-nitro­phen­yl)-N-(methyl­sulfon­yl)methane­sulfonamide

Sammer Yousuf a,*, Hina Siddiqui a, Rabia Farooq a, M Iqbal Choudhary a,b
PMCID: PMC3393905  PMID: 22798770

Abstract

In the title compound, C9H12N2O7S2, the nitro substituent is slightly twisted from the benzene ring [dihedral angle = 14.69 (10)°]. The mol­ecular geometry is stabilized by intra­molecular C—H⋯O hydrogen bonds, forming S(6) ring motifs. In the crystal, molecules are linked by C—H⋯O hydrogen bonds into layers parallel to (10-2).

Related literature  

For the biological activities of sulfonamides, see: Alsughayer et al. (2011); Joshi & Khosla (2003); Scozzafava et al. (2003); Drews (2000); Peixoto & Beverley (1987). For crystal structures of closely related compounds, see: Boechat et al. (2010); Zia-ur-Rehman et al. (2009).graphic file with name e-68-o2090-scheme1.jpg

Experimental  

Crystal data  

  • C9H12N2O7S2

  • M r = 324.33

  • Monoclinic, Inline graphic

  • a = 9.4976 (7) Å

  • b = 7.5987 (6) Å

  • c = 19.2434 (15) Å

  • β = 103.672 (2)°

  • V = 1349.43 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 273 K

  • 0.55 × 0.47 × 0.11 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.799, T max = 0.955

  • 9504 measured reflections

  • 3362 independent reflections

  • 2711 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.113

  • S = 1.05

  • 3362 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202483X/is5148sup1.cif

e-68-o2090-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202483X/is5148Isup2.hkl

e-68-o2090-Isup2.hkl (164.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202483X/is5148Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.93 2.46 3.368 (2) 165
C8—H8B⋯O4 0.96 2.58 3.225 (3) 125
C8—H8C⋯O5ii 0.96 2.58 3.250 (3) 127
C9—H9B⋯O1 0.96 2.59 3.226 (3) 124
C9—H9B⋯O1iii 0.96 2.47 3.173 (3) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Compounds containing the sulfonamide moiety have attracted a wide interest due to their interesting chemical and biological properties, which makes them promising candidates in drug discovery. Sulfonamides posses wide variety of biological activities including anti-bacterial, anti-leishmanial, anti-inflammatory, anti-cancer, and carbonic anhydrase inhibitory activities (Alsughayer et al., 2011; Joshi & Khosla, 2003; Scozzafava et al., 2003; Drews, 2000; Peixoto & Beverley, 1987). The title compound was prepared as a part of our ongoing research to synthesize different sulfonamide derivatives to study their bioactive potential and structure activity relationship (SAR). In the title compound (Fig. 1), the nitro group was found to be slightly twisted with the dihedral angle of 14.69 (10)° between the NO2 group and the benzene ring. The S1—N2—C3—C4 and S2—N2—C3—C4 torsion angles are 82.83 (19) and -92.42 (17)°, respectively. The molecule is stabilized by two intramolecular C8—H8B···O4 and C9—H9B···O1 interactions to form two S(6) ring motifs. In the crystal structure, the molecules are linked to form a two-dimensional network through C1—H1B···O2i, C8—H8C···O5ii and C9—H9B···O1iii intermolecular hydrogen bonds (Fig. 2 and Table 1). The bond lengths and angles are within the normal range and similar to other closley related structures (Boechat et al., 2010; Zia-ur-Rehman et al., 2009).

Experimental

To a stirring solution of methanesulfonyl chloride (1.0 g, 8.7 mmol) in CH2Cl2 (20 ml) at 0 °C, 3 ml Et3N and 4-methoxy-2-nitroaniline (1.1 eq., 1.61 g m, 9.6 mmol) were added along with catalytic amount of dimethylamino pyridine (DMAP). Progress of the reaction was monitored by thin layer chromatography in 7:3 hexanes: ethyl acetate solvent system. After complete consumption of starting material (2 hrs), workup was performed with H2O (10 ml), organic layer was separated and aqueous layer was extracted with CH2Cl2 (2 × 10 ml). Organic layers were further washed with brine (10 ml), and dried over MgSO4, filtered, and concentrated in vacuum to obtain the crude product (0.9 g, 90% yield). Flash chromatography was performed hexanes: ethyl acetate (7:3), to obtain crystalline compound I, in 55% yield. Crystals were found suitable for single-crystal X-ray diffraction studies. All the starting materials and solvents were purchased from commercial suppliers and used for reaction without purification.

Refinement

H atoms were positioned geometrically with C—H = 0.96 or 0.93 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Only hydrogen atoms involved in hydrogen bonding are shown.

Crystal data

C9H12N2O7S2 F(000) = 672
Mr = 324.33 Dx = 1.596 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3096 reflections
a = 9.4976 (7) Å θ = 2.2–27.7°
b = 7.5987 (6) Å µ = 0.43 mm1
c = 19.2434 (15) Å T = 273 K
β = 103.672 (2)° Block, yellow
V = 1349.43 (18) Å3 0.55 × 0.47 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3362 independent reflections
Radiation source: fine-focus sealed tube 2711 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
ω scan θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −12→12
Tmin = 0.799, Tmax = 0.955 k = −10→9
9504 measured reflections l = −25→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2074P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3362 reflections Δρmax = 0.31 e Å3
185 parameters Δρmin = −0.30 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0101 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.80706 (5) 0.21065 (6) −0.02024 (2) 0.03866 (15)
S2 0.67671 (5) 0.31016 (6) 0.09782 (2) 0.03825 (15)
O1 0.55361 (15) 0.22596 (19) 0.05410 (8) 0.0529 (4)
O2 0.71498 (16) 0.2788 (2) 0.17294 (7) 0.0514 (4)
O3 0.95185 (15) 0.2109 (2) −0.02879 (7) 0.0522 (4)
O4 0.70649 (16) 0.3355 (2) −0.05856 (7) 0.0561 (4)
O5 0.80101 (17) −0.07491 (19) 0.12618 (9) 0.0608 (4)
O6 0.99411 (19) −0.20742 (17) 0.18046 (9) 0.0602 (4)
O7 1.36416 (14) 0.2232 (2) 0.25913 (8) 0.0503 (4)
N1 0.92993 (18) −0.07629 (18) 0.15472 (8) 0.0381 (3)
N2 0.82155 (15) 0.24662 (18) 0.06736 (7) 0.0329 (3)
C1 1.14724 (19) 0.0885 (2) 0.20463 (9) 0.0345 (4)
H1B 1.1802 −0.0117 0.2313 0.041*
C2 1.01332 (18) 0.0890 (2) 0.15816 (8) 0.0311 (3)
C3 0.96028 (17) 0.2371 (2) 0.11724 (8) 0.0315 (3)
C4 1.04925 (19) 0.3835 (2) 0.12521 (10) 0.0406 (4)
H4B 1.0171 0.4833 0.0982 0.049*
C5 1.1838 (2) 0.3863 (2) 0.17185 (10) 0.0428 (4)
H5A 1.2407 0.4872 0.1764 0.051*
C6 1.23354 (19) 0.2382 (3) 0.21179 (9) 0.0366 (4)
C7 1.4561 (2) 0.3748 (3) 0.27101 (13) 0.0630 (6)
H7A 1.5458 0.3458 0.3040 0.095*
H7B 1.4090 0.4680 0.2905 0.095*
H7C 1.4752 0.4123 0.2265 0.095*
C8 0.6647 (3) 0.5369 (3) 0.08270 (13) 0.0576 (6)
H8A 0.5830 0.5830 0.0981 0.086*
H8B 0.6528 0.5598 0.0326 0.086*
H8C 0.7517 0.5927 0.1091 0.086*
C9 0.7335 (2) −0.0003 (3) −0.03754 (11) 0.0507 (5)
H9A 0.7196 −0.0262 −0.0875 0.076*
H9B 0.6421 −0.0054 −0.0246 0.076*
H9C 0.7986 −0.0849 −0.0100 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0379 (3) 0.0453 (3) 0.0321 (2) −0.00244 (18) 0.00691 (18) 0.00241 (17)
S2 0.0339 (2) 0.0363 (2) 0.0449 (3) −0.00356 (16) 0.00994 (18) −0.00732 (18)
O1 0.0338 (7) 0.0560 (9) 0.0673 (10) −0.0104 (6) 0.0088 (6) −0.0157 (7)
O2 0.0573 (9) 0.0568 (9) 0.0437 (8) −0.0021 (7) 0.0191 (6) −0.0065 (6)
O3 0.0448 (8) 0.0697 (10) 0.0460 (8) −0.0059 (7) 0.0185 (6) −0.0001 (7)
O4 0.0582 (9) 0.0632 (9) 0.0421 (7) 0.0097 (7) 0.0020 (6) 0.0133 (7)
O5 0.0512 (9) 0.0431 (8) 0.0834 (11) −0.0183 (7) 0.0065 (8) 0.0071 (7)
O6 0.0801 (12) 0.0310 (7) 0.0648 (10) −0.0038 (7) 0.0078 (8) 0.0130 (7)
O7 0.0351 (7) 0.0564 (9) 0.0529 (8) −0.0008 (6) −0.0029 (6) −0.0013 (7)
N1 0.0530 (9) 0.0287 (7) 0.0343 (7) −0.0084 (6) 0.0137 (6) −0.0001 (6)
N2 0.0306 (7) 0.0356 (7) 0.0310 (7) −0.0017 (6) 0.0044 (5) −0.0005 (6)
C1 0.0407 (9) 0.0316 (8) 0.0311 (8) 0.0033 (7) 0.0082 (6) 0.0031 (6)
C2 0.0388 (9) 0.0254 (8) 0.0307 (8) −0.0054 (6) 0.0114 (6) −0.0010 (6)
C3 0.0323 (8) 0.0300 (8) 0.0317 (8) −0.0036 (6) 0.0062 (6) 0.0016 (6)
C4 0.0416 (10) 0.0297 (8) 0.0466 (10) −0.0064 (7) 0.0029 (7) 0.0078 (7)
C5 0.0403 (10) 0.0347 (9) 0.0508 (11) −0.0112 (7) 0.0054 (8) 0.0039 (8)
C6 0.0336 (9) 0.0417 (9) 0.0337 (9) −0.0008 (7) 0.0065 (7) −0.0032 (7)
C7 0.0358 (11) 0.0725 (15) 0.0743 (15) −0.0108 (10) 0.0002 (10) −0.0152 (13)
C8 0.0612 (14) 0.0352 (10) 0.0733 (15) 0.0068 (9) 0.0096 (11) −0.0051 (10)
C9 0.0521 (12) 0.0529 (12) 0.0456 (11) −0.0100 (9) 0.0089 (9) −0.0160 (9)

Geometric parameters (Å, º)

S1—O4 1.4223 (15) C1—H1B 0.9300
S1—O3 1.4231 (14) C2—C3 1.397 (2)
S1—N2 1.6809 (14) C3—C4 1.383 (2)
S1—C9 1.748 (2) C4—C5 1.377 (2)
S2—O1 1.4210 (14) C4—H4B 0.9300
S2—O2 1.4247 (14) C5—C6 1.382 (3)
S2—N2 1.6882 (15) C5—H5A 0.9300
S2—C8 1.747 (2) C7—H7A 0.9600
O5—N1 1.218 (2) C7—H7B 0.9600
O6—N1 1.211 (2) C7—H7C 0.9600
O7—C6 1.359 (2) C8—H8A 0.9600
O7—C7 1.431 (3) C8—H8B 0.9600
N1—C2 1.478 (2) C8—H8C 0.9600
N2—C3 1.437 (2) C9—H9A 0.9600
C1—C2 1.371 (2) C9—H9B 0.9600
C1—C6 1.389 (2) C9—H9C 0.9600
O4—S1—O3 119.21 (9) C5—C4—C3 122.23 (16)
O4—S1—N2 107.30 (8) C5—C4—H4B 118.9
O3—S1—N2 105.27 (8) C3—C4—H4B 118.9
O4—S1—C9 108.87 (10) C4—C5—C6 119.50 (17)
O3—S1—C9 109.43 (10) C4—C5—H5A 120.3
N2—S1—C9 105.93 (9) C6—C5—H5A 120.3
O1—S2—O2 120.15 (9) O7—C6—C5 125.38 (17)
O1—S2—N2 106.83 (8) O7—C6—C1 114.93 (17)
O2—S2—N2 105.73 (8) C5—C6—C1 119.70 (16)
O1—S2—C8 109.48 (11) O7—C7—H7A 109.5
O2—S2—C8 108.96 (10) O7—C7—H7B 109.5
N2—S2—C8 104.52 (10) H7A—C7—H7B 109.5
C6—O7—C7 117.75 (16) O7—C7—H7C 109.5
O6—N1—O5 123.14 (15) H7A—C7—H7C 109.5
O6—N1—C2 117.92 (15) H7B—C7—H7C 109.5
O5—N1—C2 118.94 (14) S2—C8—H8A 109.5
C3—N2—S1 120.43 (11) S2—C8—H8B 109.5
C3—N2—S2 118.43 (11) H8A—C8—H8B 109.5
S1—N2—S2 120.96 (8) S2—C8—H8C 109.5
C2—C1—C6 119.80 (16) H8A—C8—H8C 109.5
C2—C1—H1B 120.1 H8B—C8—H8C 109.5
C6—C1—H1B 120.1 S1—C9—H9A 109.5
C1—C2—C3 121.66 (15) S1—C9—H9B 109.5
C1—C2—N1 115.57 (14) H9A—C9—H9B 109.5
C3—C2—N1 122.77 (15) S1—C9—H9C 109.5
C4—C3—C2 117.11 (15) H9A—C9—H9C 109.5
C4—C3—N2 118.25 (15) H9B—C9—H9C 109.5
C2—C3—N2 124.63 (15)
O4—S1—N2—C3 −139.57 (14) C1—C2—C3—C4 0.4 (2)
O3—S1—N2—C3 −11.63 (15) N1—C2—C3—C4 −179.79 (15)
C9—S1—N2—C3 104.25 (14) C1—C2—C3—N2 179.70 (15)
O4—S1—N2—S2 35.55 (12) N1—C2—C3—N2 −0.5 (3)
O3—S1—N2—S2 163.50 (10) S1—N2—C3—C4 82.83 (19)
C9—S1—N2—S2 −80.63 (12) S2—N2—C3—C4 −92.42 (17)
O1—S2—N2—C3 −150.32 (13) S1—N2—C3—C2 −96.42 (17)
O2—S2—N2—C3 −21.24 (15) S2—N2—C3—C2 88.33 (19)
C8—S2—N2—C3 93.69 (15) C2—C3—C4—C5 −0.8 (3)
O1—S2—N2—S1 34.46 (12) N2—C3—C4—C5 179.87 (17)
O2—S2—N2—S1 163.53 (10) C3—C4—C5—C6 0.7 (3)
C8—S2—N2—S1 −81.53 (12) C7—O7—C6—C5 2.6 (3)
C6—C1—C2—C3 0.0 (3) C7—O7—C6—C1 −177.73 (17)
C6—C1—C2—N1 −179.76 (15) C4—C5—C6—O7 179.46 (18)
O6—N1—C2—C1 −14.8 (2) C4—C5—C6—C1 −0.2 (3)
O5—N1—C2—C1 165.47 (17) C2—C1—C6—O7 −179.86 (15)
O6—N1—C2—C3 165.42 (17) C2—C1—C6—C5 −0.2 (3)
O5—N1—C2—C3 −14.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1B···O2i 0.93 2.46 3.368 (2) 165
C8—H8B···O4 0.96 2.58 3.225 (3) 125
C8—H8C···O5ii 0.96 2.58 3.250 (3) 127
C9—H9B···O1 0.96 2.59 3.226 (3) 124
C9—H9B···O1iii 0.96 2.47 3.173 (3) 130

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5148).

References

  1. Alsughayer, A., Elassar, A. A., Mustafa, S. & Sagheer, F. (2011). J. Biomater. Nanobiotechnol. 2, 144–149.
  2. Boechat, N., Santos Lages, A. dos, Kover, W. B., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o506–o507. [DOI] [PMC free article] [PubMed]
  3. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Drews, J. (2000). Science, 287, 1960–1964. [DOI] [PubMed]
  5. Joshi, S. & Khosla, N. (2003). Bioorg. Med. Chem. Lett. 13, 3747–3751. [DOI] [PubMed]
  6. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  7. Peixoto, M. P. & Beverley, S. M. (1987). Antimicrob. Agents Chemother. 31, 1575–1578. [DOI] [PMC free article] [PubMed]
  8. Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. (2003). Curr. Med. Chem. 10, 925–953. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Zia-ur-Rehman, M., Sepehrianazar, A., Ali, M., Siddiqui, W. A. & Çaylak, N. (2009). Acta Cryst. E65, o941. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202483X/is5148sup1.cif

e-68-o2090-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202483X/is5148Isup2.hkl

e-68-o2090-Isup2.hkl (164.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202483X/is5148Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES