Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2091–o2092. doi: 10.1107/S1600536812024920

A hydrogen sulfate salt of chlordiazepoxide

Veronica Diesen a, Cláudio Lousada a, Andreas Fischer a,*
PMCID: PMC3393906  PMID: 22798771

Abstract

Crystals of the hydrogen sulfate salt of chlordiazepoxide (systematic name: 7-chloro-N-methyl-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-iminium 4-oxide hydrogen sulfate), C16H15ClN3O+·HSO4 , were obtained from a solution of chlordiazepoxide and sulfuric acid in methanol. The structure features chlordiazepoxide mol­ecules that are protonated at the imine N atom. The seven-membered ring adopts a boat conformation with the CH2 group as the prow and the two aryl C atoms as the stern. The dihedral angle between the benzene rings is 72.41 (6)°. In the crystal, the HSO4 anion acts as a bridging group between two chlordiazepoxide cations. The H atom of the protonated imino N forms an N—H⋯O hydrogen bond with a hydrogen sulfate ion. The anion in turn forms two hydrogen bonds, O—H⋯O with the anion as donor and N—H⋯O with the anion as acceptor, to generate an R 2 2(10) loop. Each HSO4 anion connects two chlordiazepoxide moieties of the same chirality.

Related literature  

For general background to benzodiazepines, the structures of two polymorphs of chlordiazepoxide and a chlordiazepoxide dichloro­methane solvate, see: Fischer (2012) and references therein. For the structure of chlordiazepoxide hydro­chloride, see: Herrnstadt et al. (1979). For the synthesis of chlordiazepoxide, see: Sternbach et al. (1961). For acid–base equlibria of chlordiazepoxide and related compounds, see: Yang (1995). For the graph-set motifs, see: Etter et al. (1990).graphic file with name e-68-o2091-scheme1.jpg

Experimental  

Crystal data  

  • C16H15ClN3O+·HSO4

  • M r = 397.84

  • Monoclinic, Inline graphic

  • a = 13.9899 (6) Å

  • b = 8.7579 (10) Å

  • c = 13.9084 (6) Å

  • β = 99.657 (9)°

  • V = 1679.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.58 × 0.54 × 0.14 mm

Data collection  

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.806, T max = 0.947

  • 23827 measured reflections

  • 3835 independent reflections

  • 2802 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.088

  • S = 1.03

  • 3835 reflections

  • 245 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812024920/hb6784sup1.cif

e-68-o2091-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024920/hb6784Isup2.hkl

e-68-o2091-Isup2.hkl (188KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024920/hb6784Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5 0.82 (2) 1.95 (2) 2.764 (2) 171 (2)
N1—H1⋯O3i 0.84 (2) 1.93 (2) 2.741 (2) 162 (2)
O2—H2A⋯O1 0.81 (3) 1.78 (3) 2.583 (2) 170 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The Swedish Research Council is acknowledged for providing funding for the single-crystal diffractometer.

supplementary crystallographic information

Comment

Since chlordiazepoxide first was released into the market, benzodiazepines have become the most important pharmaceutical compounds being used as anxiolytics, hypnotics and anti-convulsants. However, the knowledge of benzodiazepine salts is still limited.

Chlordiazepoxide can be easily protonated and the protonation appears to occur on the imine nitrogen atom, which could be shown both by the structure determination of the hydrochloride (Herrnstadt et al. 1979) and by solution studies (Yang, 1995). In chlordiazepoxide, the dichloromethane solvate and the hydrochloride, dimers of chlordiazepoxide moieties are observed. In order to study the influence of the counterion on the hydrogen bonding pattern, we crystallized chlordiazepoxide hydrogen sulfate from a methanol solution.

The structure of the title compound features chlordiazepoxide molecules, that are protonated at N1 (Fig. 1). The seven-membered ring adopts a boat conformation with the CH2 group as the prow and the two aromatic C atoms as the stern. The HSO4- acts as a bridging group between two chlordiazepoxide cations. The hydrogen atom of the protonated imino-N forms a N–H···O bond with a hydrogen sulfate ion. The anion forms in turn two hydrogen bonds, one O–H···O group where the anion acts as donor and one N–H···O group where it acts as acceptor. These three H bonds yield a R22(10) loop. Each HSO4- group connects two chlordiazepoxide moieties of the same chirality. Thus, each hydrogen sulfate group acts as a bridging group, linking two chlordiazepoxide moieties yielding infinite chains (Fig. 2). Each chain contains only one enantiomer of the molecule. The dihedral angle between the benzene rings is 72.41 (6)°.

Experimental

Chlordiazepoxide was synthesized according to the procedure described by Sternbach et al. (1961). Crystals of the title compound were obtained as hexagonal, yellow plates by slow evaporation of a solution of 25 mg chlordiazepoxide and 7.7 mg sulfuric acid (95%) in 5 ml of methanol at room temperature.

Refinement

C–H hydrogen atoms were placed at calculated positions and refined riding on the respective carrier atom with Uiso=1.2Ueq of the carrier atom (1.5 Ueq for the methyl group) and with d(C–H)=0.95Å for aromatic H atoms, 0.99Å for methylene-H atoms and 0.98Å for methyl-H atoms. The torsion angle between the NH group the methyl group in the NHCH3 side chain was refined as well. O–H and N–H hydrogen atoms were located from the difference-Fourier map and the respective bond lengths were refined. The interatomic distance N1–H1 was restrained to 0.88 (2) Å because free refinement did not yield a satisfactory result.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds shown as dashed lines.

Fig. 2.

Fig. 2.

The chains formed by hydrogen bonding between chlordiazepoxide cations and hydrogen sulfate anions. The figure shows two unit cells. H atoms (except those involved in H bonds) are omitted. Hydrogen bonds shown as dashed lines.

Crystal data

C16H15ClN3O+·HSO4 F(000) = 824
Mr = 397.84 Dx = 1.573 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 84 reflections
a = 13.9899 (6) Å θ = 4.2–20.7°
b = 8.7579 (10) Å µ = 0.39 mm1
c = 13.9084 (6) Å T = 173 K
β = 99.657 (9)° Plate, yellow
V = 1679.9 (2) Å3 0.58 × 0.54 × 0.14 mm
Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer 2802 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.052
φ and ω scans θmax = 27.5°, θmin = 4.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −18→17
Tmin = 0.806, Tmax = 0.947 k = −11→11
23827 measured reflections l = −18→18
3835 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.1198P] where P = (Fo2 + 2Fc2)/3
3835 reflections (Δ/σ)max < 0.001
245 parameters Δρmax = 0.33 e Å3
1 restraint Δρmin = −0.39 e Å3
13 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.29397 (13) 0.9226 (2) 0.03883 (14) 0.0192 (4)
C2 0.23368 (14) 1.0175 (2) 0.08120 (14) 0.0196 (4)
C3 0.18881 (14) 0.9588 (2) 0.15418 (14) 0.0189 (4)
C4 0.20316 (13) 0.8080 (2) 0.18584 (13) 0.0154 (4)
C5 0.26573 (13) 0.7120 (2) 0.14382 (13) 0.0157 (4)
C6 0.31045 (13) 0.7742 (2) 0.06926 (14) 0.0185 (4)
C7 0.29408 (13) 0.5551 (2) 0.17423 (13) 0.0147 (4)
C8 0.39263 (13) 0.5004 (2) 0.16413 (13) 0.0163 (4)
C9 0.40329 (14) 0.3805 (2) 0.10173 (14) 0.0192 (4)
C10 0.49545 (14) 0.3410 (2) 0.08574 (15) 0.0233 (4)
C11 0.57571 (14) 0.4185 (3) 0.13293 (15) 0.0253 (5)
C12 0.56519 (15) 0.5383 (3) 0.19530 (16) 0.0288 (5)
C13 0.47339 (14) 0.5800 (3) 0.21034 (15) 0.0251 (5)
C14 0.13111 (13) 0.5056 (2) 0.20202 (13) 0.0161 (4)
C15 0.12400 (12) 0.6247 (2) 0.27772 (13) 0.0144 (4)
C16 0.06161 (16) 0.6949 (3) 0.42636 (15) 0.0252 (5)
Cl1 0.35131 (4) 0.99179 (6) −0.05429 (4) 0.02899 (14)
N1 0.15794 (11) 0.76324 (19) 0.26510 (11) 0.0159 (3)
N2 0.23277 (11) 0.46083 (18) 0.20355 (11) 0.0149 (3)
N3 0.08275 (12) 0.5887 (2) 0.35181 (12) 0.0173 (3)
O1 0.25496 (9) 0.32031 (15) 0.23206 (10) 0.0211 (3)
O2 0.21788 (10) 0.2042 (2) 0.39254 (12) 0.0328 (4)
O3 0.08836 (10) 0.02501 (17) 0.33641 (11) 0.0304 (4)
O4 0.12080 (11) 0.1162 (2) 0.50292 (11) 0.0361 (4)
O5 0.04859 (11) 0.28024 (17) 0.37061 (12) 0.0309 (4)
S1 0.11383 (3) 0.15276 (5) 0.40179 (3) 0.01669 (12)
H2 0.2234 1.1204 0.0605 0.024*
H3 0.1471 1.0227 0.1837 0.023*
H6 0.3529 0.7123 0.0393 0.022*
H9 0.3481 0.3259 0.0702 0.023*
H10 0.5033 0.2602 0.0421 0.028*
H11 0.6386 0.3895 0.1225 0.030*
H12 0.6206 0.5915 0.2275 0.035*
H13 0.4656 0.6631 0.2523 0.030*
H14A 0.0928 0.4149 0.2145 0.019*
H14B 0.1037 0.5461 0.1368 0.019*
H16A 0.1194 0.7562 0.4500 0.038*
H16B 0.0429 0.6375 0.4808 0.038*
H16C 0.0083 0.7625 0.3983 0.038*
H1 0.1412 (14) 0.834 (2) 0.2988 (14) 0.019*
H3A 0.0662 (16) 0.499 (3) 0.3548 (16) 0.021*
H2A 0.2223 (18) 0.242 (3) 0.340 (2) 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0178 (9) 0.0210 (11) 0.0193 (10) −0.0002 (8) 0.0049 (7) 0.0032 (8)
C2 0.0213 (10) 0.0141 (10) 0.0233 (10) 0.0017 (8) 0.0030 (8) 0.0017 (8)
C3 0.0186 (10) 0.0169 (10) 0.0212 (10) 0.0034 (8) 0.0035 (7) −0.0027 (8)
C4 0.0146 (9) 0.0157 (10) 0.0157 (9) 0.0002 (7) 0.0023 (7) −0.0015 (8)
C5 0.0159 (9) 0.0139 (10) 0.0171 (9) 0.0013 (7) 0.0025 (7) −0.0013 (8)
C6 0.0181 (9) 0.0186 (11) 0.0197 (10) 0.0026 (8) 0.0061 (7) 0.0007 (8)
C7 0.0167 (9) 0.0152 (10) 0.0124 (9) 0.0013 (7) 0.0029 (7) −0.0020 (7)
C8 0.0157 (9) 0.0164 (10) 0.0178 (9) 0.0042 (8) 0.0056 (7) 0.0035 (8)
C9 0.0192 (10) 0.0170 (11) 0.0223 (10) 0.0011 (8) 0.0065 (8) 0.0017 (8)
C10 0.0261 (11) 0.0204 (11) 0.0258 (11) 0.0076 (9) 0.0109 (8) 0.0006 (9)
C11 0.0168 (10) 0.0330 (13) 0.0273 (11) 0.0091 (9) 0.0076 (8) 0.0065 (10)
C12 0.0162 (10) 0.0372 (14) 0.0318 (12) −0.0031 (9) 0.0001 (8) −0.0023 (10)
C13 0.0224 (11) 0.0259 (12) 0.0270 (11) −0.0004 (9) 0.0044 (8) −0.0089 (9)
C14 0.0136 (9) 0.0176 (10) 0.0178 (9) 0.0003 (7) 0.0052 (7) −0.0031 (8)
C15 0.0110 (8) 0.0165 (10) 0.0159 (9) 0.0035 (7) 0.0023 (7) −0.0004 (8)
C16 0.0315 (11) 0.0263 (12) 0.0201 (10) 0.0063 (9) 0.0113 (8) 0.0000 (9)
Cl1 0.0333 (3) 0.0255 (3) 0.0325 (3) 0.0051 (2) 0.0179 (2) 0.0108 (2)
N1 0.0191 (8) 0.0146 (9) 0.0156 (8) 0.0026 (7) 0.0073 (6) −0.0036 (7)
N2 0.0178 (8) 0.0125 (8) 0.0151 (8) 0.0032 (6) 0.0048 (6) −0.0009 (6)
N3 0.0202 (8) 0.0142 (9) 0.0191 (8) 0.0019 (7) 0.0082 (6) −0.0007 (7)
O1 0.0272 (7) 0.0124 (7) 0.0265 (8) 0.0044 (6) 0.0123 (6) 0.0029 (6)
O2 0.0210 (8) 0.0484 (11) 0.0283 (8) −0.0117 (7) 0.0018 (6) 0.0130 (8)
O3 0.0296 (8) 0.0227 (8) 0.0402 (9) −0.0017 (6) 0.0100 (7) −0.0145 (7)
O4 0.0409 (9) 0.0502 (11) 0.0195 (8) 0.0005 (8) 0.0113 (6) 0.0093 (7)
O5 0.0319 (8) 0.0177 (8) 0.0434 (9) 0.0045 (6) 0.0071 (7) 0.0043 (7)
S1 0.0206 (2) 0.0146 (2) 0.0162 (2) −0.00200 (19) 0.00691 (17) −0.00031 (19)

Geometric parameters (Å, º)

C1—C6 1.375 (3) N2—O1 1.314 (2)
C1—C2 1.384 (3) O2—S1 1.5495 (15)
C1—Cl1 1.7426 (19) O3—S1 1.4481 (15)
C2—C3 1.379 (3) O4—S1 1.4299 (15)
C3—C4 1.396 (3) O5—S1 1.4611 (15)
C4—C5 1.409 (3) C2—H2 0.9500
C4—N1 1.415 (2) C3—H3 0.9500
C5—C6 1.407 (3) C6—H6 0.9500
C5—C7 1.473 (3) C9—H9 0.9500
C7—N2 1.304 (2) C10—H10 0.9500
C7—C8 1.488 (2) C11—H11 0.9500
C8—C9 1.386 (3) C12—H12 0.9500
C8—C13 1.390 (3) C13—H13 0.9500
C9—C10 1.388 (3) C14—H14A 0.9900
C10—C11 1.381 (3) C14—H14B 0.9900
C11—C12 1.385 (3) C16—H16A 0.9800
C12—C13 1.384 (3) C16—H16B 0.9800
C14—N2 1.472 (2) C16—H16C 0.9800
C14—C15 1.497 (3) N1—H1 0.837 (15)
C15—N3 1.301 (2) N3—H3A 0.82 (2)
C15—N1 1.325 (2) O2—H2A 0.81 (3)
C16—N3 1.460 (3)
C6—C1—C2 121.28 (18) O4—S1—O2 103.70 (9)
C6—C1—Cl1 118.89 (15) O3—S1—O2 107.94 (9)
C2—C1—Cl1 119.83 (16) O5—S1—O2 107.58 (9)
C3—C2—C1 118.37 (18) C3—C2—H2 120.8
C2—C3—C4 121.68 (18) C1—C2—H2 120.8
C3—C4—C5 120.00 (17) C2—C3—H3 119.2
C3—C4—N1 116.63 (16) C4—C3—H3 119.2
C5—C4—N1 123.22 (17) C1—C6—H6 119.3
C6—C5—C4 117.30 (17) C5—C6—H6 119.3
C6—C5—C7 116.17 (16) C8—C9—H9 120.4
C4—C5—C7 126.42 (17) C10—C9—H9 120.4
C1—C6—C5 121.36 (18) C11—C10—H10 119.9
N2—C7—C5 121.40 (16) C9—C10—H10 119.9
N2—C7—C8 119.59 (17) C10—C11—H11 119.8
C5—C7—C8 118.85 (16) C12—C11—H11 119.8
C9—C8—C13 120.34 (17) C13—C12—H12 120.2
C9—C8—C7 120.11 (17) C11—C12—H12 120.2
C13—C8—C7 119.25 (17) C12—C13—H13 120.0
C8—C9—C10 119.30 (18) C8—C13—H13 120.0
C11—C10—C9 120.29 (19) N2—C14—H14A 109.5
C10—C11—C12 120.47 (18) C15—C14—H14A 109.5
C13—C12—C11 119.6 (2) N2—C14—H14B 109.5
C12—C13—C8 120.01 (19) C15—C14—H14B 109.5
N2—C14—C15 110.70 (15) H14A—C14—H14B 108.1
N3—C15—N1 122.88 (17) N3—C16—H16A 109.5
N3—C15—C14 118.61 (17) N3—C16—H16B 109.5
N1—C15—C14 118.50 (16) H16A—C16—H16B 109.5
C15—N1—C4 125.00 (16) N3—C16—H16C 109.5
C7—N2—O1 123.56 (15) H16A—C16—H16C 109.5
C7—N2—C14 120.75 (16) H16B—C16—H16C 109.5
O1—N2—C14 115.63 (14) C15—N1—H1 117.9 (15)
C15—N3—C16 125.30 (18) C4—N1—H1 115.7 (15)
O4—S1—O3 114.42 (10) C15—N3—H3A 116.0 (16)
O4—S1—O5 113.54 (10) C16—N3—H3A 118.7 (16)
O3—S1—O5 109.17 (9) S1—O2—H2A 114.0 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O5 0.82 (2) 1.95 (2) 2.764 (2) 171 (2)
N1—H1···O3i 0.84 (2) 1.93 (2) 2.741 (2) 162 (2)
O2—H2A···O1 0.81 (3) 1.78 (3) 2.583 (2) 170 (3)

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6784).

References

  1. Brandenburg, K. (2007). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
  3. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Fischer, A. (2012). Acta Cryst. E68, o1011. [DOI] [PMC free article] [PubMed]
  6. Herrnstadt, C., Mootz, D., Wunderlich, H. & Möhrle, H. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 735–740.
  7. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  8. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sternbach, L. H., Reeder, E., Keller, O. & Metlesics, W. (1961). J. Org. Chem. 26, 4488–4497.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Yang, S. K. (1995). J. Pharm. Pharmacol. 47, 442–446. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812024920/hb6784sup1.cif

e-68-o2091-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024920/hb6784Isup2.hkl

e-68-o2091-Isup2.hkl (188KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024920/hb6784Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES