Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2094–o2095. doi: 10.1107/S1600536812025512

11-[(E)-2-Fluoro­benzyl­idene]-8-(2-fluoro­phen­yl)-14-hy­droxy-6-thia-3,13-diaza­hepta­cyclo­[13.7.1.19,13.02,9.02,14.03,7.019,23]tetra­cosa-1(22),15(23),16,18,20-pentaen-10-one

Raju Suresh Kumar a, Hasnah Osman a,, Abdulrahman I Almansour b, Suhana Arshad c, Ibrahim Abdul Razak c,*,§
PMCID: PMC3393908  PMID: 22798773

Abstract

In the title compound, C34H26F2N2O2S, an intra­molecular O—H⋯N hydrogen bond forms an S(5) ring motif. The piperidine ring adopts a chair conformation. The thia­zolidine ring and one of the pyrrolidine rings adopt envolope conformations with methyl­ene C atoms at the flap, whereas the other pyrrolidine ring adopts a half-chair conformation. The fluoro-substituted benzene rings form dihedral angles of 32.25 (10) and 38.27 (10)°, respectively, with the mean plane of the dihydro­acenaphthyl­ene ring system [maximum deviation = 0.043 (2) Å]. The dihedral angle between the fluoro-substituted benzene rings is 64.13 (14)°. In the crystal, mol­ecules are linked by weak C—H⋯O, C—H⋯F and C—H⋯S hydrogen bonds into a three-dimensional network.

Related literature  

For general background to the applications of nitro­gen heterocycles, see: Orru & de Greef (2003); Kirsch et al. (2004); Padwa (1984); For related structures, see: Kumar et al. (2010a ,b , 2011a ,b ). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2094-scheme1.jpg

Experimental  

Crystal data  

  • C34H26F2N2O2S

  • M r = 564.63

  • Monoclinic, Inline graphic

  • a = 11.1783 (10) Å

  • b = 16.1033 (14) Å

  • c = 15.2165 (13) Å

  • β = 92.838 (2)°

  • V = 2735.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.40 × 0.26 × 0.15 mm

Data collection  

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.936, T max = 0.976

  • 30643 measured reflections

  • 7981 independent reflections

  • 4714 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.173

  • S = 1.03

  • 7981 reflections

  • 374 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025512/lh5479sup1.cif

e-68-o2094-sup1.cif (38.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025512/lh5479Isup2.hkl

e-68-o2094-Isup2.hkl (390.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025512/lh5479Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.89 (3) 1.96 (3) 2.636 (2) 132 (3)
C14—H14A⋯O2i 0.97 2.54 3.156 (3) 121
C22—H22A⋯F1ii 0.93 2.44 3.351 (3) 166
C25—H25A⋯S1iii 0.93 2.78 3.545 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grants Nos. 203/PKIMIA/6711179 and 1001/PFIZIK/811151. RSK and AIM thank the Research Center, Deanship of Scientific Research, College of Science, King Saud University. SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) Fellowship.

supplementary crystallographic information

Comment

The development of new efficient methods to synthesize nitrogen heterocycles with structural diversity is one of the major objectives of modern synthetic organic chemists as these heterocycles are widely prevalent in nature and play a pivotal role in the pharmaceutical and drug industry (Orru & de Greef, 2003; Kirsch et al., 2004). 1,3-Dipolar cycloaddition of azomethine ylides is a versatile protocol for the construction of highly functionalized N-heterocycles (Padwa, 1984). As a continuation of our research program (Kumar et al., 2010a,b; Kumar et al., 2011a,b), we report the X-ray crystal structure determination of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges and comparable to related structures (Kumar et al., 2010a,b; Kumar et al., 2011a,b). An intramolecular O1—H1O1···N1 hydrogen bond (Table 1) forms an S(5) ring motif (Bernstein et al., 1995). The piperidine ring (N2/C17–C21) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975), Q= 0.6115 (19) Å, Θ= 142.58 (18)° and Φ= 236.7 (3)°. For the thiazolidine ring, S1/N1/C13–C15 adopts an envelope conformation with atom C14 on the flap with puckering parameters Q= 0.4212 (19) Å and φ= 209.8 (3)°. The two pyrrolidine rings adopt different conformations, N1/C12/C15–C17 is twisted about C16–C17 bond [puckering parameters, Q= 0.3857 (19) Å and φ= 273.7 (3)°], hence adopting a half-chair conformation. Meanwhile, the N2/C11/C12/C17/C18 ring is in envelope conformation with atom C18 at the flap [puckering parameters Q= 0.4598 (19) Å and φ= 148.3 (2)°]. The fluoro-substituted benzene rings (C23–C28 & C29–C34) form dihedral angles of 32.25 (10) and 38.27 (10)°, respectively, with the mean plane of the dihydroacenaphthylene ring system [C2–C12, maximum deviation of 0.043 (2) Å at atom C11]. The dihedral angle between the fluoro substituted benzene rings is 64.13 (14)°.

In the crystal packing (Fig. 2), the molecules are linked into three dimensional network via intermolecular C14—H14A···O2i, C22—H22A···F1ii and C25—H25A···S1iii (Table 1) hydrogen bonds.

Experimental

A mixture of 3,5-bis[(E)-(2-fluorophenyl) methylidene]-tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and thiazolidine-2-carboxylic acid (1 mmol) were dissolved in methanol (5 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water (200 mL) and recrystallized from ethyl acetate to give the title compound as colourless crystals.

Refinement

The O-bound H atom was located from the difference map and refined freely, [O–H = 0.89 (4) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C34H26F2N2O2S F(000) = 1176
Mr = 564.63 Dx = 1.371 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4640 reflections
a = 11.1783 (10) Å θ = 2.5–22.5°
b = 16.1033 (14) Å µ = 0.17 mm1
c = 15.2165 (13) Å T = 296 K
β = 92.838 (2)° Block, colourless
V = 2735.7 (4) Å3 0.40 × 0.26 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 7981 independent reflections
Radiation source: fine-focus sealed tube 4714 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
φ and ω scans θmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.936, Tmax = 0.976 k = −22→20
30643 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.2935P] where P = (Fo2 + 2Fc2)/3
7981 reflections (Δ/σ)max < 0.001
374 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.64031 (5) 0.09464 (4) 0.28495 (4) 0.05918 (19)
F1 1.15043 (16) 0.49435 (9) 0.45961 (12) 0.0838 (5)
F2 0.55699 (14) 0.25610 (10) 0.49142 (12) 0.0797 (5)
O1 1.09128 (14) 0.06644 (8) 0.36084 (10) 0.0454 (3)
O2 0.82349 (13) 0.30813 (9) 0.52734 (9) 0.0478 (4)
N1 0.87293 (14) 0.12106 (9) 0.32117 (9) 0.0339 (3)
N2 1.08274 (14) 0.13270 (10) 0.49723 (10) 0.0370 (4)
C1 1.09271 (17) 0.27529 (11) 0.33216 (11) 0.0352 (4)
C2 0.96866 (17) 0.26464 (11) 0.33643 (11) 0.0330 (4)
C3 0.89385 (19) 0.32817 (12) 0.31060 (12) 0.0432 (5)
H3A 0.8115 0.3233 0.3153 0.052*
C4 0.9441 (2) 0.40161 (13) 0.27656 (14) 0.0527 (6)
H4A 0.8935 0.4447 0.2581 0.063*
C5 1.0638 (2) 0.41076 (13) 0.27015 (14) 0.0542 (6)
H5A 1.0932 0.4593 0.2462 0.065*
C6 1.1446 (2) 0.34828 (13) 0.29902 (13) 0.0454 (5)
C7 1.2708 (2) 0.34971 (17) 0.30078 (16) 0.0612 (6)
H7A 1.3095 0.3960 0.2792 0.073*
C8 1.3370 (2) 0.28475 (18) 0.33346 (16) 0.0635 (7)
H8A 1.4201 0.2877 0.3333 0.076*
C9 1.28338 (19) 0.21281 (15) 0.36766 (14) 0.0513 (5)
H9A 1.3302 0.1692 0.3901 0.062*
C10 1.16086 (17) 0.20875 (12) 0.36704 (11) 0.0375 (4)
C11 1.07658 (16) 0.14415 (11) 0.40053 (11) 0.0330 (4)
C12 0.94494 (15) 0.18013 (10) 0.37635 (10) 0.0292 (3)
C13 0.84768 (19) 0.13879 (14) 0.22702 (12) 0.0436 (5)
H13A 0.8637 0.0899 0.1923 0.052*
H13B 0.8988 0.1834 0.2083 0.052*
C14 0.7179 (2) 0.16348 (16) 0.21350 (15) 0.0573 (6)
H14A 0.6901 0.1559 0.1526 0.069*
H14B 0.7062 0.2210 0.2299 0.069*
C15 0.76423 (17) 0.09699 (12) 0.36640 (12) 0.0380 (4)
H15A 0.7755 0.0416 0.3921 0.046*
C16 0.75285 (16) 0.16069 (11) 0.44020 (11) 0.0346 (4)
H16A 0.7184 0.2112 0.4135 0.042*
C17 0.88387 (15) 0.17909 (11) 0.46585 (10) 0.0301 (4)
C18 0.95895 (17) 0.11177 (12) 0.51626 (12) 0.0366 (4)
H18A 0.9472 0.1144 0.5789 0.044*
H18B 0.9380 0.0566 0.4950 0.044*
C19 1.11878 (17) 0.20648 (12) 0.54978 (12) 0.0392 (4)
H19A 1.1967 0.2248 0.5322 0.047*
H19B 1.1270 0.1906 0.6113 0.047*
C20 1.03218 (17) 0.27870 (12) 0.54077 (11) 0.0371 (4)
C21 0.90487 (17) 0.26048 (12) 0.51384 (11) 0.0350 (4)
C22 1.06286 (18) 0.35928 (13) 0.54605 (13) 0.0428 (5)
H22A 1.0018 0.3974 0.5340 0.051*
C23 1.18185 (19) 0.39387 (13) 0.56861 (13) 0.0456 (5)
C24 1.2575 (2) 0.36255 (17) 0.63633 (16) 0.0631 (7)
H24A 1.2343 0.3161 0.6676 0.076*
C25 1.3663 (3) 0.3997 (2) 0.6574 (2) 0.0813 (9)
H25A 1.4165 0.3774 0.7019 0.098*
C26 1.4010 (3) 0.4689 (2) 0.6134 (2) 0.0853 (9)
H26A 1.4743 0.4937 0.6285 0.102*
C27 1.3281 (3) 0.50214 (18) 0.5467 (2) 0.0789 (8)
H27A 1.3509 0.5494 0.5166 0.095*
C28 1.2208 (2) 0.46361 (15) 0.52589 (16) 0.0564 (6)
C29 0.67349 (17) 0.13516 (13) 0.51333 (13) 0.0415 (4)
C30 0.6912 (2) 0.06281 (15) 0.56116 (15) 0.0575 (6)
H30A 0.7529 0.0272 0.5471 0.069*
C31 0.6191 (3) 0.0420 (2) 0.6296 (2) 0.0868 (10)
H31A 0.6332 −0.0066 0.6615 0.104*
C32 0.5273 (3) 0.0936 (2) 0.6497 (3) 0.1059 (13)
H32A 0.4788 0.0797 0.6954 0.127*
C33 0.5057 (3) 0.1652 (2) 0.6035 (2) 0.0877 (10)
H33A 0.4429 0.2001 0.6169 0.105*
C34 0.5792 (2) 0.18450 (16) 0.53672 (17) 0.0566 (6)
H1O1 1.022 (3) 0.057 (2) 0.331 (2) 0.114 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0464 (3) 0.0822 (5) 0.0480 (3) −0.0191 (3) −0.0063 (2) −0.0016 (3)
F1 0.0918 (12) 0.0607 (10) 0.0964 (12) −0.0043 (8) −0.0207 (10) 0.0173 (8)
F2 0.0590 (9) 0.0718 (10) 0.1096 (12) 0.0249 (8) 0.0175 (9) 0.0149 (9)
O1 0.0466 (8) 0.0346 (8) 0.0549 (8) 0.0092 (6) 0.0023 (7) −0.0076 (6)
O2 0.0421 (8) 0.0472 (8) 0.0545 (8) 0.0072 (6) 0.0058 (6) −0.0144 (7)
N1 0.0387 (8) 0.0350 (8) 0.0280 (7) −0.0044 (6) 0.0009 (6) 0.0008 (6)
N2 0.0370 (8) 0.0394 (9) 0.0342 (7) 0.0033 (7) −0.0008 (6) 0.0068 (6)
C1 0.0432 (10) 0.0354 (10) 0.0275 (8) −0.0049 (8) 0.0057 (7) −0.0020 (7)
C2 0.0434 (10) 0.0292 (9) 0.0266 (8) −0.0018 (7) 0.0039 (7) 0.0020 (7)
C3 0.0514 (12) 0.0369 (11) 0.0414 (10) 0.0027 (9) 0.0038 (9) 0.0085 (8)
C4 0.0733 (16) 0.0354 (11) 0.0492 (12) 0.0010 (10) 0.0016 (11) 0.0115 (9)
C5 0.0793 (17) 0.0367 (11) 0.0467 (12) −0.0131 (11) 0.0046 (11) 0.0098 (9)
C6 0.0571 (13) 0.0440 (12) 0.0357 (9) −0.0151 (10) 0.0083 (9) 0.0009 (8)
C7 0.0607 (15) 0.0678 (16) 0.0559 (13) −0.0264 (13) 0.0107 (11) 0.0060 (12)
C8 0.0410 (12) 0.0873 (19) 0.0629 (14) −0.0206 (12) 0.0098 (11) −0.0020 (13)
C9 0.0384 (11) 0.0634 (15) 0.0522 (12) −0.0018 (10) 0.0043 (9) 0.0006 (11)
C10 0.0374 (10) 0.0438 (11) 0.0315 (9) −0.0038 (8) 0.0050 (7) −0.0025 (7)
C11 0.0355 (9) 0.0319 (9) 0.0316 (8) 0.0036 (7) 0.0017 (7) 0.0007 (7)
C12 0.0337 (8) 0.0270 (8) 0.0270 (7) 0.0004 (7) 0.0014 (6) 0.0022 (6)
C13 0.0502 (12) 0.0512 (12) 0.0292 (9) −0.0080 (9) −0.0011 (8) 0.0006 (8)
C14 0.0569 (14) 0.0693 (16) 0.0444 (11) −0.0056 (11) −0.0116 (10) 0.0096 (10)
C15 0.0405 (10) 0.0392 (11) 0.0344 (9) −0.0067 (8) 0.0020 (7) 0.0036 (7)
C16 0.0358 (9) 0.0340 (10) 0.0341 (9) 0.0019 (7) 0.0031 (7) 0.0052 (7)
C17 0.0341 (9) 0.0301 (9) 0.0262 (7) 0.0000 (7) 0.0039 (6) 0.0039 (6)
C18 0.0403 (10) 0.0376 (10) 0.0319 (8) 0.0018 (8) 0.0028 (7) 0.0079 (7)
C19 0.0389 (10) 0.0474 (11) 0.0307 (8) 0.0025 (8) −0.0041 (7) 0.0025 (8)
C20 0.0404 (10) 0.0449 (11) 0.0258 (8) 0.0005 (8) 0.0011 (7) −0.0039 (7)
C21 0.0388 (10) 0.0394 (10) 0.0269 (8) 0.0014 (8) 0.0041 (7) 0.0011 (7)
C22 0.0426 (11) 0.0453 (12) 0.0404 (10) 0.0005 (9) 0.0003 (8) −0.0070 (8)
C23 0.0452 (11) 0.0480 (12) 0.0434 (10) −0.0060 (9) 0.0012 (9) −0.0114 (9)
C24 0.0610 (15) 0.0730 (17) 0.0539 (13) −0.0129 (12) −0.0128 (11) −0.0041 (12)
C25 0.0636 (17) 0.104 (2) 0.0739 (18) −0.0186 (16) −0.0236 (14) −0.0036 (17)
C26 0.0626 (17) 0.100 (2) 0.091 (2) −0.0331 (17) −0.0146 (16) −0.0061 (19)
C27 0.0731 (19) 0.0684 (19) 0.095 (2) −0.0281 (15) 0.0043 (16) 0.0016 (16)
C28 0.0554 (14) 0.0524 (14) 0.0607 (14) −0.0041 (11) −0.0029 (11) −0.0030 (11)
C29 0.0381 (10) 0.0470 (12) 0.0399 (10) −0.0018 (8) 0.0071 (8) 0.0027 (8)
C30 0.0569 (14) 0.0564 (14) 0.0612 (14) 0.0016 (11) 0.0240 (11) 0.0149 (11)
C31 0.099 (2) 0.077 (2) 0.089 (2) 0.0018 (17) 0.0536 (18) 0.0274 (16)
C32 0.110 (3) 0.091 (2) 0.125 (3) −0.001 (2) 0.085 (2) 0.017 (2)
C33 0.0672 (19) 0.082 (2) 0.119 (3) 0.0062 (15) 0.0536 (18) −0.0048 (19)
C34 0.0436 (12) 0.0555 (14) 0.0718 (15) 0.0031 (10) 0.0148 (11) 0.0007 (12)

Geometric parameters (Å, º)

S1—C14 1.804 (2) C14—H14B 0.9700
S1—C15 1.8129 (19) C15—C16 1.531 (3)
F1—C28 1.343 (3) C15—H15A 0.9800
F2—C34 1.360 (3) C16—C29 1.514 (3)
O1—C11 1.403 (2) C16—C17 1.526 (2)
O1—H1O1 0.89 (4) C16—H16A 0.9800
O2—C21 1.215 (2) C17—C21 1.513 (2)
N1—C13 1.474 (2) C17—C18 1.550 (2)
N1—C15 1.478 (2) C18—H18A 0.9700
N1—C12 1.480 (2) C18—H18B 0.9700
N2—C18 1.467 (2) C19—C20 1.515 (3)
N2—C19 1.477 (2) C19—H19A 0.9700
N2—C11 1.481 (2) C19—H19B 0.9700
C1—C2 1.402 (3) C20—C22 1.344 (3)
C1—C10 1.404 (3) C20—C21 1.490 (3)
C1—C6 1.414 (3) C22—C23 1.467 (3)
C2—C3 1.367 (3) C22—H22A 0.9300
C2—C12 1.519 (2) C23—C28 1.379 (3)
C3—C4 1.418 (3) C23—C24 1.395 (3)
C3—H3A 0.9300 C24—C25 1.379 (4)
C4—C5 1.354 (4) C24—H24A 0.9300
C4—H4A 0.9300 C25—C26 1.367 (4)
C5—C6 1.408 (3) C25—H25A 0.9300
C5—H5A 0.9300 C26—C27 1.377 (4)
C6—C7 1.410 (3) C26—H26A 0.9300
C7—C8 1.362 (4) C27—C28 1.373 (4)
C7—H7A 0.9300 C27—H27A 0.9300
C8—C9 1.415 (3) C29—C34 1.381 (3)
C8—H8A 0.9300 C29—C30 1.383 (3)
C9—C10 1.371 (3) C30—C31 1.390 (3)
C9—H9A 0.9300 C30—H30A 0.9300
C10—C11 1.509 (3) C31—C32 1.367 (4)
C11—C12 1.607 (2) C31—H31A 0.9300
C12—C17 1.553 (2) C32—C33 1.366 (5)
C13—C14 1.509 (3) C32—H32A 0.9300
C13—H13A 0.9700 C33—C34 1.373 (4)
C13—H13B 0.9700 C33—H33A 0.9300
C14—H14A 0.9700
C14—S1—C15 91.46 (9) C29—C16—C15 115.48 (16)
C11—O1—H1O1 105 (2) C17—C16—C15 101.78 (14)
C13—N1—C15 112.40 (15) C29—C16—H16A 107.3
C13—N1—C12 119.96 (14) C17—C16—H16A 107.3
C15—N1—C12 109.94 (14) C15—C16—H16A 107.3
C18—N2—C19 108.21 (15) C21—C17—C16 114.56 (15)
C18—N2—C11 103.11 (14) C21—C17—C18 107.44 (14)
C19—N2—C11 115.84 (14) C16—C17—C18 118.69 (15)
C2—C1—C10 114.11 (16) C21—C17—C12 110.44 (13)
C2—C1—C6 122.82 (18) C16—C17—C12 103.63 (13)
C10—C1—C6 123.02 (19) C18—C17—C12 101.00 (13)
C3—C2—C1 119.18 (17) N2—C18—C17 103.56 (14)
C3—C2—C12 132.01 (18) N2—C18—H18A 111.0
C1—C2—C12 108.72 (15) C17—C18—H18A 111.0
C2—C3—C4 118.8 (2) N2—C18—H18B 111.0
C2—C3—H3A 120.6 C17—C18—H18B 111.0
C4—C3—H3A 120.6 H18A—C18—H18B 109.0
C5—C4—C3 121.9 (2) N2—C19—C20 114.37 (15)
C5—C4—H4A 119.1 N2—C19—H19A 108.7
C3—C4—H4A 119.1 C20—C19—H19A 108.7
C4—C5—C6 121.4 (2) N2—C19—H19B 108.7
C4—C5—H5A 119.3 C20—C19—H19B 108.7
C6—C5—H5A 119.3 H19A—C19—H19B 107.6
C5—C6—C7 128.3 (2) C22—C20—C21 116.36 (17)
C5—C6—C1 115.9 (2) C22—C20—C19 125.17 (18)
C7—C6—C1 115.7 (2) C21—C20—C19 118.09 (17)
C8—C7—C6 121.3 (2) O2—C21—C20 122.80 (17)
C8—C7—H7A 119.3 O2—C21—C17 121.94 (17)
C6—C7—H7A 119.3 C20—C21—C17 115.24 (15)
C7—C8—C9 122.0 (2) C20—C22—C23 127.34 (19)
C7—C8—H8A 119.0 C20—C22—H22A 116.3
C9—C8—H8A 119.0 C23—C22—H22A 116.3
C10—C9—C8 118.5 (2) C28—C23—C24 116.6 (2)
C10—C9—H9A 120.7 C28—C23—C22 120.2 (2)
C8—C9—H9A 120.7 C24—C23—C22 123.0 (2)
C9—C10—C1 119.31 (19) C25—C24—C23 120.7 (3)
C9—C10—C11 132.13 (19) C25—C24—H24A 119.7
C1—C10—C11 108.53 (16) C23—C24—H24A 119.6
O1—C11—N2 108.43 (14) C26—C25—C24 120.6 (3)
O1—C11—C10 112.41 (15) C26—C25—H25A 119.7
N2—C11—C10 114.97 (15) C24—C25—H25A 119.7
O1—C11—C12 110.40 (14) C25—C26—C27 120.4 (3)
N2—C11—C12 105.62 (13) C25—C26—H26A 119.8
C10—C11—C12 104.71 (14) C27—C26—H26A 119.8
N1—C12—C2 116.72 (13) C28—C27—C26 118.2 (3)
N1—C12—C17 103.90 (13) C28—C27—H27A 120.9
C2—C12—C17 116.96 (14) C26—C27—H27A 120.9
N1—C12—C11 111.35 (13) F1—C28—C27 118.6 (2)
C2—C12—C11 103.80 (14) F1—C28—C23 117.8 (2)
C17—C12—C11 103.44 (12) C27—C28—C23 123.5 (2)
N1—C13—C14 108.68 (17) C34—C29—C30 116.12 (19)
N1—C13—H13A 110.0 C34—C29—C16 121.05 (19)
C14—C13—H13A 110.0 C30—C29—C16 122.82 (18)
N1—C13—H13B 110.0 C29—C30—C31 121.7 (2)
C14—C13—H13B 110.0 C29—C30—H30A 119.2
H13A—C13—H13B 108.3 C31—C30—H30A 119.2
C13—C14—S1 104.09 (15) C32—C31—C30 119.4 (3)
C13—C14—H14A 110.9 C32—C31—H31A 120.3
S1—C14—H14A 110.9 C30—C31—H31A 120.3
C13—C14—H14B 110.9 C33—C32—C31 120.9 (3)
S1—C14—H14B 110.9 C33—C32—H32A 119.6
H14A—C14—H14B 109.0 C31—C32—H32A 119.6
N1—C15—C16 105.43 (14) C32—C33—C34 118.4 (3)
N1—C15—S1 107.77 (12) C32—C33—H33A 120.8
C16—C15—S1 115.29 (14) C34—C33—H33A 120.8
N1—C15—H15A 109.4 F2—C34—C33 117.8 (2)
C16—C15—H15A 109.4 F2—C34—C29 118.7 (2)
S1—C15—H15A 109.4 C33—C34—C29 123.5 (2)
C29—C16—C17 117.04 (15)
C10—C1—C2—C3 175.02 (17) S1—C15—C16—C29 79.94 (18)
C6—C1—C2—C3 −2.4 (3) N1—C15—C16—C17 −33.48 (17)
C10—C1—C2—C12 −1.8 (2) S1—C15—C16—C17 −152.20 (12)
C6—C1—C2—C12 −179.23 (16) C29—C16—C17—C21 −73.8 (2)
C1—C2—C3—C4 2.8 (3) C15—C16—C17—C21 159.33 (14)
C12—C2—C3—C4 178.72 (18) C29—C16—C17—C18 54.9 (2)
C2—C3—C4—C5 −0.9 (3) C15—C16—C17—C18 −71.94 (18)
C3—C4—C5—C6 −1.5 (4) C29—C16—C17—C12 165.79 (15)
C4—C5—C6—C7 −176.7 (2) C15—C16—C17—C12 38.94 (16)
C4—C5—C6—C1 1.9 (3) N1—C12—C17—C21 −153.45 (14)
C2—C1—C6—C5 0.1 (3) C2—C12—C17—C21 −23.2 (2)
C10—C1—C6—C5 −177.13 (18) C11—C12—C17—C21 90.14 (15)
C2—C1—C6—C7 178.86 (18) N1—C12—C17—C16 −30.30 (16)
C10—C1—C6—C7 1.7 (3) C2—C12—C17—C16 99.91 (17)
C5—C6—C7—C8 177.9 (2) C11—C12—C17—C16 −146.71 (14)
C1—C6—C7—C8 −0.7 (3) N1—C12—C17—C18 93.09 (15)
C6—C7—C8—C9 −0.3 (4) C2—C12—C17—C18 −136.70 (15)
C7—C8—C9—C10 0.4 (4) C11—C12—C17—C18 −23.32 (16)
C8—C9—C10—C1 0.5 (3) C19—N2—C18—C17 74.85 (16)
C8—C9—C10—C11 −177.5 (2) C11—N2—C18—C17 −48.36 (17)
C2—C1—C10—C9 −179.01 (18) C21—C17—C18—N2 −71.17 (17)
C6—C1—C10—C9 −1.6 (3) C16—C17—C18—N2 156.89 (15)
C2—C1—C10—C11 −0.6 (2) C12—C17—C18—N2 44.55 (16)
C6—C1—C10—C11 176.83 (16) C18—N2—C19—C20 −51.43 (19)
C18—N2—C11—O1 −86.28 (16) C11—N2—C19—C20 63.7 (2)
C19—N2—C11—O1 155.72 (15) N2—C19—C20—C22 −148.31 (18)
C18—N2—C11—C10 146.96 (15) N2—C19—C20—C21 24.3 (2)
C19—N2—C11—C10 29.0 (2) C22—C20—C21—O2 −27.3 (3)
C18—N2—C11—C12 32.05 (17) C19—C20—C21—O2 159.49 (17)
C19—N2—C11—C12 −85.94 (17) C22—C20—C21—C17 151.05 (16)
C9—C10—C11—O1 −59.4 (3) C19—C20—C21—C17 −22.2 (2)
C1—C10—C11—O1 122.42 (16) C16—C17—C21—O2 −2.7 (2)
C9—C10—C11—N2 65.3 (3) C18—C17—C21—O2 −136.84 (18)
C1—C10—C11—N2 −112.88 (17) C12—C17—C21—O2 113.86 (19)
C9—C10—C11—C12 −179.3 (2) C16—C17—C21—C20 178.97 (14)
C1—C10—C11—C12 2.55 (18) C18—C17—C21—C20 44.81 (19)
C13—N1—C12—C2 11.7 (2) C12—C17—C21—C20 −64.48 (18)
C15—N1—C12—C2 −120.95 (16) C21—C20—C22—C23 −178.31 (18)
C13—N1—C12—C17 142.00 (16) C19—C20—C22—C23 −5.6 (3)
C15—N1—C12—C17 9.40 (17) C20—C22—C23—C28 141.7 (2)
C13—N1—C12—C11 −107.27 (18) C20—C22—C23—C24 −42.4 (3)
C15—N1—C12—C11 120.13 (15) C28—C23—C24—C25 −1.0 (4)
C3—C2—C12—N1 64.0 (3) C22—C23—C24—C25 −177.1 (2)
C1—C2—C12—N1 −119.72 (16) C23—C24—C25—C26 1.3 (5)
C3—C2—C12—C17 −59.9 (3) C24—C25—C26—C27 −0.6 (5)
C1—C2—C12—C17 116.38 (16) C25—C26—C27—C28 −0.3 (5)
C3—C2—C12—C11 −173.06 (19) C26—C27—C28—F1 −178.4 (3)
C1—C2—C12—C11 3.20 (17) C26—C27—C28—C23 0.6 (5)
O1—C11—C12—N1 1.75 (18) C24—C23—C28—F1 179.1 (2)
N2—C11—C12—N1 −115.26 (15) C22—C23—C28—F1 −4.7 (3)
C10—C11—C12—N1 122.96 (15) C24—C23—C28—C27 0.1 (4)
O1—C11—C12—C2 −124.63 (15) C22—C23—C28—C27 176.3 (2)
N2—C11—C12—C2 118.35 (14) C17—C16—C29—C34 115.1 (2)
C10—C11—C12—C2 −3.43 (16) C15—C16—C29—C34 −125.1 (2)
O1—C11—C12—C17 112.77 (15) C17—C16—C29—C30 −64.0 (3)
N2—C11—C12—C17 −4.25 (17) C15—C16—C29—C30 55.8 (3)
C10—C11—C12—C17 −126.03 (14) C34—C29—C30—C31 −1.0 (4)
C15—N1—C13—C14 24.5 (2) C16—C29—C30—C31 178.1 (3)
C12—N1—C13—C14 −107.0 (2) C29—C30—C31—C32 0.9 (5)
N1—C13—C14—S1 −39.6 (2) C30—C31—C32—C33 −0.1 (6)
C15—S1—C14—C13 35.33 (16) C31—C32—C33—C34 −0.5 (6)
C13—N1—C15—C16 −121.28 (16) C32—C33—C34—F2 −179.8 (3)
C12—N1—C15—C16 15.11 (18) C32—C33—C34—C29 0.3 (5)
C13—N1—C15—S1 2.34 (19) C30—C29—C34—F2 −179.5 (2)
C12—N1—C15—S1 138.73 (12) C16—C29—C34—F2 1.4 (3)
C14—S1—C15—N1 −22.38 (15) C30—C29—C34—C33 0.4 (4)
C14—S1—C15—C16 95.03 (15) C16—C29—C34—C33 −178.8 (3)
N1—C15—C16—C29 −161.34 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···N1 0.89 (3) 1.96 (3) 2.636 (2) 132 (3)
C14—H14A···O2i 0.97 2.54 3.156 (3) 121
C22—H22A···F1ii 0.93 2.44 3.351 (3) 166
C25—H25A···S1iii 0.93 2.78 3.545 (3) 140

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z+1; (iii) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5479).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Kirsch, G., Hesse, S. & Comel, A. (2004). Curr. Org. Chem. 1, 47–63.
  6. Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370–o1371. [DOI] [PMC free article] [PubMed]
  7. Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1444–o1445. [DOI] [PMC free article] [PubMed]
  8. Kumar, R. S., Osman, H., Perumal, S., Goh, J. H. & Fun, H.-K. (2011a). Acta Cryst. E67, o137–o138. [DOI] [PMC free article] [PubMed]
  9. Kumar, R. S., Osman, H., Yeap, C. S. & Fun, H.-K. (2011b). Acta Cryst. E67, o211–o212. [DOI] [PMC free article] [PubMed]
  10. Orru, R. V. A. & de Greef, M. (2003). Synthesis, pp.1471–1499.
  11. Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry. New York: Wiley.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025512/lh5479sup1.cif

e-68-o2094-sup1.cif (38.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025512/lh5479Isup2.hkl

e-68-o2094-Isup2.hkl (390.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025512/lh5479Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES