Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2098. doi: 10.1107/S1600536812024506

1-Benzyl-3-[(4-methyl­phen­yl)imino]­indolin-2-one

Adebomi A Ikotun a, Pius O Adelani b, Gabriel O Egharevba c,*
PMCID: PMC3393911  PMID: 22798776

Abstract

In the title compound, C22H18N2O, the phenyl and tolyl rings make dihedral angles of 84.71 (7) and 65.11 (6)°, respectively, with the isatin group. The aromatic rings make a dihedral angle of 60.90 (8)°. The imino C=N double bond, exists in an E conformation. In the crystal, mol­ecules are linked by weak π–π stacking inter­actions [centroid–centroid distance = 3.6598 (13) Å].

Related literature  

For background to isatin, its derivatives and their biological significance, see: Chazeau et al. (1992); Igosheva et al. (2004); Medvedev et al. (1996); Abele et al. (2003). For metal complexes of isatin derivatives and their biological significance, see: Rodriguez-Arguelles et al. (2004); Singh et al. (2005); Chohan et al. (2006); Adetoye et al. (2009); Ikotun et al. (2012). For N-benzyl isatin, its derivatives and biological significance, see Akkurt et al. (2006); Jarrahpour & Khalili (2007); Cao et al. (2009).graphic file with name e-68-o2098-scheme1.jpg

Experimental  

Crystal data  

  • C22H18N2O

  • M r = 326.38

  • Monoclinic, Inline graphic

  • a = 10.174 (2) Å

  • b = 15.086 (4) Å

  • c = 11.714 (3) Å

  • β = 113.596 (3)°

  • V = 1647.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.04 × 0.02 × 0.01 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • 18815 measured reflections

  • 3763 independent reflections

  • 2456 reflections with I > 2σ(I)

  • R int = 0.067

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.105

  • S = 0.92

  • 3763 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024506/bx2411sup1.cif

e-68-o2098-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024506/bx2411Isup2.hkl

e-68-o2098-Isup2.hkl (184.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024506/bx2411Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We appreciate Professor John A. Gladysz for benevolently facilitating AAI’s visit to his laboratory at Texas A & M University during the course of this research and also all members of the Gladysz research group for their assistance towards a successful academic visit.

supplementary crystallographic information

Comment

Indole-2, 3-dione commonly known as isatin is an endogenous indole present in mammalian tissues and fluids (Igosheva et al., 2004). It has largely been used as a versatile reagent in organic synthesis, to obtain heterocyclic compounds, and as a raw material for drugs (Abele et al., 2003). Several novel Schiff bases of isatin have been reported with a variety of pharmacological actions, including anticonvulsant, antimicrobial and antiviral activities, inhibition of monoamine oxidase (Medvedev et al., 1996). The study of the metal complexes of the Schiff base ligands derived from isatin and their biological applications has also received much attention (Singh et al., 2005; Chohan et al., 2006; Ikotun et al., 2012). Some first row transition metal complexes of the Schiff base of isatin derivatives were designed, prepared and characterized by spectroscopic means (Adetoye et al., 2009). The significance of these metal complexes of isatin derivatives has even been extended to the design of novel anticancer drugs (Rodriguez-Arguelles et al., 2004). N-benzylindole-2, 3-dione (N-benzylisatin) has also been prepared and the X-ray crystallographic structure has been established (Akkurt et al., 2006). N-alkylated isatins have interesting pharmacological activities such as antibacterial and anticancer (Chazeau et al., 1992). They are also reversible and competitive inhibitors of monoamine oxidase A and B (Medvedev et al., 1996). Some mono- and bis-spiro-b- benzylisatin have been prepared and characterized by spectroscopic means (Jarrahpour et al., 2007). A series of N-benzyl isatin oximes have also been developed as inhibitors of the mitogen-activated kinase, KNK3 (Cao et al., 2009). Thus the motivation and need to design novel Schiff bases of N-benzyl isatin, which would be of great biological significance, is the propelling force for this research. In the title compound , C22H18N2O, Fig. 1, the phenyl and benzene rings make dihedral angles of 84.71 (7)° and 65.11 (6)° with isatin group respectively. The aromatic rings make a dihedral angle of 60.90 (8)°.The imino C═N double bond, exists in an E conformation. In the crystal the molecules are linked by weak π—π stacking interaction (centroid-centroid distance 3.6598 (13) Å (Cg1=C4/C5/C6/C7/C8/C9 ; Cg2i=C17/C18/C19/C20/C21/C22, symmetry code (i): x,1/2-y, 1/2+z), Fig. 2.

Experimental

N-benzylisatin was first prepared and recrystallized in ethanol using the method of Akkurt et al., 2006 with slight modifications. N-benzylisatin (2.00 g; 8.44 mmol) was then dissolved in 30 ml hot ethanol. P-toluidine (0.90 g; 8.44 mmol) was dissolved in 10 ml ethanol. The solutions were mixed and refluxed for 6 h. The solution was allowed to cool and the deep orange solid was filtered under vacuum. The product was purified with flash column chromatography and the orange crystal as analyzed. The product was obtained at a yield of 78% (2.13 g). Flash Column Chromatographic purification of the product was carried out using a mixture of chloroform: diethyl ether (50%:50%) and single X-ray suitable crystals were got after the solvent was evaporated under vacuum.

Refinement

The H atoms of the water molecule were located on a Fourier difference map, restrained by DFIX command 0.85 Å for O— H distances and by DFIX 1.39 Å for H···H distance, and refined as riding with Uiso(H) = 1.5Ueq(O). Other atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the labelled atoms; thermal ellipsoid are drawn at 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure showing π—π stacking interaction (centroid-centroid distance 3.6598 (13) Å (Cg1=C4/C5/C6/C7/C8/C9 ; Cg2i=C17/C18/C19/C20/C21/C22, symmetry code (i): x,1/2-y, 1/2+z).

Crystal data

C22H18N2O F(000) = 688
Mr = 326.38 Dx = 1.316 Mg m3
Monoclinic, P21/c Melting point: 427 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 10.174 (2) Å Cell parameters from 3069 reflections
b = 15.086 (4) Å θ = 2.6–25.6°
c = 11.714 (3) Å µ = 0.08 mm1
β = 113.596 (3)° T = 296 K
V = 1647.5 (7) Å3 Rectangular plate, orange
Z = 4 0.04 × 0.02 × 0.01 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2456 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.067
Graphite monochromator θmax = 27.5°, θmin = 2.2°
phi and ω scans h = −12→13
18815 measured reflections k = −19→19
3763 independent reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0513P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92 (Δ/σ)max < 0.001
3763 reflections Δρmax = 0.35 e Å3
227 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0075 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.30165 (11) 0.19312 (7) 0.89390 (10) 0.0256 (3)
N1 0.23619 (13) 0.32278 (8) 0.77977 (12) 0.0192 (3)
N2 0.06155 (13) 0.22984 (8) 0.95540 (12) 0.0195 (3)
C18 −0.15861 (16) 0.18456 (10) 0.97075 (14) 0.0221 (4)
H18A −0.1610 0.1353 0.9223 0.027*
C19 −0.26219 (17) 0.19479 (11) 1.01801 (15) 0.0237 (4)
H19A −0.3354 0.1531 0.9984 0.028*
C6 −0.10985 (17) 0.48946 (10) 0.72028 (14) 0.0217 (4)
H6A −0.1886 0.5253 0.7085 0.026*
C8 0.09598 (16) 0.45662 (10) 0.67264 (14) 0.0204 (4)
H8A 0.1541 0.4694 0.6305 0.024*
C9 0.12438 (16) 0.38541 (10) 0.75280 (14) 0.0179 (3)
C11 0.43743 (16) 0.40255 (10) 0.75565 (14) 0.0197 (4)
C22 −0.04756 (17) 0.32009 (10) 1.06994 (14) 0.0226 (4)
H22A 0.0236 0.3629 1.0872 0.027*
C5 −0.08057 (16) 0.41752 (10) 0.80063 (14) 0.0203 (4)
H5A −0.1394 0.4046 0.8421 0.024*
C10 0.34082 (17) 0.32210 (10) 0.72300 (15) 0.0233 (4)
H10A 0.2900 0.3190 0.6332 0.028*
H10B 0.3996 0.2693 0.7499 0.028*
C17 −0.05075 (16) 0.24753 (10) 0.99516 (14) 0.0192 (3)
C4 0.03861 (16) 0.36512 (10) 0.81794 (14) 0.0178 (3)
C20 −0.25950 (16) 0.26584 (10) 1.09418 (14) 0.0211 (4)
C7 −0.02307 (16) 0.50861 (10) 0.65726 (14) 0.0209 (4)
H7A −0.0449 0.5571 0.6038 0.025*
C21 −0.15100 (17) 0.32812 (10) 1.11853 (15) 0.0236 (4)
H21A −0.1476 0.3765 1.1688 0.028*
C3 0.09602 (16) 0.28278 (10) 0.88691 (14) 0.0182 (3)
C2 0.22451 (16) 0.25759 (10) 0.85647 (14) 0.0196 (3)
C16 0.52131 (17) 0.42307 (11) 0.87874 (15) 0.0249 (4)
H16A 0.5174 0.3873 0.9420 0.030*
C12 0.44522 (17) 0.45665 (12) 0.66264 (16) 0.0289 (4)
H12A 0.3903 0.4435 0.5795 0.035*
C13 0.53422 (18) 0.53003 (12) 0.69284 (18) 0.0339 (5)
H13A 0.5386 0.5660 0.6300 0.041*
C15 0.61098 (18) 0.49624 (12) 0.90861 (17) 0.0315 (4)
H15A 0.6676 0.5090 0.9916 0.038*
C14 0.61647 (18) 0.54999 (11) 0.81580 (18) 0.0332 (5)
H14A 0.6755 0.5997 0.8359 0.040*
C23 −0.36913 (18) 0.27314 (12) 1.15025 (16) 0.0290 (4)
H23A −0.3515 0.3259 1.2000 0.044*
H23B −0.3622 0.2223 1.2016 0.044*
H23C −0.4635 0.2759 1.0848 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0239 (6) 0.0211 (6) 0.0327 (7) 0.0069 (5) 0.0122 (5) 0.0020 (5)
N1 0.0175 (7) 0.0178 (7) 0.0251 (7) 0.0009 (5) 0.0115 (6) 0.0001 (5)
N2 0.0186 (7) 0.0179 (7) 0.0218 (7) −0.0012 (5) 0.0077 (6) −0.0007 (6)
C18 0.0239 (9) 0.0178 (8) 0.0236 (9) −0.0010 (7) 0.0084 (7) −0.0019 (7)
C19 0.0185 (8) 0.0245 (9) 0.0268 (9) −0.0041 (7) 0.0076 (7) 0.0006 (7)
C6 0.0198 (8) 0.0183 (8) 0.0271 (9) 0.0023 (7) 0.0094 (7) −0.0022 (7)
C8 0.0205 (8) 0.0195 (8) 0.0231 (8) −0.0037 (7) 0.0108 (7) −0.0019 (7)
C9 0.0169 (8) 0.0146 (8) 0.0224 (8) −0.0011 (6) 0.0080 (7) −0.0033 (6)
C11 0.0163 (8) 0.0205 (8) 0.0259 (9) 0.0039 (6) 0.0123 (7) 0.0011 (7)
C22 0.0214 (9) 0.0208 (9) 0.0255 (9) −0.0043 (7) 0.0091 (7) −0.0014 (7)
C5 0.0195 (8) 0.0198 (8) 0.0241 (9) −0.0014 (7) 0.0112 (7) −0.0015 (7)
C10 0.0207 (9) 0.0257 (9) 0.0277 (9) 0.0017 (7) 0.0140 (7) −0.0037 (7)
C17 0.0194 (8) 0.0183 (8) 0.0188 (8) 0.0027 (6) 0.0067 (7) 0.0041 (6)
C4 0.0172 (8) 0.0158 (8) 0.0201 (8) −0.0019 (6) 0.0071 (7) −0.0020 (6)
C20 0.0189 (8) 0.0239 (9) 0.0192 (8) 0.0017 (7) 0.0065 (7) 0.0027 (7)
C7 0.0240 (9) 0.0161 (8) 0.0221 (9) −0.0008 (7) 0.0086 (7) 0.0002 (6)
C21 0.0250 (9) 0.0242 (9) 0.0224 (9) −0.0011 (7) 0.0102 (7) −0.0043 (7)
C3 0.0161 (8) 0.0153 (8) 0.0215 (8) −0.0018 (6) 0.0057 (7) −0.0027 (6)
C2 0.0187 (8) 0.0181 (8) 0.0218 (8) −0.0018 (7) 0.0078 (7) −0.0036 (7)
C16 0.0245 (9) 0.0267 (9) 0.0266 (9) 0.0012 (7) 0.0136 (8) 0.0030 (7)
C12 0.0179 (8) 0.0421 (11) 0.0277 (9) 0.0035 (8) 0.0102 (7) 0.0101 (8)
C13 0.0218 (9) 0.0368 (11) 0.0476 (12) 0.0062 (8) 0.0185 (9) 0.0211 (9)
C15 0.0265 (10) 0.0343 (10) 0.0362 (11) −0.0052 (8) 0.0152 (9) −0.0097 (8)
C14 0.0229 (9) 0.0217 (9) 0.0617 (13) −0.0011 (7) 0.0238 (9) −0.0011 (9)
C23 0.0250 (9) 0.0378 (10) 0.0264 (9) −0.0001 (8) 0.0125 (8) 0.0007 (8)

Geometric parameters (Å, º)

O1—C2 1.2160 (18) C22—H22A 0.9300
N1—C2 1.3690 (19) C5—C4 1.393 (2)
N1—C9 1.4137 (19) C5—H5A 0.9300
N1—C10 1.4636 (19) C10—H10A 0.9700
N2—C3 1.2767 (19) C10—H10B 0.9700
N2—C17 1.4210 (19) C4—C3 1.469 (2)
C18—C19 1.381 (2) C20—C21 1.389 (2)
C18—C17 1.392 (2) C20—C23 1.508 (2)
C18—H18A 0.9300 C7—H7A 0.9300
C19—C20 1.388 (2) C21—H21A 0.9300
C19—H19A 0.9300 C3—C2 1.534 (2)
C6—C5 1.389 (2) C16—C15 1.385 (2)
C6—C7 1.389 (2) C16—H16A 0.9300
C6—H6A 0.9300 C12—C13 1.383 (2)
C8—C9 1.379 (2) C12—H12A 0.9300
C8—C7 1.393 (2) C13—C14 1.379 (3)
C8—H8A 0.9300 C13—H13A 0.9300
C9—C4 1.404 (2) C15—C14 1.375 (2)
C11—C16 1.385 (2) C15—H15A 0.9300
C11—C12 1.389 (2) C14—H14A 0.9300
C11—C10 1.511 (2) C23—H23A 0.9600
C22—C21 1.388 (2) C23—H23B 0.9600
C22—C17 1.394 (2) C23—H23C 0.9600
C2—N1—C9 110.69 (13) C5—C4—C3 133.73 (14)
C2—N1—C10 124.27 (13) C9—C4—C3 106.64 (13)
C9—N1—C10 124.73 (13) C19—C20—C21 117.63 (15)
C3—N2—C17 123.20 (13) C19—C20—C23 120.58 (15)
C19—C18—C17 120.45 (15) C21—C20—C23 121.78 (15)
C19—C18—H18A 119.8 C6—C7—C8 121.26 (15)
C17—C18—H18A 119.8 C6—C7—H7A 119.4
C18—C19—C20 121.47 (15) C8—C7—H7A 119.4
C18—C19—H19A 119.3 C22—C21—C20 121.84 (15)
C20—C19—H19A 119.3 C22—C21—H21A 119.1
C5—C6—C7 120.88 (15) C20—C21—H21A 119.1
C5—C6—H6A 119.6 N2—C3—C4 136.53 (14)
C7—C6—H6A 119.6 N2—C3—C2 117.71 (13)
C9—C8—C7 117.45 (14) C4—C3—C2 105.65 (12)
C9—C8—H8A 121.3 O1—C2—N1 126.74 (15)
C7—C8—H8A 121.3 O1—C2—C3 126.97 (14)
C8—C9—C4 122.25 (14) N1—C2—C3 106.29 (13)
C8—C9—N1 127.10 (14) C15—C16—C11 120.69 (16)
C4—C9—N1 110.64 (13) C15—C16—H16A 119.7
C16—C11—C12 118.72 (15) C11—C16—H16A 119.7
C16—C11—C10 120.68 (14) C13—C12—C11 120.44 (17)
C12—C11—C10 120.60 (15) C13—C12—H12A 119.8
C21—C22—C17 119.70 (14) C11—C12—H12A 119.8
C21—C22—H22A 120.1 C14—C13—C12 120.23 (16)
C17—C22—H22A 120.1 C14—C13—H13A 119.9
C6—C5—C4 118.71 (14) C12—C13—H13A 119.9
C6—C5—H5A 120.6 C14—C15—C16 120.09 (17)
C4—C5—H5A 120.6 C14—C15—H15A 120.0
N1—C10—C11 113.38 (12) C16—C15—H15A 120.0
N1—C10—H10A 108.9 C15—C14—C13 119.82 (17)
C11—C10—H10A 108.9 C15—C14—H14A 120.1
N1—C10—H10B 108.9 C13—C14—H14A 120.1
C11—C10—H10B 108.9 C20—C23—H23A 109.5
H10A—C10—H10B 107.7 C20—C23—H23B 109.5
C18—C17—C22 118.88 (15) H23A—C23—H23B 109.5
C18—C17—N2 118.41 (14) C20—C23—H23C 109.5
C22—C17—N2 122.27 (14) H23A—C23—H23C 109.5
C5—C4—C9 119.44 (14) H23B—C23—H23C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2411).

References

  1. Abele, E., Abele, R., Dzenitis, O. & Lukevics, E. (2003). Chem. Heterocycl. Compd, 39, 3-35.
  2. Adetoye, A. A., Egharevba, G. O., Obafemi, C. A. & Kelly, D. R. (2009). Toxicol. Environ. Chem. 91, 837–846.
  3. Akkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1575–o1577.
  4. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cao, J., Gao, H., Bemis, G., Salituro, F., Ledeboer, M., Harrington, E., Wilke, S., Taslimi, P., Pazhanisamy, S., Xie, X., Jacobs, M. & Green, J. (2009). Bioorg. Med. Chem. Lett. 19, 2891–2895. [DOI] [PubMed]
  6. Chazeau, V., Gussac, M. & Boucherle, A. (1992). Eur. J. Med. Chem. 27, 615–625.
  7. Chohan, Z. H., Shaikh, A. U. & Naseer, M. M. (2006). Appl. Organomet. Chem. 20, 729–739.
  8. Igosheva, N., Matta, S. & Glover, V. (2004). Physiol. Behav. 80, 665–668. [DOI] [PubMed]
  9. Ikotun, A. A., Egharevba, G. O., Obafemi, C. A. & Owoseni, O. O. (2012). J. Chem. Pharm. 4, 416–422.
  10. Jarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140–7143.
  11. Medvedev, A. G., Clow, A., Sandler, M. & Glover, V. (1996). Biochem. Pharmacol. 52, 385–391. [DOI] [PubMed]
  12. Rodriguez-Arguelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313–321. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Singh, R. V., Fahmi, N. & Biyala, M. K. (2005). J. Iran. Chem. Soc. 2, 40–46.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024506/bx2411sup1.cif

e-68-o2098-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024506/bx2411Isup2.hkl

e-68-o2098-Isup2.hkl (184.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024506/bx2411Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES