Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):o2100. doi: 10.1107/S1600536812025743

1-Methyl-4-[1-(1-phenyl­ethyl­idene)-hydrazin-2-yl­idene]-3,4-dihydro-1H-2λ6,1-benzothia­zine-2,2-dione

Muhammad Shafiq a,*, Islam Ullah Khan b, Muhammad Zia-ur-Rehman c, Tariq Mahmood d, Muhammad Ashfaq e, Saeed Ahmad f
PMCID: PMC3393913  PMID: 22798778

Abstract

In the title compound, C17H17N3O2S, the phenyl ring is oriented at dihedral angles of 8.5 (2) and 1.17 (14)°, respectively, to the C=N—N plane and the fused aromatic ring. The thia­zine ring adopts an envelope conformation with the S atom at the flap. In the crystal, a weak C—H⋯O inter­action connects the mol­ecules, forming a helical chain along the a axis.

Related literature  

For the synthesis, see: Shafiq et al. (2011). For related structures, see: Shafiq et al. (2011a ,b , 2012).graphic file with name e-68-o2100-scheme1.jpg

Experimental  

Crystal data  

  • C17H17N3O2S

  • M r = 327.40

  • Orthorhombic, Inline graphic

  • a = 6.6678 (2) Å

  • b = 12.0783 (6) Å

  • c = 20.0529 (8) Å

  • V = 1614.97 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.38 × 0.11 × 0.07 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.923, T max = 0.985

  • 9111 measured reflections

  • 3830 independent reflections

  • 2819 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.108

  • S = 0.97

  • 3828 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), 1577 Friedel pairs

  • Flack parameter: −0.06 (9)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812025743/is5153sup1.cif

e-68-o2100-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025743/is5153Isup2.hkl

e-68-o2100-Isup2.hkl (187.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025743/is5153Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.56 3.420 (3) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

MS acknowledges the Higher Education Commission of Pakistan for financial support, GC University Lahore, Pakistan for laboratory facilities during his PhD studies and Dr Michael Harmata for guidance during a visit to his laboratory at the University of Missouri, USA.

supplementary crystallographic information

Comment

The present structure is analogue to 1-ethyl-4-[1-(1-phenylethylidene)-hydrazin-2-ylidene]-3,4-dihydro-1H- 2λ6,1-benzothiazine-2,2-dione(II) (Shafiq et al., 2012) and related to 4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione (III) (Shafiq, Khan et al., 2011a) and 6-bromo-1-methyl-4-[2- (4-methylbenzylidene)hydrazinylidene]-3H-2λ6, 1-benzothiazine-2,2-dione (IV) (Shafiq, Khan et al., 2011b). The structure of molecule looks planer as the plane generated from atoms (C1–C7/C9–C15/N1) showes an r.m.s. deviation of 0.0365 Å, while atoms S1 and C16 show maximum deviations of 0.702 (2) and -0.256 (4) Å, respectively. The fused aromatic ring and the mean plane of the thiazine ring are oriented at a dihedral angle of 9.34 (14)° and thiazine ring adopted sofa shape with an r.m.s. deviation of 0.233 (2)°. Comparison of dihedral angles between the phenyl and fused aromatic rings in I and II [i.e. 1.17 (14) and 79.33 (2)°, respectively] also explain the planarity of title compound. Similarly dihedral angles between the phenyl and thiazine rings in I and II are 9.34 (2) and 69.74 (6)°, respectively. An intermolecular hydrogen bonding interaction of C—H···O type connects the molecule along the a axis and generates a chain structure (Table 1 and Fig. 2). In the group R2C=N—N=C(CH3)Ar, the configurations around the two double bonds are Z and E, respectively.

Experimental

In the synthesis of title compound, 4-hydrazinylidene-1- methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq, Khan et al., 2011a) was subjected to react with acetophenone according to literature procedure (Shafiq, Zia-ur-Rehman et al., 2011). The product obtained was then recrystallized in ethylacetate under slow evaporation to obtain single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, 0.96 Å for methyl group and 0.97 Å for methylene and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, and Uiso(H) = 1.5Ueq(C) for methyl carbon atoms. Two reflections (0 1 1) and (0 0 2) were omitted in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A packing diagram, showing C—H···O hydrogen bonds (dashed lines).

Crystal data

C17H17N3O2S F(000) = 688
Mr = 327.40 Dx = 1.347 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2415 reflections
a = 6.6678 (2) Å θ = 2.6–21.1°
b = 12.0783 (6) Å µ = 0.21 mm1
c = 20.0529 (8) Å T = 296 K
V = 1614.97 (11) Å3 Needle, colorless
Z = 4 0.38 × 0.11 × 0.07 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3830 independent reflections
Radiation source: fine-focus sealed tube 2819 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −8→6
Tmin = 0.923, Tmax = 0.985 k = −16→13
9111 measured reflections l = −26→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0282P] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.007
3828 reflections Δρmax = 0.21 e Å3
210 parameters Δρmin = −0.27 e Å3
0 restraints Absolute structure: Flack (1983), 1577 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.06 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0436 (3) 0.1646 (2) 0.19872 (12) 0.0434 (6)
C2 −0.1882 (4) 0.1755 (3) 0.24813 (14) 0.0607 (8)
H2 −0.2979 0.2216 0.2412 0.073*
C3 −0.1708 (5) 0.1190 (3) 0.30686 (14) 0.0689 (9)
H3 −0.2704 0.1259 0.3390 0.083*
C4 −0.0087 (5) 0.0522 (3) 0.31910 (14) 0.0703 (9)
H4 0.0036 0.0154 0.3596 0.084*
C5 0.1365 (5) 0.0404 (2) 0.27030 (12) 0.0592 (7)
H5 0.2473 −0.0044 0.2785 0.071*
C6 0.1196 (4) 0.09462 (19) 0.20875 (11) 0.0425 (5)
C7 0.2735 (3) 0.07398 (19) 0.15723 (11) 0.0401 (5)
C8 0.2426 (3) 0.12341 (18) 0.08901 (11) 0.0394 (5)
H8A 0.1559 0.0756 0.0629 0.047*
H8B 0.3705 0.1291 0.0662 0.047*
C9 0.6894 (3) −0.07684 (19) 0.12801 (12) 0.0448 (6)
C10 0.8400 (3) −0.08935 (19) 0.07412 (12) 0.0446 (6)
C11 0.8205 (4) −0.0311 (2) 0.01409 (12) 0.0485 (6)
H11 0.7109 0.0153 0.0078 0.058*
C12 0.9605 (4) −0.0414 (2) −0.03551 (13) 0.0573 (7)
H12 0.9457 −0.0014 −0.0748 0.069*
C13 1.1223 (4) −0.1103 (3) −0.02763 (15) 0.0666 (8)
H13 1.2158 −0.1178 −0.0617 0.080*
C14 1.1456 (4) −0.1680 (3) 0.03080 (16) 0.0723 (8)
H14 1.2560 −0.2141 0.0365 0.087*
C15 1.0061 (4) −0.1578 (2) 0.08111 (15) 0.0571 (7)
H15 1.0234 −0.1975 0.1204 0.068*
C16 0.6984 (5) −0.1505 (3) 0.18763 (15) 0.0859 (11)
H16A 0.6132 −0.1214 0.2220 0.129*
H16B 0.8339 −0.1541 0.2037 0.129*
H16C 0.6538 −0.2234 0.1756 0.129*
C17 −0.2573 (3) 0.2746 (2) 0.12031 (13) 0.0601 (8)
H17A −0.3647 0.2230 0.1275 0.090*
H17B −0.2542 0.2957 0.0742 0.090*
H17C −0.2782 0.3391 0.1474 0.090*
N1 −0.0679 (3) 0.22309 (19) 0.13822 (10) 0.0543 (6)
N2 0.4234 (3) 0.01227 (18) 0.17172 (10) 0.0500 (5)
N3 0.5596 (3) −0.00040 (18) 0.11964 (10) 0.0508 (5)
O1 0.0707 (2) 0.29407 (17) 0.03230 (9) 0.0663 (6)
O2 0.2661 (2) 0.32168 (14) 0.13476 (9) 0.0559 (5)
S1 0.13459 (7) 0.25435 (5) 0.09576 (3) 0.04299 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0355 (12) 0.0530 (15) 0.0417 (13) −0.0110 (11) 0.0034 (10) −0.0029 (11)
C2 0.0496 (15) 0.073 (2) 0.0592 (17) −0.0102 (14) 0.0168 (12) −0.0038 (15)
C3 0.072 (2) 0.080 (2) 0.0548 (18) −0.0237 (17) 0.0264 (15) −0.0051 (16)
C4 0.103 (2) 0.063 (2) 0.0452 (16) −0.0274 (18) 0.0170 (17) 0.0015 (14)
C5 0.0776 (17) 0.0510 (16) 0.0489 (16) −0.0075 (15) 0.0031 (15) 0.0062 (12)
C6 0.0466 (13) 0.0416 (13) 0.0392 (12) −0.0097 (11) 0.0021 (11) −0.0003 (10)
C7 0.0427 (12) 0.0382 (12) 0.0395 (13) −0.0067 (10) 0.0019 (10) 0.0023 (10)
C8 0.0385 (12) 0.0417 (12) 0.0380 (12) −0.0005 (9) 0.0027 (10) 0.0002 (11)
C9 0.0459 (13) 0.0354 (13) 0.0531 (14) −0.0007 (10) −0.0081 (11) 0.0037 (11)
C10 0.0443 (13) 0.0360 (12) 0.0536 (14) −0.0027 (10) −0.0086 (11) −0.0010 (10)
C11 0.0454 (13) 0.0447 (15) 0.0555 (16) 0.0030 (11) −0.0077 (11) 0.0006 (12)
C12 0.0661 (17) 0.0553 (17) 0.0506 (16) −0.0018 (14) −0.0047 (14) −0.0050 (13)
C13 0.0637 (17) 0.067 (2) 0.0694 (19) 0.0017 (16) 0.0120 (16) −0.0144 (17)
C14 0.0625 (17) 0.064 (2) 0.090 (2) 0.0226 (16) 0.0003 (18) −0.0040 (17)
C15 0.0568 (15) 0.0448 (15) 0.0695 (18) 0.0119 (12) −0.0036 (14) 0.0044 (13)
C16 0.096 (2) 0.080 (2) 0.081 (2) 0.0307 (19) 0.0198 (18) 0.0376 (19)
C17 0.0329 (12) 0.075 (2) 0.0724 (18) 0.0058 (12) −0.0040 (11) −0.0046 (15)
N1 0.0322 (9) 0.0787 (17) 0.0521 (12) 0.0092 (10) 0.0048 (8) 0.0099 (12)
N2 0.0512 (12) 0.0504 (13) 0.0486 (12) 0.0059 (10) 0.0022 (9) 0.0078 (10)
N3 0.0485 (11) 0.0534 (13) 0.0506 (13) 0.0095 (10) 0.0044 (9) 0.0074 (10)
O1 0.0577 (10) 0.0845 (15) 0.0567 (11) 0.0191 (10) 0.0038 (9) 0.0243 (10)
O2 0.0494 (9) 0.0457 (10) 0.0726 (12) −0.0038 (8) 0.0088 (9) −0.0036 (9)
S1 0.0344 (3) 0.0471 (3) 0.0475 (3) 0.0042 (3) 0.0046 (2) 0.0087 (3)

Geometric parameters (Å, º)

C1—C2 1.389 (3) C10—C11 1.400 (3)
C1—C6 1.392 (3) C11—C12 1.369 (3)
C1—N1 1.413 (3) C11—H11 0.9300
C2—C3 1.366 (4) C12—C13 1.371 (4)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.371 (4) C13—C14 1.372 (4)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.384 (4) C14—C15 1.378 (4)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.402 (3) C15—H15 0.9300
C5—H5 0.9300 C16—H16A 0.9600
C6—C7 1.477 (3) C16—H16B 0.9600
C7—N2 1.280 (3) C16—H16C 0.9600
C7—C8 1.507 (3) C17—N1 1.453 (3)
C8—S1 1.743 (2) C17—H17A 0.9600
C8—H8A 0.9700 C17—H17B 0.9600
C8—H8B 0.9700 C17—H17C 0.9600
C9—N3 1.277 (3) N1—S1 1.6402 (19)
C9—C10 1.483 (3) N2—N3 1.392 (3)
C9—C16 1.491 (3) O1—S1 1.4251 (18)
C10—C15 1.389 (3) O2—S1 1.4288 (18)
C2—C1—C6 119.8 (2) C11—C12—C13 120.5 (3)
C2—C1—N1 119.0 (2) C11—C12—H12 119.8
C6—C1—N1 121.14 (19) C13—C12—H12 119.8
C3—C2—C1 120.6 (3) C14—C13—C12 119.7 (3)
C3—C2—H2 119.7 C14—C13—H13 120.1
C1—C2—H2 119.7 C12—C13—H13 120.1
C2—C3—C4 121.0 (3) C13—C14—C15 120.2 (3)
C2—C3—H3 119.5 C13—C14—H14 119.9
C4—C3—H3 119.5 C15—C14—H14 119.9
C3—C4—C5 119.1 (3) C14—C15—C10 121.1 (3)
C3—C4—H4 120.5 C14—C15—H15 119.4
C5—C4—H4 120.5 C10—C15—H15 119.4
C4—C5—C6 121.2 (3) C9—C16—H16A 109.5
C4—C5—H5 119.4 C9—C16—H16B 109.5
C6—C5—H5 119.4 H16A—C16—H16B 109.5
C1—C6—C5 118.3 (2) C9—C16—H16C 109.5
C1—C6—C7 123.0 (2) H16A—C16—H16C 109.5
C5—C6—C7 118.8 (2) H16B—C16—H16C 109.5
N2—C7—C6 118.8 (2) N1—C17—H17A 109.5
N2—C7—C8 122.9 (2) N1—C17—H17B 109.5
C6—C7—C8 118.23 (19) H17A—C17—H17B 109.5
C7—C8—S1 110.21 (16) N1—C17—H17C 109.5
C7—C8—H8A 109.6 H17A—C17—H17C 109.5
S1—C8—H8A 109.6 H17B—C17—H17C 109.5
C7—C8—H8B 109.6 C1—N1—C17 121.73 (19)
S1—C8—H8B 109.6 C1—N1—S1 117.79 (15)
H8A—C8—H8B 108.1 C17—N1—S1 119.25 (17)
N3—C9—C10 115.9 (2) C7—N2—N3 113.76 (19)
N3—C9—C16 124.3 (2) C9—N3—N2 115.0 (2)
C10—C9—C16 119.7 (2) O1—S1—O2 118.72 (12)
C15—C10—C11 117.4 (2) O1—S1—N1 107.15 (10)
C15—C10—C9 121.8 (2) O2—S1—N1 110.61 (11)
C11—C10—C9 120.8 (2) O1—S1—C8 111.07 (12)
C12—C11—C10 121.0 (2) O2—S1—C8 107.78 (10)
C12—C11—H11 119.5 N1—S1—C8 99.87 (11)
C10—C11—H11 119.5
C6—C1—C2—C3 0.7 (4) C11—C12—C13—C14 −1.0 (4)
N1—C1—C2—C3 179.1 (2) C12—C13—C14—C15 0.7 (5)
C1—C2—C3—C4 1.4 (5) C13—C14—C15—C10 −0.2 (5)
C2—C3—C4—C5 −1.5 (5) C11—C10—C15—C14 −0.1 (4)
C3—C4—C5—C6 −0.5 (4) C9—C10—C15—C14 −179.5 (2)
C2—C1—C6—C5 −2.6 (3) C2—C1—N1—C17 −13.5 (4)
N1—C1—C6—C5 179.0 (2) C6—C1—N1—C17 164.9 (2)
C2—C1—C6—C7 176.5 (2) C2—C1—N1—S1 153.8 (2)
N1—C1—C6—C7 −1.8 (3) C6—C1—N1—S1 −27.8 (3)
C4—C5—C6—C1 2.5 (4) C6—C7—N2—N3 −179.38 (19)
C4—C5—C6—C7 −176.7 (2) C8—C7—N2—N3 2.9 (3)
C1—C6—C7—N2 176.9 (2) C10—C9—N3—N2 −178.1 (2)
C5—C6—C7—N2 −3.9 (3) C16—C9—N3—N2 1.0 (4)
C1—C6—C7—C8 −5.3 (3) C7—N2—N3—C9 −167.5 (2)
C5—C6—C7—C8 173.8 (2) C1—N1—S1—O1 169.67 (19)
N2—C7—C8—S1 −145.02 (19) C17—N1—S1—O1 −22.8 (2)
C6—C7—C8—S1 37.3 (2) C1—N1—S1—O2 −59.5 (2)
N3—C9—C10—C15 170.5 (2) C17—N1—S1—O2 108.0 (2)
C16—C9—C10—C15 −8.7 (4) C1—N1—S1—C8 53.8 (2)
N3—C9—C10—C11 −8.9 (3) C17—N1—S1—C8 −138.6 (2)
C16—C9—C10—C11 172.0 (3) C7—C8—S1—O1 −169.41 (15)
C15—C10—C11—C12 −0.2 (4) C7—C8—S1—O2 58.95 (17)
C9—C10—C11—C12 179.2 (2) C7—C8—S1—N1 −56.59 (17)
C10—C11—C12—C13 0.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8B···O1i 0.97 2.56 3.420 (3) 148

Symmetry code: (i) x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5153).

References

  1. Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Shafiq, M., Khan, I. U., Arshad, M. N., Bukhari, I. H. & Ejaz, (2012). Acta Cryst. E68, o1927. [DOI] [PMC free article] [PubMed]
  5. Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011a). Acta Cryst. E67, o2038. [DOI] [PMC free article] [PubMed]
  6. Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011b). Acta Cryst. E67, o2092. [DOI] [PMC free article] [PubMed]
  7. Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527–531.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812025743/is5153sup1.cif

e-68-o2100-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025743/is5153Isup2.hkl

e-68-o2100-Isup2.hkl (187.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812025743/is5153Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES