Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 16;68(Pt 7):o2111. doi: 10.1107/S1600536812026268

Ethyl 2-amino-4,5-dimethyl­thio­phene-3-carboxyl­ate

Mostafa M Ghorab a, Mansour S Al-Said a, Hazem A Ghabbour b, Tze Shyang Chia c, Hoong-Kun Fun c,*,
PMCID: PMC3393923  PMID: 22798788

Abstract

In the title compound, C9H13NO2S, the mean planes of thio­phene ring [maximum deviation = 0.0042 (10) Å] and eth­oxy­carbonyl group [0.0242 (15) Å] are almost coplanar [dihedral angle between them = 0.68 (11)°]. The H atoms of the two methyl groups attached to the thio­phene ring are each disordered over two orientations with site-occupancy ratios of 0.77 (4):0.23 (4) and 0.84 (4):0.16 (4). An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into an infinite wave-like chain running parallel to the b-axis direction. The crystal structure also features C—H⋯π inter­actions.

Related literature  

For the synthesis, see: Gewald (1965). For background to biologically active compounds prepared from the title compound, see: Alqasoumi et al. (2009); Ghorab et al. (2006, 2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2111-scheme1.jpg

Experimental  

Crystal data  

  • C9H13NO2S

  • M r = 199.26

  • Monoclinic, Inline graphic

  • a = 7.9487 (2) Å

  • b = 9.8939 (3) Å

  • c = 13.4348 (4) Å

  • β = 106.143 (2)°

  • V = 1014.90 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.59 mm−1

  • T = 296 K

  • 0.92 × 0.26 × 0.08 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.199, T max = 0.820

  • 6429 measured reflections

  • 1671 independent reflections

  • 1504 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.104

  • S = 1.07

  • 1671 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026268/hb6845sup1.cif

e-68-o2111-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026268/hb6845Isup2.hkl

e-68-o2111-Isup2.hkl (82.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026268/hb6845Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of S1/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.89 (3) 2.06 (3) 2.744 (2) 133 (2)
N1—H2N1⋯O2i 0.87 (2) 2.12 (2) 2.972 (2) 167 (2)
C8—H8ACg1ii 0.97 2.78 3.600 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy, and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate (Gewald, 1965) is useful in the synthesis of heterocyclic compounds, especially thienopyrimidine derivatives (Alqasoumi et al., 2009), some of which possess biological activities (Ghorab et al., 2006). In the light of this, and as a continuation of our efforts towards synthesizing biologically active heterocyclic compounds (Ghorab et al., 2012), the title compound was prepared and its crystal structure is now reported.

The molecular structure of the title compound is shown in Fig. 1. The mean plane of thiophene ring [S1/C1–C4; maximum deviation = 0.0042 (10) Å at atom C4] is almost coplanar with the mean plane of ethoxycarbonyl group [O1/O2/C7–C9; maximum deviation = 0.0242 (15) Å at atom C8] as indicated by the dihedral angle of 0.68 (11)°. The H atoms attached to atoms C5 and C6 are each disordered over two orientations with site-occupancy ratios of 0.77 (4):0.23 (4) and 0.84 (4):0.16 (4), respectively. An intramolecular N1—H1N1···O2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule.

In the crystal (Fig. 2), molecules are linked by N1—H2N1···O2 hydrogen bond into an infinite wave-like chain, propagating along the b axis. The crystal packing also features C—H···π interactions (Table 1), involving Cg1 which is the centroid of S1/C1–C4 ring.

Experimental

Ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate was prepared according to the reported method (Gewald, 1965). The obtained solid was recrystallized from ethanol to give the title compound. Brown plates were obtained by slow evaporation from ethanol solution at room temperature.

Refinement

The atoms H1N1 and H2N1 were located in a difference fourier map and refined freely [N—H = 0.88 (3) and 0.87 (2) Å]. The major parts of disordered H atoms attached to atoms C5 and C6 [(H5A, H5B, H5C) and (H6A, H6B, H6C)] were positioned geometrically, whereas the corresponding minor parts, (H5D, H5E, H5F) and (H6D, H6E, H6F) were located in a difference fourier map. A rotating group model (AFIX 137) was used for both major and minor parts of disordered methyl groups and refined using a riding model with Uiso(H) = 1.5Ueq(C) [C—H distance = 0.96 Å]. The refined site-occupancy ratios are (H5A, H5B, H5C):(H5D, H5E, H5F) = 0.77 (4):0.23 (4) and (H6A, H6B, H6C):(H6D, H6E, H6F) = 0.84 (4):0.16 (4). The remaining H atoms were positioned geometrically [C—H = 0.96 and 0.97 Å] and refined with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was also applied to the other methyl group in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids. The dashed line represents the intramolecular N—H···O hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C9H13NO2S F(000) = 424
Mr = 199.26 Dx = 1.304 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 1386 reflections
a = 7.9487 (2) Å θ = 3.4–70.2°
b = 9.8939 (3) Å µ = 2.59 mm1
c = 13.4348 (4) Å T = 296 K
β = 106.143 (2)° Plate, brown
V = 1014.90 (5) Å3 0.92 × 0.26 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 1671 independent reflections
Radiation source: fine-focus sealed tube 1504 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 65.0°, θmin = 5.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→8
Tmin = 0.199, Tmax = 0.820 k = −11→11
6429 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1221P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
1671 reflections Δρmax = 0.19 e Å3
132 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0041 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.19746 (6) 0.19752 (4) 0.58473 (4) 0.0611 (2)
O1 0.31318 (16) 0.65860 (11) 0.49116 (9) 0.0545 (3)
O2 0.44541 (19) 0.61171 (12) 0.65701 (9) 0.0667 (4)
N1 0.3976 (3) 0.35938 (18) 0.72936 (12) 0.0726 (5)
C1 0.3045 (2) 0.34698 (16) 0.62875 (12) 0.0520 (4)
C2 0.2743 (2) 0.44243 (15) 0.55082 (11) 0.0458 (4)
C3 0.1625 (2) 0.39154 (16) 0.45331 (12) 0.0481 (4)
C4 0.1130 (2) 0.26238 (18) 0.46019 (14) 0.0554 (4)
C5 0.0030 (3) 0.1727 (2) 0.37724 (19) 0.0763 (6)
H5A 0.0682 0.1482 0.3296 0.114* 0.77 (4)
H5B −0.1014 0.2200 0.3408 0.114* 0.77 (4)
H5C −0.0282 0.0926 0.4083 0.114* 0.77 (4)
H5D −0.0262 0.2197 0.3122 0.114* 0.23 (4)
H5E −0.1025 0.1489 0.3945 0.114* 0.23 (4)
H5F 0.0673 0.0922 0.3720 0.114* 0.23 (4)
C6 0.1078 (2) 0.46993 (19) 0.35388 (13) 0.0622 (5)
H6A 0.0388 0.4131 0.2999 0.093* 0.84 (4)
H6B 0.2100 0.5001 0.3355 0.093* 0.84 (4)
H6C 0.0396 0.5468 0.3627 0.093* 0.84 (4)
H6D −0.0103 0.4465 0.3171 0.093* 0.16 (4)
H6E 0.1843 0.4485 0.3120 0.093* 0.16 (4)
H6F 0.1145 0.5650 0.3689 0.093* 0.16 (4)
C7 0.3521 (2) 0.57551 (15) 0.57265 (11) 0.0469 (4)
C8 0.3871 (3) 0.79279 (16) 0.50551 (15) 0.0568 (4)
H8A 0.5139 0.7884 0.5241 0.068*
H8B 0.3524 0.8395 0.5602 0.068*
C9 0.3179 (3) 0.8652 (2) 0.40444 (17) 0.0718 (6)
H9A 0.3617 0.9561 0.4109 0.108*
H9B 0.1923 0.8668 0.3862 0.108*
H9C 0.3554 0.8190 0.3515 0.108*
H1N1 0.453 (3) 0.438 (3) 0.7431 (19) 0.084 (7)*
H2N1 0.435 (3) 0.291 (2) 0.7699 (19) 0.068 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0783 (4) 0.0381 (3) 0.0662 (3) −0.00222 (17) 0.0189 (2) 0.00472 (17)
O1 0.0677 (7) 0.0409 (6) 0.0480 (6) −0.0061 (5) 0.0046 (5) 0.0053 (5)
O2 0.0971 (10) 0.0438 (6) 0.0460 (7) −0.0060 (6) −0.0019 (6) −0.0041 (5)
N1 0.1166 (14) 0.0449 (9) 0.0439 (8) 0.0066 (9) 0.0018 (8) 0.0056 (7)
C1 0.0693 (10) 0.0379 (8) 0.0470 (9) 0.0063 (7) 0.0132 (7) 0.0005 (6)
C2 0.0556 (9) 0.0371 (8) 0.0422 (8) 0.0051 (6) 0.0094 (6) 0.0001 (6)
C3 0.0503 (9) 0.0433 (8) 0.0470 (8) 0.0018 (6) 0.0075 (6) −0.0021 (6)
C4 0.0558 (10) 0.0467 (9) 0.0603 (10) −0.0014 (7) 0.0106 (7) −0.0046 (7)
C5 0.0745 (13) 0.0581 (11) 0.0847 (15) −0.0130 (9) 0.0031 (10) −0.0155 (10)
C6 0.0696 (11) 0.0604 (11) 0.0455 (9) −0.0006 (8) −0.0024 (7) 0.0013 (7)
C7 0.0578 (9) 0.0382 (8) 0.0414 (8) 0.0048 (6) 0.0081 (6) 0.0001 (6)
C8 0.0671 (11) 0.0406 (9) 0.0592 (10) −0.0047 (7) 0.0121 (8) 0.0038 (7)
C9 0.0820 (14) 0.0516 (11) 0.0755 (13) −0.0027 (9) 0.0114 (10) 0.0196 (9)

Geometric parameters (Å, º)

S1—C1 1.7264 (17) C5—H5C 0.9600
S1—C4 1.7429 (18) C5—H5D 0.9600
O1—C7 1.3348 (19) C5—H5E 0.9600
O1—C8 1.4429 (19) C5—H5F 0.9600
O2—C7 1.2228 (19) C6—H6A 0.9600
N1—C1 1.354 (2) C6—H6B 0.9600
N1—H1N1 0.88 (3) C6—H6C 0.9600
N1—H2N1 0.87 (2) C6—H6D 0.9600
C1—C2 1.381 (2) C6—H6E 0.9600
C2—C7 1.450 (2) C6—H6F 0.9600
C2—C3 1.453 (2) C8—C9 1.498 (3)
C3—C4 1.348 (2) C8—H8A 0.9700
C3—C6 1.501 (2) C8—H8B 0.9700
C4—C5 1.501 (3) C9—H9A 0.9600
C5—H5A 0.9600 C9—H9B 0.9600
C5—H5B 0.9600 C9—H9C 0.9600
C1—S1—C4 92.01 (8) H5E—C5—H5F 109.5
C7—O1—C8 117.66 (13) C3—C6—H6A 109.5
C1—N1—H1N1 112.9 (16) C3—C6—H6B 109.5
C1—N1—H2N1 123.7 (15) C3—C6—H6C 109.5
H1N1—N1—H2N1 119 (2) C3—C6—H6D 109.5
N1—C1—C2 128.80 (17) C3—C6—H6E 109.5
N1—C1—S1 120.01 (14) H6D—C6—H6E 109.5
C2—C1—S1 111.16 (12) C3—C6—H6F 109.5
C1—C2—C7 119.57 (14) H6D—C6—H6F 109.5
C1—C2—C3 112.36 (14) H6E—C6—H6F 109.5
C7—C2—C3 128.07 (13) O2—C7—O1 121.49 (14)
C4—C3—C2 112.56 (14) O2—C7—C2 124.63 (14)
C4—C3—C6 122.22 (15) O1—C7—C2 113.88 (13)
C2—C3—C6 125.21 (15) O1—C8—C9 106.59 (15)
C3—C4—C5 129.10 (18) O1—C8—H8A 110.4
C3—C4—S1 111.91 (12) C9—C8—H8A 110.4
C5—C4—S1 118.99 (15) O1—C8—H8B 110.4
C4—C5—H5A 109.5 C9—C8—H8B 110.4
C4—C5—H5B 109.5 H8A—C8—H8B 108.6
C4—C5—H5C 109.5 C8—C9—H9A 109.5
C4—C5—H5D 109.5 C8—C9—H9B 109.5
C4—C5—H5E 109.5 H9A—C9—H9B 109.5
H5D—C5—H5E 109.5 C8—C9—H9C 109.5
C4—C5—H5F 109.5 H9A—C9—H9C 109.5
H5D—C5—H5F 109.5 H9B—C9—H9C 109.5
C4—S1—C1—N1 178.55 (17) C2—C3—C4—S1 0.56 (19)
C4—S1—C1—C2 0.60 (14) C6—C3—C4—S1 179.60 (14)
N1—C1—C2—C7 1.8 (3) C1—S1—C4—C3 −0.67 (15)
S1—C1—C2—C7 179.54 (12) C1—S1—C4—C5 178.19 (17)
N1—C1—C2—C3 −178.12 (19) C8—O1—C7—O2 0.8 (2)
S1—C1—C2—C3 −0.40 (18) C8—O1—C7—C2 −179.18 (15)
C1—C2—C3—C4 −0.1 (2) C1—C2—C7—O2 0.0 (3)
C7—C2—C3—C4 179.95 (16) C3—C2—C7—O2 179.97 (16)
C1—C2—C3—C6 −179.12 (16) C1—C2—C7—O1 −179.94 (14)
C7—C2—C3—C6 0.9 (3) C3—C2—C7—O1 0.0 (2)
C2—C3—C4—C5 −178.16 (19) C7—O1—C8—C9 −177.97 (15)
C6—C3—C4—C5 0.9 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of S1/C1–C4 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2 0.89 (3) 2.06 (3) 2.744 (2) 133 (2)
N1—H2N1···O2i 0.87 (2) 2.12 (2) 2.972 (2) 167 (2)
C8—H8A···Cg1ii 0.97 2.78 3.600 (2) 142

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6845).

References

  1. Alqasoumi, S. I., Ragab, F. A., Alafeefy, A. M., Galal, M. & Ghorab, M. M. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 3241–3257.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gewald, K. (1965). Chem. Ber. 98, 3571–3577.
  5. Ghorab, M. M., Osman, A. N., Noaman, E., Heiba, H. I. & Zaher, N. H. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 1935–1950.
  6. Ghorab, M. M., Ragab, F. A., Heiba, H. I., Agha, H. M. & Nissan, Y. M. (2012). Arch. Pharm. Res. 35, 59–68. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026268/hb6845sup1.cif

e-68-o2111-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026268/hb6845Isup2.hkl

e-68-o2111-Isup2.hkl (82.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026268/hb6845Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES