Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 16;68(Pt 7):o2123. doi: 10.1107/S1600536812026505

4,4′,6,6′-Tetra-tert-butyl-2,2′-[1,3-diazinane-1,3-diylbis(methyl­ene)]diphenol 0.25-hydrate

Manman Zhang a, Li Li a, Fugen Yuan a,*, Hui Qian a
PMCID: PMC3393934  PMID: 22798799

Abstract

The title compound, C34H54N2O2·0.25H2O, the organic mol­ecule, a potential tetra­dentate ligand with a bulky phenolic donor, has overall mirror symmetry. A partially occupied water mol­ecule of solvation is present in the lattice. The six-membered 1,3-diazinane ring displays a chair conformation. An intra­molecular O—H⋯N hydrogen bond ocurs. In the crystal, mol­ecules are linked by O—H⋯O inter­actions.

Related literature  

For amino­bis­phenolato ligands in coordination chemistry, see: Wichmann et al. (2012). For applications of their metal complexes, see: Barroso et al. (2010); Wong et al. (2010); Kannan et al. (2008); Pang et al. (2008); Tshuva et al. (2001). For background to the synthetic procedure and related structures, see: Hancock et al. (2011); Manna et al. (2008); Mohanty et al. (2008); Guo et al. (2003).graphic file with name e-68-o2123-scheme1.jpg

Experimental  

Crystal data  

  • C34H54N2O2·0.25H2O

  • M r = 527.30

  • Orthorhombic, Inline graphic

  • a = 8.7292 (8) Å

  • b = 37.428 (3) Å

  • c = 10.1806 (9) Å

  • V = 3326.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.33 × 0.24 × 0.16 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • 29196 measured reflections

  • 3908 independent reflections

  • 3411 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.130

  • S = 1.05

  • 3908 reflections

  • 180 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812026505/fj2558sup1.cif

e-68-o2123-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026505/fj2558Isup2.hkl

e-68-o2123-Isup2.hkl (191.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.00 2.6880 (13) 142
O2—H2⋯O1i 0.85 2.22 3.036 (5) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Jiangsu Key Laboratory for Environment Functional Materials, a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Innovation Program for graduate students of USTS is gratefully acknowledged.

supplementary crystallographic information

Comment

In coordination chemistry, various ligands are used to control the environment of the metal. Especially, the electronic and steric properties of ligands are used to control the reactivity of metal species. Aminobisphenolato ligand is attractive, because its substituents at the phenolate rings as well as the position and nature of the side chain donor are easily tuneable features; thus different electronic and steric properties are available (Wichmann et al. 2012). Such metal complexes have been found to display catalytic activity for polymerization of cyclic esters (Hancock et al., 2011) (biodegradable polymers) and polymerization of olefins (Tshuva et al., 2001). They can also catalyse Tischenko reactions (Pang et al., 2008), sulfoxidations (Barroso et al., 2010), olefin epoxidation (Wong et al., 2010), hydrogenation of ketones (Kannan et al., 2008) and Mizorokie-Heck coupling reaction (Mohanty et al., 2008). Generally, aminobisphenolato ligands are prepared by Mannich condensation from formaldehyde, phenol and a primary amine (Manna et al., 2008; Guo et al., 2003). Herein we present a new ligand, in which two substituted phenols are bridge-linked by a tetrahydropyrimidine ring. The molecules form a mirror symmetric structure, as illustrated in Scheme 1.

In the title compound, the C—N bond distances are between 1.4580 (14) to 1.4763 (15) Å whereas the bond length of C—O is 1.3763 (15) Å. The bond angles around the nitrogen atoms range from 110.35 (12)o to 112.08 (10)o, which is in agreement with those in similar structure (Guo et al., 2003). Two phenolate groups are linked by a tetrahydropyrimidine ring. The overall geometry is mirror-symmetric (Fig.1). The six-member 1,3-diazacyclohexane ring displays in a chair-configuration. Compound molecules were stabilized by hydrogen bonds including intra-molecular O—H···N interaction and inter-molecular O—H···O interaction (Fig. 2).

Experimental

The title compound was prepared as follows. To a solution of 2,4-di-butylphenol (24.77 g, 0.12 mol) in 20 ml of methanol was added 7 ml of formaldehyde(0.08 mol) and 2.0 ml 1,3-propanediamine. The mixture was refluxed for 3 d at 65 oC. In the process white precipitates were produced gradually. After being filtered and washed with methanol for 3 times, white product of C136H218N8O9 was obtained in a yield of 90.7% (based on diamine). Single crystals were grown from ethyl acetate, m.p. = 185 °C, Anal. calcd for C136H218N8O9: C, 77.44; H, 10.42; N, 5.31; Found: C, 77.02; H, 10.55; N, 5.27. IR(KBr, cm-1) 3434(w), 2956(s), 2906(s), 2870(s), 2806(s), 2726(m), 2680(m), 1607(m), 1480(s), 1459(s), 1442(s), 1392(m), 1362(s), 1307(s), 1286(w), 1235(s), 1204(m), 1189(m), 1167(m), 1123(w), 1110(m), 1095(m), 989(m), 883(m), 822(w), 797(w), 761(w), 724(w), 682(w), 460(w).

Refinement

Tertiary Carbon H atoms were constrained to ideal geometry, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic and alkenyl) Uiso(H) = 1.2Ueq(C). The dispalcement parameters for the water O atom were very large at full occupancy. When refined, its fractional occupancy converged to close to 0.25 and was then set at this value.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with ellipsoids scaled to 30% probability.

Fig. 2.

Fig. 2.

intra and inter molecular contacts (dashed line) as well as molecular packing of the title compound along c axis.

Crystal data

C34H54N2O2·0.25H2O F(000) = 1162
Mr = 527.30 Dx = 1.053 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 9920 reflections
a = 8.7292 (8) Å θ = 2.6–27.6°
b = 37.428 (3) Å µ = 0.07 mm1
c = 10.1806 (9) Å T = 296 K
V = 3326.1 (5) Å3 Prism, colorless
Z = 4 0.33 × 0.24 × 0.16 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3411 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
Graphite monochromator θmax = 27.6°, θmin = 1.6°
phi and ω scans h = −11→11
29196 measured reflections k = −48→48
3908 independent reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0634P)2 + 1.2767P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.038
3908 reflections Δρmax = 0.38 e Å3
180 parameters Δρmin = −0.31 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0034 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.24037 (12) 0.78185 (2) 0.40084 (10) 0.0226 (2)
O1 0.50878 (10) 0.81077 (2) 0.47464 (9) 0.0290 (2)
H1 0.4572 0.7956 0.4369 0.044*
O2 0.7322 (8) 0.7500 0.5233 (7) 0.0500 (15)* 0.25
H2 0.6880 0.7299 0.5133 0.075* 0.25
C1 0.44073 (13) 0.84373 (3) 0.46035 (11) 0.0218 (2)
C2 0.30352 (13) 0.84657 (3) 0.38874 (11) 0.0224 (2)
C3 0.23273 (13) 0.87966 (3) 0.37546 (12) 0.0228 (2)
H3A 0.1408 0.8812 0.3297 0.027*
C4 0.29645 (13) 0.91060 (3) 0.42917 (11) 0.0215 (2)
C5 0.43413 (13) 0.90681 (3) 0.49783 (11) 0.0220 (2)
H5A 0.4783 0.9272 0.5335 0.026*
C6 0.50974 (13) 0.87414 (3) 0.51622 (11) 0.0211 (2)
C7 0.21487 (13) 0.94668 (3) 0.41266 (12) 0.0248 (3)
C8 0.05775 (16) 0.94463 (4) 0.47962 (16) 0.0397 (3)
H8A 0.0056 0.9671 0.4697 0.060*
H8B 0.0712 0.9395 0.5713 0.060*
H8C −0.0019 0.9260 0.4397 0.060*
C9 0.19124 (19) 0.95464 (4) 0.26617 (16) 0.0429 (4)
H9A 0.2890 0.9560 0.2232 0.064*
H9B 0.1386 0.9770 0.2565 0.064*
H9C 0.1314 0.9359 0.2272 0.064*
C10 0.30511 (17) 0.97759 (4) 0.4729 (2) 0.0484 (4)
H10A 0.4038 0.9792 0.4317 0.073*
H10B 0.3180 0.9735 0.5654 0.073*
H10C 0.2503 0.9995 0.4596 0.073*
C11 0.66220 (13) 0.87198 (3) 0.59218 (11) 0.0240 (3)
C12 0.71429 (15) 0.90887 (4) 0.64144 (14) 0.0334 (3)
H12A 0.6375 0.9187 0.6985 0.050*
H12B 0.7290 0.9245 0.5678 0.050*
H12C 0.8089 0.9065 0.6887 0.050*
C13 0.64494 (16) 0.84776 (4) 0.71373 (13) 0.0365 (3)
H13A 0.5661 0.8571 0.7698 0.055*
H13B 0.7401 0.8470 0.7609 0.055*
H13C 0.6178 0.8241 0.6862 0.055*
C14 0.78871 (14) 0.85726 (4) 0.50186 (12) 0.0299 (3)
H14A 0.7992 0.8725 0.4265 0.045*
H14B 0.7619 0.8336 0.4738 0.045*
H14C 0.8840 0.8565 0.5489 0.045*
C15 0.23842 (15) 0.81429 (3) 0.31813 (12) 0.0261 (3)
H15A 0.1338 0.8193 0.2919 0.031*
H15B 0.2976 0.8099 0.2391 0.031*
C16 0.2173 (2) 0.7500 0.32086 (16) 0.0228 (3)
H16A 0.2891 0.7500 0.2481 0.027*
H16B 0.1143 0.7500 0.2851 0.027*
C17 0.12559 (16) 0.78340 (3) 0.50660 (13) 0.0310 (3)
H17A 0.0237 0.7850 0.4690 0.037*
H17B 0.1426 0.8045 0.5601 0.037*
C18 0.1380 (3) 0.7500 0.59142 (19) 0.0369 (4)
H18A 0.2354 0.7500 0.6373 0.044*
H18B 0.0569 0.7500 0.6565 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0289 (5) 0.0148 (4) 0.0242 (5) −0.0005 (3) −0.0016 (4) −0.0007 (3)
O1 0.0287 (4) 0.0196 (4) 0.0387 (5) 0.0034 (3) −0.0068 (4) 0.0017 (3)
C1 0.0231 (5) 0.0188 (5) 0.0234 (5) 0.0019 (4) 0.0001 (4) 0.0021 (4)
C2 0.0261 (6) 0.0176 (5) 0.0235 (5) −0.0020 (4) −0.0028 (4) 0.0005 (4)
C3 0.0220 (5) 0.0199 (5) 0.0265 (6) −0.0006 (4) −0.0044 (4) 0.0013 (4)
C4 0.0203 (5) 0.0189 (5) 0.0252 (6) −0.0002 (4) 0.0010 (4) −0.0002 (4)
C5 0.0211 (5) 0.0205 (5) 0.0242 (5) −0.0030 (4) 0.0009 (4) −0.0028 (4)
C6 0.0195 (5) 0.0244 (5) 0.0195 (5) −0.0009 (4) 0.0000 (4) 0.0006 (4)
C7 0.0225 (5) 0.0167 (5) 0.0352 (6) 0.0008 (4) −0.0001 (5) −0.0008 (4)
C8 0.0311 (7) 0.0340 (7) 0.0540 (9) 0.0073 (5) 0.0090 (6) 0.0041 (6)
C9 0.0556 (9) 0.0304 (6) 0.0429 (8) 0.0106 (6) 0.0013 (7) 0.0108 (6)
C10 0.0369 (8) 0.0217 (6) 0.0866 (13) 0.0031 (5) −0.0134 (8) −0.0140 (7)
C11 0.0202 (5) 0.0308 (6) 0.0210 (5) 0.0006 (4) −0.0017 (4) 0.0005 (4)
C12 0.0252 (6) 0.0406 (7) 0.0345 (7) −0.0015 (5) −0.0065 (5) −0.0092 (6)
C13 0.0314 (7) 0.0525 (8) 0.0257 (6) −0.0013 (6) −0.0032 (5) 0.0105 (6)
C14 0.0218 (6) 0.0394 (7) 0.0285 (6) 0.0023 (5) −0.0008 (5) −0.0026 (5)
C15 0.0343 (6) 0.0166 (5) 0.0274 (6) −0.0020 (4) −0.0081 (5) 0.0016 (4)
C16 0.0291 (8) 0.0159 (7) 0.0233 (8) 0.000 −0.0030 (6) 0.000
C17 0.0370 (7) 0.0227 (6) 0.0333 (7) 0.0019 (5) 0.0059 (5) −0.0046 (5)
C18 0.0523 (12) 0.0298 (9) 0.0286 (9) 0.000 0.0117 (9) 0.000

Geometric parameters (Å, º)

N1—C16 1.4575 (13) C10—H10A 0.9600
N1—C17 1.4719 (16) C10—H10B 0.9600
N1—C15 1.4777 (14) C10—H10C 0.9600
O1—C1 1.3770 (13) C11—C14 1.5390 (17)
O1—H1 0.8200 C11—C12 1.5379 (17)
O2—H2 0.8500 C11—C13 1.5414 (17)
C1—C2 1.4062 (16) C12—H12A 0.9600
C1—C6 1.4078 (15) C12—H12B 0.9600
C2—C3 1.3909 (15) C12—H12C 0.9600
C2—C15 1.5162 (15) C13—H13A 0.9600
C3—C4 1.3962 (15) C13—H13B 0.9600
C3—H3A 0.9300 C13—H13C 0.9600
C4—C5 1.3975 (16) C14—H14A 0.9600
C4—C7 1.5359 (15) C14—H14B 0.9600
C5—C6 1.4023 (16) C14—H14C 0.9600
C5—H5A 0.9300 C15—H15A 0.9700
C6—C11 1.5414 (15) C15—H15B 0.9700
C7—C10 1.5283 (17) C16—N1i 1.4575 (13)
C7—C9 1.535 (2) C16—H16A 0.9700
C7—C8 1.5335 (18) C16—H16B 0.9700
C8—H8A 0.9600 C17—C18 1.5231 (16)
C8—H8B 0.9600 C17—H17A 0.9700
C8—H8C 0.9600 C17—H17B 0.9700
C9—H9A 0.9600 C18—C17i 1.5231 (16)
C9—H9B 0.9600 C18—H18A 0.9700
C9—H9C 0.9600 C18—H18B 0.9700
C16—N1—C17 110.29 (10) C14—C11—C13 109.83 (10)
C16—N1—C15 110.62 (9) C12—C11—C13 107.17 (10)
C17—N1—C15 112.13 (9) C14—C11—C6 109.79 (9)
C1—O1—H1 109.5 C12—C11—C6 111.83 (10)
O1—C1—C2 119.33 (10) C13—C11—C6 110.44 (10)
O1—C1—C6 119.81 (10) C11—C12—H12A 109.5
C2—C1—C6 120.85 (10) C11—C12—H12B 109.5
C3—C2—C1 119.74 (10) H12A—C12—H12B 109.5
C3—C2—C15 119.80 (10) C11—C12—H12C 109.5
C1—C2—C15 120.32 (10) H12A—C12—H12C 109.5
C2—C3—C4 121.57 (10) H12B—C12—H12C 109.5
C2—C3—H3A 119.2 C11—C13—H13A 109.5
C4—C3—H3A 119.2 C11—C13—H13B 109.5
C3—C4—C5 117.02 (10) H13A—C13—H13B 109.5
C3—C4—C7 120.11 (10) C11—C13—H13C 109.5
C5—C4—C7 122.87 (10) H13A—C13—H13C 109.5
C4—C5—C6 124.06 (10) H13B—C13—H13C 109.5
C4—C5—H5A 118.0 C11—C14—H14A 109.5
C6—C5—H5A 118.0 C11—C14—H14B 109.5
C5—C6—C1 116.73 (10) H14A—C14—H14B 109.5
C5—C6—C11 121.28 (10) C11—C14—H14C 109.5
C1—C6—C11 121.99 (10) H14A—C14—H14C 109.5
C10—C7—C9 108.21 (12) H14B—C14—H14C 109.5
C10—C7—C8 108.69 (11) N1—C15—C2 112.34 (9)
C9—C7—C8 108.76 (11) N1—C15—H15A 109.1
C10—C7—C4 112.50 (10) C2—C15—H15A 109.1
C9—C7—C4 109.83 (10) N1—C15—H15B 109.1
C8—C7—C4 108.78 (10) C2—C15—H15B 109.1
C7—C8—H8A 109.5 H15A—C15—H15B 107.9
C7—C8—H8B 109.5 N1—C16—N1i 109.75 (13)
H8A—C8—H8B 109.5 N1—C16—H16A 109.7
C7—C8—H8C 109.5 N1i—C16—H16A 109.7
H8A—C8—H8C 109.5 N1—C16—H16B 109.7
H8B—C8—H8C 109.5 N1i—C16—H16B 109.7
C7—C9—H9A 109.5 H16A—C16—H16B 108.2
C7—C9—H9B 109.5 N1—C17—C18 109.51 (11)
H9A—C9—H9B 109.5 N1—C17—H17A 109.8
C7—C9—H9C 109.5 C18—C17—H17A 109.8
H9A—C9—H9C 109.5 N1—C17—H17B 109.8
H9B—C9—H9C 109.5 C18—C17—H17B 109.8
C7—C10—H10A 109.5 H17A—C17—H17B 108.2
C7—C10—H10B 109.5 C17i—C18—C17 110.30 (15)
H10A—C10—H10B 109.5 C17i—C18—H18A 109.6
C7—C10—H10C 109.5 C17—C18—H18A 109.6
H10A—C10—H10C 109.5 C17i—C18—H18B 109.6
H10B—C10—H10C 109.5 C17—C18—H18B 109.6
C14—C11—C12 107.71 (10) H18A—C18—H18B 108.1

Symmetry code: (i) x, −y+3/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 2.00 2.6880 (13) 142
O2—H2···O1i 0.85 2.22 3.036 (5) 161

Symmetry code: (i) x, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2558).

References

  1. Barroso, S., Adão, P., Madeira, F., Duarte, M. T., Pessoa, J. C. & Martins, A. M. (2010). Inorg. Chem. 49, 7452–7463. [DOI] [PubMed]
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Guo, Y.-M., Du, M. & Bu, X.-H. (2003). J. Mol. Struct. 646, 191–196.
  4. Hancock, S. L., Mahon, M. F., Kociok-Köhn, G. & Jones, M. D. (2011). Eur. J. Inorg. Chem. pp. 4596–4602.
  5. Kannan, S., Kumar, K. N. & Ramesh, R. (2008). Polyhedron, 27, 701–708.
  6. Manna, C. M., Shavit, M. & Tshuva, E. Y. (2008). J. Organomet. Chem. 693, 3947–3950.
  7. Mohanty, S., Suresh, D., Balakrishna, M. S. & Mague, J. T. (2008). Tetrahedron, 64, 240–247.
  8. Pang, M. L., Yao, Y. M., Zhang, Y. & Shen, Q. (2008). Chin. Sci. Bull. 53, 1978–1982.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001). Chem. Commun. pp. 2120–2121. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Wichmann, O., Sillanpää, R. & Lehtonen, A. (2012). Coord. Chem. Rev. 256, 371–392.
  14. Wong, Y.-L., Tong, L. H., Dilworth, J. R., Ng, D. K. P. & Lee, H. K. (2010). Dalton Trans. 39, 4602–4611. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812026505/fj2558sup1.cif

e-68-o2123-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026505/fj2558Isup2.hkl

e-68-o2123-Isup2.hkl (191.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES