Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 16;68(Pt 7):o2130. doi: 10.1107/S1600536812026608

(Z)-3-(4-Chloro­benz­yl)-1,5-benzothia­zepin-4(5H)-one

D Lakshmanan a, S Murugavel b,*, R Selvakumar c, M Bakthadoss c,
PMCID: PMC3393941  PMID: 22798806

Abstract

In the title compound, C16H12ClNOS, the seven-membered thia­zepine ring adopts a distorted twisted boat conformation. The dihedral angle between the least-squares planes of the 1,5-benzothia­zepine ring system and the benzene ring is 50.2 (1)°. In the crystal, pairs of N—H⋯O hydrogen bonds link centrosymmetrically related mol­ecules into dimers, generating R 2 2(8) ring motifs. The crystal packing is further stabilized by π–π inter­actions [centroid–centroid distance = 3.763 (2) Å].

Related literature  

For the pharmaceutical properties of thia­zepin derivatives, see: Tomascovic et al. (2000); Rajsner et al. (1971); Metys et al. (1965). For related structures, see: Sridevi et al. (2011); Sabari et al. (2011); Selvakumar et al. (2012). For ring-puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2130-scheme1.jpg

Experimental  

Crystal data  

  • C16H12ClNOS

  • M r = 301.78

  • Orthorhombic, Inline graphic

  • a = 9.0486 (3) Å

  • b = 9.4105 (3) Å

  • c = 33.4876 (10) Å

  • V = 2851.53 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.910, T max = 0.941

  • 14850 measured reflections

  • 3099 independent reflections

  • 2382 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.118

  • S = 1.03

  • 3099 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026608/tk5111sup1.cif

e-68-o2130-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026608/tk5111Isup2.hkl

e-68-o2130-Isup2.hkl (149.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026608/tk5111Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.07 2.854 (2) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

The title compound is used as an intermediate for the synthesis of dosulepin, which is an anti-depressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiazepin-5,5-dioxide derivatives possess anti-histaminic and anti-allergenic activities (Rajsner et al., 1971). Benzene thiazepin derivatives are identified as a new type of effective anti-histaminic compounds (Metys et al., 1965). In view of this biological importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1. shows the seven membered thiazepine ring (N1/S1/C1/C2/C7/C8/C9) to adopt a twisted-boat conformation as indicated by puckering parameters (Cremer & Pople, 1975) QT = 1.0015 (16) Å, θ2 = 74.1 (1)°, φ2 = 177.3 (1)° and φ3 = 177.6 (4)°. The dihedral angle between the benzothiazepin ring system and the benzene ring is 50.2 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Sridevi et al., 2011; Sabari et al., 2011).

In the crystal packing (Fig. 2), centrosymmetrically related molecules are linked by N1—H1···O1 hydrogen bonds into cyclic R22(8) dimers (Bernstein et al., 1995). The crystal packing (Fig. 3) is further stabilized by intermolecular π—π interactions with a CgCgi separation of 3.763 (1) Å [Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 3].

Experimental

A mixture of (Z)-methyl 2-(bromomethyl)-3-(4-chlorophenyl)acrylate (2 mmol) and o-aminothiophenol (2 mmol) in the presence of potassium tert-butoxide (4.8 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 × 20 ml). The organic layer was washed with brine (2 × 20 ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which successfully provided the crude final product. The final product was purified by column chromatography on silica gel to afford the title compound in good yield (43%).

Refinement

H atoms were positioned geometrically, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N,C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound showing N—H···O intermolecular hydrogen bonds (dotted lines) generating an R22(8) centrosymmetric dimer [Symmetry code: (i) -x, -y, -z].

Fig. 3.

Fig. 3.

A view of a π—π interaction (dotted lines) in the crystal structure of the title compound. Cg denotes centroid of the C2–C7 benzene ring [Symmetry code: (i) -x, 1 - y, -z].

Crystal data

C16H12ClNOS F(000) = 1248
Mr = 301.78 Dx = 1.406 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3130 reflections
a = 9.0486 (3) Å θ = 2.4–27.0°
b = 9.4105 (3) Å µ = 0.41 mm1
c = 33.4876 (10) Å T = 293 K
V = 2851.53 (16) Å3 Block, colourless
Z = 8 0.23 × 0.21 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer 3099 independent reflections
Radiation source: fine-focus sealed tube 2382 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 10.0 pixels mm-1 θmax = 27.0°, θmin = 2.4°
ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −10→11
Tmin = 0.910, Tmax = 0.941 l = −42→29
14850 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.9074P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3099 reflections Δρmax = 0.35 e Å3
182 parameters Δρmin = −0.45 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0057 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0719 (3) 0.1514 (2) 0.12513 (6) 0.0476 (5)
H1A 0.0655 0.1466 0.1528 0.057*
C2 0.0392 (2) 0.3707 (2) 0.07497 (6) 0.0435 (5)
C3 0.0021 (3) 0.5128 (3) 0.08041 (7) 0.0580 (7)
H3 0.0457 0.5643 0.1010 0.070*
C4 −0.0985 (3) 0.5777 (3) 0.05567 (8) 0.0618 (7)
H4 −0.1210 0.6733 0.0592 0.074*
C5 −0.1654 (3) 0.5023 (2) 0.02586 (8) 0.0518 (6)
H5 −0.2335 0.5466 0.0092 0.062*
C6 −0.1323 (2) 0.3610 (2) 0.02049 (7) 0.0434 (5)
H6 −0.1789 0.3098 0.0004 0.052*
C7 −0.0300 (2) 0.2947 (2) 0.04485 (6) 0.0373 (4)
C8 0.0158 (2) 0.0388 (2) 0.06027 (6) 0.0399 (5)
C9 0.0015 (2) 0.0533 (2) 0.10436 (6) 0.0416 (5)
C10 −0.0895 (3) −0.0641 (3) 0.12279 (7) 0.0555 (6)
H10A −0.1879 −0.0612 0.1114 0.067*
H10B −0.0457 −0.1547 0.1156 0.067*
C11 −0.1027 (3) −0.0572 (2) 0.16758 (7) 0.0489 (6)
C12 −0.0147 (3) −0.1404 (3) 0.19132 (8) 0.0590 (6)
H12 0.0524 −0.2022 0.1794 0.071*
C13 −0.0233 (3) −0.1346 (3) 0.23246 (8) 0.0668 (7)
H13 0.0367 −0.1922 0.2482 0.080*
C14 −0.1208 (3) −0.0436 (3) 0.24963 (8) 0.0639 (7)
C15 −0.2101 (3) 0.0408 (3) 0.22704 (9) 0.0733 (8)
H15 −0.2766 0.1028 0.2391 0.088*
C16 −0.2004 (3) 0.0329 (3) 0.18587 (8) 0.0664 (7)
H16 −0.2614 0.0899 0.1703 0.080*
N1 0.0078 (2) 0.15261 (18) 0.03612 (5) 0.0405 (4)
H1 0.0290 0.1363 0.0115 0.049*
O1 0.0322 (2) −0.08062 (16) 0.04596 (4) 0.0551 (4)
S1 0.17684 (7) 0.29044 (7) 0.104528 (18) 0.0568 (2)
Cl1 −0.13112 (12) −0.03656 (12) 0.30146 (2) 0.1046 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0518 (13) 0.0530 (13) 0.0379 (11) −0.0069 (11) −0.0027 (10) 0.0015 (10)
C2 0.0495 (13) 0.0381 (12) 0.0428 (11) −0.0122 (10) 0.0066 (9) −0.0021 (9)
C3 0.0789 (18) 0.0400 (13) 0.0552 (14) −0.0191 (13) 0.0111 (13) −0.0109 (11)
C4 0.0796 (19) 0.0336 (12) 0.0721 (17) 0.0004 (12) 0.0225 (15) −0.0012 (12)
C5 0.0508 (14) 0.0379 (12) 0.0667 (15) 0.0020 (11) 0.0135 (12) 0.0109 (11)
C6 0.0418 (11) 0.0363 (12) 0.0522 (12) −0.0045 (9) 0.0039 (10) 0.0036 (9)
C7 0.0389 (11) 0.0328 (10) 0.0400 (10) −0.0049 (9) 0.0067 (8) −0.0009 (8)
C8 0.0440 (12) 0.0361 (12) 0.0396 (10) 0.0032 (9) −0.0035 (9) −0.0018 (9)
C9 0.0469 (12) 0.0398 (12) 0.0380 (10) 0.0010 (10) −0.0028 (9) 0.0018 (9)
C10 0.0696 (16) 0.0478 (13) 0.0492 (13) −0.0110 (12) −0.0046 (12) 0.0040 (11)
C11 0.0515 (14) 0.0455 (13) 0.0497 (12) −0.0084 (11) −0.0005 (10) 0.0095 (10)
C12 0.0615 (16) 0.0559 (15) 0.0595 (14) 0.0044 (13) −0.0010 (12) 0.0090 (12)
C13 0.0687 (18) 0.0723 (18) 0.0593 (15) −0.0046 (15) −0.0117 (14) 0.0210 (14)
C14 0.0653 (17) 0.0791 (18) 0.0472 (13) −0.0228 (15) 0.0080 (12) 0.0081 (13)
C15 0.0719 (19) 0.078 (2) 0.0698 (17) 0.0061 (16) 0.0219 (15) 0.0040 (15)
C16 0.0631 (17) 0.0714 (18) 0.0645 (16) 0.0115 (14) 0.0025 (13) 0.0179 (14)
N1 0.0527 (11) 0.0347 (9) 0.0342 (8) 0.0024 (8) 0.0011 (8) −0.0025 (7)
O1 0.0836 (12) 0.0365 (8) 0.0453 (8) 0.0120 (8) −0.0058 (8) −0.0030 (7)
S1 0.0541 (4) 0.0654 (4) 0.0509 (3) −0.0224 (3) −0.0093 (3) 0.0030 (3)
Cl1 0.1122 (7) 0.1522 (9) 0.0494 (4) −0.0371 (7) 0.0121 (4) 0.0051 (5)

Geometric parameters (Å, º)

C1—C9 1.320 (3) C8—C9 1.488 (3)
C1—S1 1.758 (2) C9—C10 1.509 (3)
C1—H1A 0.9300 C10—C11 1.506 (3)
C2—C7 1.386 (3) C10—H10A 0.9700
C2—C3 1.391 (3) C10—H10B 0.9700
C2—S1 1.761 (2) C11—C16 1.370 (4)
C3—C4 1.374 (4) C11—C12 1.371 (3)
C3—H3 0.9300 C12—C13 1.381 (4)
C4—C5 1.366 (4) C12—H12 0.9300
C4—H4 0.9300 C13—C14 1.357 (4)
C5—C6 1.374 (3) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.363 (4)
C6—C7 1.382 (3) C14—Cl1 1.739 (3)
C6—H6 0.9300 C15—C16 1.383 (4)
C7—N1 1.411 (3) C15—H15 0.9300
C8—O1 1.231 (2) C16—H16 0.9300
C8—N1 1.344 (3) N1—H1 0.8600
C9—C1—S1 125.10 (17) C11—C10—H10A 108.6
C9—C1—H1A 117.5 C9—C10—H10A 108.6
S1—C1—H1A 117.5 C11—C10—H10B 108.6
C7—C2—C3 118.8 (2) C9—C10—H10B 108.6
C7—C2—S1 120.49 (17) H10A—C10—H10B 107.6
C3—C2—S1 120.64 (18) C16—C11—C12 118.0 (2)
C4—C3—C2 120.6 (2) C16—C11—C10 121.6 (2)
C4—C3—H3 119.7 C12—C11—C10 120.5 (2)
C2—C3—H3 119.7 C11—C12—C13 121.5 (3)
C5—C4—C3 120.2 (2) C11—C12—H12 119.2
C5—C4—H4 119.9 C13—C12—H12 119.2
C3—C4—H4 119.9 C14—C13—C12 119.0 (3)
C4—C5—C6 120.1 (2) C14—C13—H13 120.5
C4—C5—H5 120.0 C12—C13—H13 120.5
C6—C5—H5 120.0 C13—C14—C15 121.2 (3)
C5—C6—C7 120.4 (2) C13—C14—Cl1 118.8 (2)
C5—C6—H6 119.8 C15—C14—Cl1 120.0 (2)
C7—C6—H6 119.8 C14—C15—C16 118.9 (3)
C6—C7—C2 119.92 (19) C14—C15—H15 120.5
C6—C7—N1 117.91 (18) C16—C15—H15 120.5
C2—C7—N1 122.02 (19) C11—C16—C15 121.3 (3)
O1—C8—N1 119.98 (18) C11—C16—H16 119.3
O1—C8—C9 118.70 (18) C15—C16—H16 119.3
N1—C8—C9 121.31 (18) C8—N1—C7 130.05 (17)
C1—C9—C8 123.0 (2) C8—N1—H1 115.0
C1—C9—C10 124.05 (19) C7—N1—H1 115.0
C8—C9—C10 112.71 (18) C1—S1—C2 99.08 (10)
C11—C10—C9 114.76 (19)
C7—C2—C3—C4 −1.7 (3) C9—C10—C11—C16 79.7 (3)
S1—C2—C3—C4 175.82 (19) C9—C10—C11—C12 −99.3 (3)
C2—C3—C4—C5 1.3 (4) C16—C11—C12—C13 0.1 (4)
C3—C4—C5—C6 0.0 (4) C10—C11—C12—C13 179.1 (2)
C4—C5—C6—C7 −0.7 (3) C11—C12—C13—C14 −0.4 (4)
C5—C6—C7—C2 0.2 (3) C12—C13—C14—C15 0.4 (4)
C5—C6—C7—N1 −175.39 (19) C12—C13—C14—Cl1 −179.9 (2)
C3—C2—C7—C6 1.0 (3) C13—C14—C15—C16 0.0 (4)
S1—C2—C7—C6 −176.59 (15) Cl1—C14—C15—C16 −179.7 (2)
C3—C2—C7—N1 176.41 (19) C12—C11—C16—C15 0.3 (4)
S1—C2—C7—N1 −1.2 (3) C10—C11—C16—C15 −178.7 (2)
S1—C1—C9—C8 6.9 (3) C14—C15—C16—C11 −0.3 (4)
S1—C1—C9—C10 −179.25 (19) O1—C8—N1—C7 170.5 (2)
O1—C8—C9—C1 135.4 (2) C9—C8—N1—C7 −8.1 (3)
N1—C8—C9—C1 −46.0 (3) C6—C7—N1—C8 −131.7 (2)
O1—C8—C9—C10 −39.0 (3) C2—C7—N1—C8 52.8 (3)
N1—C8—C9—C10 139.5 (2) C9—C1—S1—C2 58.0 (2)
C1—C9—C10—C11 3.5 (3) C7—C2—S1—C1 −60.21 (19)
C8—C9—C10—C11 177.9 (2) C3—C2—S1—C1 122.26 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.07 2.854 (2) 151

Symmetry code: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5111).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Metys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871–873. [PubMed]
  6. Rajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.
  7. Sabari, V., Jagadeesan, G., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2011). Acta Cryst. E67, o3061. [DOI] [PMC free article] [PubMed]
  8. Selvakumar, R., Bakthadoss, M., Lakshmanan, D. & Murugavel, S. (2012). Acta Cryst. E68, o2126. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sridevi, D., Bhaskaran, S., Usha, G., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o243. [DOI] [PMC free article] [PubMed]
  13. Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026608/tk5111sup1.cif

e-68-o2130-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026608/tk5111Isup2.hkl

e-68-o2130-Isup2.hkl (149.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026608/tk5111Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES