Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):o2134. doi: 10.1107/S1600536812026189

2-Methyl­sulfanyl-9H-1,3,4-thia­diazolo[2,3-b]quinazolin-9-one

Adel S El-Azab a,b,, Alaa A-M Abdel-Aziz a,c, Ibrahim A Al-Swaidan a, Seik Weng Ng d,e, Edward R T Tiekink d,*
PMCID: PMC3393945  PMID: 22798810

Abstract

In the title compound, C10H7N3OS2, the 16 non-H atoms are almost planar (r.m.s. deviation = 0.037 Å) and the S-bound methyl group is syn to the ketone O atom. In the crystal, centrosymmetrically related mol­ecules are connected by pairs of C—H⋯O inter­actions between the ketone O and methyl H atoms. The dimeric aggregates are connected into a linear supra­molecular chain along the b axis via π–π inter­actions occurring between the five-membered and benzene rings [centroid–centroid distance = 3.6123 (9) Å]. The chains assemble into layers in the bc plane via S⋯S inter­actions involving the endocyclic S atoms [S⋯S = 3.4607 (6) and 3.4792 (6) Å].

Related literature  

For recent studies on the synthesis and biological properties of quinazoline-4(3H)-one derivatives, see: El-Azab & ElTahir (2012); El-Azab et al. (2011). For the synthesis and anti-microbial activity of the title compound, see: El-Azab (2007).graphic file with name e-68-o2134-scheme1.jpg

Experimental  

Crystal data  

  • C10H7N3OS2

  • M r = 249.31

  • Monoclinic, Inline graphic

  • a = 11.8193 (4) Å

  • b = 4.9841 (2) Å

  • c = 17.4985 (6) Å

  • β = 91.453 (3)°

  • V = 1030.48 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.53 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.344, T max = 0.876

  • 3781 measured reflections

  • 2110 independent reflections

  • 1937 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.082

  • S = 1.09

  • 2110 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026189/hb6843sup1.cif

e-68-o2134-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026189/hb6843Isup2.hkl

e-68-o2134-Isup2.hkl (103.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026189/hb6843Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.98 2.32 3.170 (2) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Quinazoline-4(3H)-one derivatives attract interest owing to their putative biological activity (El-Azab & ElTahir, 2012; El-Azab et al., 2011). The title compound, 2-(methylthio)-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-5-one (I), has been synthesized previously and evaluated for its anti-microbial activity (El-Azab, 2007). Herein, we describe its crystal structure determination.

The 16 non-hydrogen atoms in (I), Fig. 1, are planar with the r.m.s. deviation being 0.037 Å. The maximum deviations from the least-squares plane are 0.068 (1) Å for the ketone-O1 atom and -0.065 (2) Å for the methyl-C10 atom. The S-bound methyl group is syn to the ketone-O1 atom.

In the crystal packing, centrosymmetrically related molecules are connected by C—H···O interactions between the ketone-O and methyl-H atoms, Table 1, via a 16-membered {···HCSCN2CO}2 synthon, Fig. 2. The dimeric aggregates are connected into a linear supramolecular chain along the b axis viaπ—π interactions occurring between the five-membered and benzene rings [inter-centroid distance = 3.6123 (9) Å, angle of inclination = 2.09 (7)° for symmetry operation: x, 1 + y, z]. The chains assemble into layers in the bc plane via S···S interactions involving the endocyclic-S1 atoms whereby each S1 atom forms two such interactions [S1···S1i = 3.4607 (6) Å for symmetry operation i: 2 - x,2 - y,1 - z; and S1···S1ii = 3.4792 (6) Å for ii: 2 - x, 1 - y, 1 - z]. Layers stack along the a axis without specific interactions between them, Fig. 3.

Experimental

A mixture of 2-mercapto-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-5-one (470 mg, 2 mmol) and methyliodide (2.1 mmol) in acetone (10 ml) containing anhydrous potassium carbonate (300 mg) was stirred at room temperature for 12 h. The reaction mixture was filtered, the solvent removed under reduced pressure and the solid obtained was dried and recrystallized from ethanol. Yield 88%. 1H NMR (CDCl3): δ 8.42 (d, 1H, J = 7.5 Hz), 7.79 (t, 1H, J = 7.0 Hz), 7.63 (d, 1H, J = 8.0 Hz), 7.49 (t, 1H, J = 7.0 Hz), 2.84 (s, 3H) p.p.m.. 13C NMR (CDCl3): δ = 15.3, 118.9, 126.2, 127.6, 134.8, 147.2, 156.2, 157.1, 158.5 p.p.m..

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the linear supramolecular chain along the b axis in (I). The C—H···O and π—π interactions are shown as orange and purple dashed lines respectively.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents for (I). The C—H···O, π—π and S···S interactions are shown as orange, purple and blue dashed lines respectively.

Crystal data

C10H7N3OS2 F(000) = 512
Mr = 249.31 Dx = 1.607 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 2166 reflections
a = 11.8193 (4) Å θ = 3.7–76.5°
b = 4.9841 (2) Å µ = 4.53 mm1
c = 17.4985 (6) Å T = 100 K
β = 91.453 (3)° Prism, colourless
V = 1030.48 (6) Å3 0.30 × 0.10 × 0.03 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2110 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 1937 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.018
Detector resolution: 10.4041 pixels mm-1 θmax = 76.7°, θmin = 3.7°
ω scan h = −12→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −5→6
Tmin = 0.344, Tmax = 0.876 l = −15→21
3781 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.3686P] where P = (Fo2 + 2Fc2)/3
2110 reflections (Δ/σ)max = 0.001
145 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.90968 (3) 0.75129 (8) 0.46619 (2) 0.01702 (12)
S2 0.76245 (3) 1.12015 (8) 0.55613 (2) 0.01660 (12)
N1 0.90012 (11) 0.3645 (3) 0.35873 (8) 0.0160 (3)
N2 0.72981 (11) 0.5607 (3) 0.40394 (7) 0.0145 (3)
N3 0.68915 (11) 0.7516 (3) 0.45394 (7) 0.0160 (3)
O1 0.55197 (9) 0.4218 (3) 0.36566 (7) 0.0217 (3)
C1 0.65417 (13) 0.4007 (3) 0.36022 (9) 0.0159 (3)
C2 0.71312 (13) 0.2152 (3) 0.31034 (9) 0.0153 (3)
C3 0.64945 (13) 0.0467 (4) 0.26154 (9) 0.0183 (3)
H3 0.5691 0.0533 0.2616 0.022*
C4 0.70332 (14) −0.1282 (4) 0.21351 (9) 0.0196 (3)
H4 0.6602 −0.2429 0.1806 0.024*
C5 0.82196 (14) −0.1368 (3) 0.21325 (9) 0.0192 (3)
H5 0.8589 −0.2560 0.1796 0.023*
C6 0.88539 (13) 0.0261 (3) 0.26135 (9) 0.0179 (3)
H6 0.9657 0.0173 0.2609 0.021*
C7 0.83228 (13) 0.2050 (3) 0.31091 (9) 0.0149 (3)
C8 0.84595 (12) 0.5289 (3) 0.40102 (8) 0.0149 (3)
C9 0.77423 (13) 0.8644 (3) 0.48930 (9) 0.0152 (3)
C10 0.61018 (14) 1.1556 (4) 0.55743 (10) 0.0211 (3)
H10A 0.5903 1.2965 0.5938 0.032*
H10B 0.5762 0.9854 0.5730 0.032*
H10C 0.5815 1.2041 0.5062 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01263 (19) 0.0180 (2) 0.0204 (2) −0.00013 (13) −0.00028 (14) −0.00389 (14)
S2 0.0170 (2) 0.0176 (2) 0.0151 (2) 0.00105 (14) −0.00022 (14) −0.00248 (14)
N1 0.0136 (6) 0.0176 (7) 0.0167 (6) 0.0001 (5) 0.0003 (5) −0.0019 (5)
N2 0.0124 (6) 0.0179 (7) 0.0133 (6) 0.0031 (5) 0.0007 (5) −0.0011 (5)
N3 0.0161 (6) 0.0180 (7) 0.0139 (6) 0.0031 (5) 0.0001 (5) −0.0018 (5)
O1 0.0118 (5) 0.0294 (7) 0.0239 (6) 0.0024 (5) −0.0007 (4) −0.0067 (5)
C1 0.0148 (7) 0.0191 (7) 0.0138 (7) 0.0014 (6) −0.0011 (6) −0.0006 (6)
C2 0.0151 (7) 0.0176 (7) 0.0131 (7) 0.0011 (6) −0.0001 (5) 0.0006 (6)
C3 0.0146 (7) 0.0227 (8) 0.0176 (7) 0.0013 (7) −0.0018 (6) −0.0009 (6)
C4 0.0190 (8) 0.0219 (8) 0.0177 (8) 0.0007 (6) −0.0041 (6) −0.0031 (6)
C5 0.0204 (8) 0.0207 (8) 0.0166 (7) 0.0037 (6) 0.0012 (6) −0.0032 (6)
C6 0.0135 (7) 0.0206 (8) 0.0195 (7) 0.0022 (6) 0.0013 (6) −0.0013 (6)
C7 0.0149 (7) 0.0160 (7) 0.0139 (7) −0.0004 (6) 0.0001 (5) 0.0017 (6)
C8 0.0127 (7) 0.0159 (7) 0.0160 (7) −0.0008 (6) −0.0005 (5) 0.0023 (6)
C9 0.0155 (7) 0.0160 (7) 0.0141 (7) 0.0019 (6) 0.0005 (5) 0.0014 (6)
C10 0.0178 (7) 0.0261 (9) 0.0194 (8) 0.0048 (7) 0.0015 (6) −0.0032 (7)

Geometric parameters (Å, º)

S1—C8 1.7473 (16) C2—C7 1.409 (2)
S1—C9 1.7542 (16) C3—C4 1.378 (2)
S2—C9 1.7378 (16) C3—H3 0.9500
S2—C10 1.8091 (17) C4—C5 1.403 (2)
N1—C8 1.286 (2) C4—H4 0.9500
N1—C7 1.393 (2) C5—C6 1.378 (2)
N2—C8 1.3840 (18) C5—H5 0.9500
N2—N3 1.3866 (18) C6—C7 1.403 (2)
N2—C1 1.409 (2) C6—H6 0.9500
N3—C9 1.296 (2) C10—H10A 0.9800
O1—C1 1.2186 (19) C10—H10B 0.9800
C1—C2 1.461 (2) C10—H10C 0.9800
C2—C3 1.403 (2)
C8—S1—C9 88.48 (7) C6—C5—H5 119.7
C9—S2—C10 100.19 (8) C4—C5—H5 119.7
C8—N1—C7 114.96 (13) C5—C6—C7 120.47 (14)
C8—N2—N3 117.51 (13) C5—C6—H6 119.8
C8—N2—C1 122.09 (13) C7—C6—H6 119.8
N3—N2—C1 120.37 (12) N1—C7—C6 118.30 (14)
C9—N3—N2 108.78 (13) N1—C7—C2 122.93 (14)
O1—C1—N2 121.69 (14) C6—C7—C2 118.77 (14)
O1—C1—C2 126.16 (15) N1—C8—N2 127.10 (14)
N2—C1—C2 112.15 (13) N1—C8—S1 124.55 (12)
C3—C2—C7 120.23 (14) N2—C8—S1 108.35 (11)
C3—C2—C1 119.08 (14) N3—C9—S2 124.42 (12)
C7—C2—C1 120.69 (14) N3—C9—S1 116.88 (12)
C4—C3—C2 120.06 (15) S2—C9—S1 118.69 (9)
C4—C3—H3 120.0 S2—C10—H10A 109.5
C2—C3—H3 120.0 S2—C10—H10B 109.5
C3—C4—C5 119.90 (15) H10A—C10—H10B 109.5
C3—C4—H4 120.0 S2—C10—H10C 109.5
C5—C4—H4 120.0 H10A—C10—H10C 109.5
C6—C5—C4 120.56 (15) H10B—C10—H10C 109.5
C8—N2—N3—C9 −0.24 (19) C3—C2—C7—N1 −179.16 (15)
C1—N2—N3—C9 177.60 (13) C1—C2—C7—N1 0.9 (2)
C8—N2—C1—O1 176.66 (15) C3—C2—C7—C6 0.7 (2)
N3—N2—C1—O1 −1.1 (2) C1—C2—C7—C6 −179.20 (15)
C8—N2—C1—C2 −3.1 (2) C7—N1—C8—N2 0.4 (2)
N3—N2—C1—C2 179.13 (13) C7—N1—C8—S1 179.87 (11)
O1—C1—C2—C3 1.9 (3) N3—N2—C8—N1 −179.87 (15)
N2—C1—C2—C3 −178.30 (14) C1—N2—C8—N1 2.3 (2)
O1—C1—C2—C7 −178.17 (16) N3—N2—C8—S1 0.61 (17)
N2—C1—C2—C7 1.6 (2) C1—N2—C8—S1 −177.18 (12)
C7—C2—C3—C4 −0.5 (2) C9—S1—C8—N1 179.88 (15)
C1—C2—C3—C4 179.44 (15) C9—S1—C8—N2 −0.59 (11)
C2—C3—C4—C5 −0.3 (3) N2—N3—C9—S2 178.77 (11)
C3—C4—C5—C6 0.8 (3) N2—N3—C9—S1 −0.27 (17)
C4—C5—C6—C7 −0.5 (3) C10—S2—C9—N3 0.76 (16)
C8—N1—C7—C6 178.13 (15) C10—S2—C9—S1 179.79 (10)
C8—N1—C7—C2 −2.0 (2) C8—S1—C9—N3 0.53 (13)
C5—C6—C7—N1 179.67 (15) C8—S1—C9—S2 −178.57 (10)
C5—C6—C7—C2 −0.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O1i 0.98 2.32 3.170 (2) 145

Symmetry code: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6843).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. El-Azab, A. S. (2007). Phosphorus Sulfur Silicon, 182, 333–348.
  4. El-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 1879–1885. [DOI] [PubMed]
  5. El-Azab, A. S. & ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026189/hb6843sup1.cif

e-68-o2134-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026189/hb6843Isup2.hkl

e-68-o2134-Isup2.hkl (103.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026189/hb6843Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES