Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):o2135–o2136. doi: 10.1107/S160053681202658X

N-(4-Chloro­phen­yl)-5-(4,5-dihydro-1H-imidazol-2-yl)thieno[2,3-b]pyridin-4-amine

Alice M R Bernardino a, Luiz C S Pinheiro b, Edward R T Tiekink c,*, James L Wardell d,, Solange M S V Wardell e
PMCID: PMC3393946  PMID: 22798811

Abstract

In the title compound, C16H13ClN4S, the thienopyridine fused-ring system is nearly planar (r.m.s. deviation = 0.0333 Å) and forms a dihedral angle of 4.4 (3)° with the attached dihydro­imidazole ring (r.m.s. deviation = 0.0429 Å) allowing for the formation of an intra­molecular (exocyclic amine)N—H⋯N(imine) hydrogen bond. The benzene rings of the disordered (50:50) –N(H)—C6H4Cl residue form dihedral angles of 59.1 (3) and 50.59 (15)° with the fused ring system. In the crystal, (imidazole amine)N—H⋯N(pyridine) hydrogen bonds lead to a supra­molecular helical chain along the b axis. The chains assemble into layers (ab plane) with inter-digitation of the chloro­benzene rings which results in weak C—H⋯Cl inter­actions in the c-axis direction.

Related literature  

For the synthesis and biological activity of thienopyridine derivatives, see: Kaigorodova et al. (2000); Moloney (2001); Bernardino et al. (2004, 2006); Leal et al. (2008); Pinheiro et al. (2008a ); El-Kashef et al. (2010); Testa et al. (2010); Panchamukhi et al. (2011). For the anti-leishmanial activity of 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(aryl­amino)­thieno[2,3-b]pyridine, see: Pinheiro et al. (2012).graphic file with name e-68-o2135-scheme1.jpg

Experimental  

Crystal data  

  • C16H13ClN4S

  • M r = 328.81

  • Monoclinic, Inline graphic

  • a = 17.784 (3) Å

  • b = 6.2264 (4) Å

  • c = 13.6226 (18) Å

  • β = 102.700 (4)°

  • V = 1471.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 120 K

  • 0.25 × 0.15 × 0.03 mm

Data collection  

  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.639, T max = 1.000

  • 9375 measured reflections

  • 2591 independent reflections

  • 1106 reflections with I > 2σ(I)

  • R int = 0.138

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.079

  • wR(F 2) = 0.217

  • S = 0.99

  • 2591 reflections

  • 191 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows(Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202658X/xu5563sup1.cif

e-68-o2135-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202658X/xu5563Isup2.hkl

e-68-o2135-Isup2.hkl (124.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202658X/xu5563Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯N3 0.88 (10) 1.87 (11) 2.578 (18) 136 (10)
N2′—H2n’⋯N3 0.88 (10) 2.04 (11) 2.740 (15) 135 (7)
N4—H4n⋯N1i 0.88 (3) 2.10 (3) 2.956 (8) 167 (5)
C6—H6⋯Cl1′ii 0.95 2.74 3.559 (10) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Thienopyridine derivatives have been synthesized by a variety of routes (Kaigorodova et al., 2000; Bernardino et al., 2006; Pinheiro et al., 2008; El-Kashef et al., 2010; Testa et al., 2010). A primary motivation for the preparation of these compounds is their biological activity, viz. anti-viral (Bernardino et al., 2004), anti-inflammatory (Moloney, 2001), anti-bacterial (Leal et al., 2008; Pinheiro et al., 2008; Panchamukhi et al., 2011) and anti-parasitic (Bernardino et al., 2006). Recently, the anti-leishmanial activity of a family of 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(arylamino)thieno[2,3-b]pyridine derivatives was reported (Pinheiro et al., 2012). We now wish to report the crystal structure determination of a related derivative, namely 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(4'-chlorophenylamino)-thieno[2,3-b]pyridine, (I).

In (I), Fig. 1, the nine non-hydrogen atoms of the thienopyridine ring are planar, having a r.m.s. deviation = 0.0333 Å and maximum deviations of 0.051 (5) Å [for the C7 atom] and -0.038 (5) Å [C6]. The imidazolyl ring is approximately planar [r.m.s. deviation = 0.0429 Å] and is co-planar with the fused ring system forming a dihedral angle of 4.4 (3)°. The imine-N3 atom of the imidazolyl ring is orientated towards the exocyclic amine so that an intramolecular hydrogen bond is formed, Table 1. There are two orientations for the disordered —N(H)—C6H4Cl residue of equal weight. The benzene rings of this residue are approximately co-planar (dihedral angle = 8.7 (5)°) and slightly displaced from each other. The dihedral angles between each orientation and the fused ring system are 59.1 (3) and 50.59 (15)°.

The most prominent feature of the crystal packing is the formation of N—H···N hydrogen bonds between the imidazolyl-amine and the pyridyl-N atom which lead to supramolecular helical chains along the b axis, Fig. 2 and Table 1. These assemble into layers in the ab plane allowing for inter-digitation of the chlorobenzene rings which in turn, allows for the formation of weak C—H···Cl interactions, Table 1. For the illustrated orientation of disordered benzene ring, Fig. 3, the H6···Cl1 separation is 2.95 Å.

Experimental

Following general procedures (Bernardino et al., 2006; Pinheiro et al., 2012), a solution of 4-(4'-chlorophenylamino)thieno[2,3-b]pyridine-5-carbonitrile (1.5 mmol) in ethylenediamine (5 ml) was cooled at 273 K, carbon disulfide (8 drops) was added and the reaction mixture heated at 373 for 24 h. The resulting mixture was cooled, treated with water and filtered to give a brown crystalline solid, which was collected and dried. The sample used in the structure determination was grown from CHCl3 solution. IR (KBr, cm-1): ν NH 3225, ν C═N 1591). 1H NMR (300 MHz, CDCl3, TMS, δ in p.p.m.) 7.09 (d, 6.0, 1H, H2); 6.50 (d, 6.0, 1H, H3); 8.51 (s, 1H, H6); 7.29 (d, 8.7, 2H, Ar—H); 7.09 (d, 8.7, 2H, Ar—H); 3.83 (s, 4H, CH2). 13C NMR (75 MHz, DMSO-d6, TMS, δ in p.p.m.) 164.4; 164.1; 146.9; 146.6; 140.0; 129.3; 128.8; 125.4; 123.6; 121.3; 119.4; 105.4. ESI-(+)-MS [M+H]+ - 329.051 (100).

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(carrier atom). The —N(H)—C6H4Cl residue was disordered over two position. From anisotropic refinement (equivalent pairs of atoms were tied, and C6 rings were idealized) the orientations were equal and so in the final refinement the site occupancies factors were fixed at 0.5. Several reflections, i.e. (1 0 0), (2 0 0), (0 0 2) and (-1 0 2), were affected by the beam-stop and were omitted from the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. Only one orientation of the disordered —N(H)—C6H4Cl residue is shown.

Fig. 2.

Fig. 2.

A view of the supramolecular helical chain propagated along [010] in (I) showing intra- and inter-molecular N—H···N (blue dashed lines) hydrogen bonds.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents for (I). The N—H···N and C—H···Cl interactions are shown as blue and orange dashed lines, respectively.

Crystal data

C16H13ClN4S F(000) = 680
Mr = 328.81 Dx = 1.484 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5430 reflections
a = 17.784 (3) Å θ = 1.0–26.4°
b = 6.2264 (4) Å µ = 0.40 mm1
c = 13.6226 (18) Å T = 120 K
β = 102.700 (4)° Plate, colourless
V = 1471.5 (3) Å3 0.25 × 0.15 × 0.03 mm
Z = 4

Data collection

Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer 2591 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 1106 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.138
Detector resolution: 9.091 pixels mm-1 θmax = 25.0°, θmin = 3.4°
φ & ω scans h = −21→21
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −7→7
Tmin = 0.639, Tmax = 1.000 l = −16→16
9375 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.088P)2 + 1.3236P] where P = (Fo2 + 2Fc2)/3
2591 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.22 e Å3
2 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.12641 (12) 0.5151 (2) 0.60112 (15) 0.0763 (7)
N1 0.0697 (3) 0.2115 (6) 0.7026 (4) 0.0512 (13)
N3 0.2209 (3) −0.3570 (7) 0.8955 (4) 0.0739 (18)
N4 0.0959 (3) −0.3191 (7) 0.8940 (4) 0.0549 (14)
H4N 0.0473 (11) −0.288 (8) 0.869 (4) 0.066*
C1 0.0829 (3) 0.0361 (8) 0.7610 (4) 0.0462 (14)
H1 0.0394 −0.0312 0.7777 0.055*
C2 0.1545 (3) −0.0563 (7) 0.7995 (4) 0.0464 (15)
C3 0.2210 (3) 0.0395 (8) 0.7765 (5) 0.0601 (18)
C4 0.2088 (4) 0.2238 (8) 0.7136 (5) 0.0592 (18)
C5 0.2606 (4) 0.3478 (10) 0.6675 (6) 0.081 (2)
H5 0.3144 0.3211 0.6777 0.097*
C6 0.2236 (5) 0.5055 (10) 0.6084 (6) 0.087 (2)
H6 0.2493 0.6035 0.5736 0.104*
C7 0.1334 (4) 0.2970 (8) 0.6822 (5) 0.0526 (16)
Cl1 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50
N2 0.2952 (7) −0.067 (3) 0.8204 (17) 0.074 (3) 0.50
H2N 0.292 (7) −0.200 (8) 0.842 (9) 0.089* 0.50
C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50
C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50
H9 0.3297 0.3483 0.8629 0.099* 0.50
C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50
H10 0.4554 0.4790 0.9172 0.111* 0.50
C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50
C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50
H12 0.5400 −0.0817 0.8356 0.113* 0.50
C13 0.4227 (4) −0.0721 (16) 0.8089 (10) 0.071 (4) 0.50
H13 0.4143 −0.2124 0.7813 0.085* 0.50
Cl1' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50
N2' 0.2871 (4) −0.045 (2) 0.8004 (14) 0.074 (3) 0.50
H2N' 0.2828 −0.1058 0.8574 0.089* 0.50
C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50
C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50
H9' 0.3412 0.3287 0.8805 0.099* 0.50
C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50
H10' 0.4670 0.4647 0.9181 0.111* 0.50
C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50
C12' 0.5071 (3) −0.0313 (16) 0.8709 (9) 0.095 (4) 0.50
H12' 0.5494 −0.1230 0.8685 0.113* 0.50
C13' 0.4325 (3) −0.1121 (14) 0.8486 (7) 0.071 (4) 0.50
H13' 0.4237 −0.2590 0.8309 0.085* 0.50
C14 0.1587 (2) −0.2514 (6) 0.8627 (3) 0.0494 (15)
C15 0.2003 (2) −0.5287 (6) 0.9594 (4) 0.079 (2)
H15A 0.2272 −0.5067 1.0304 0.094*
H15B 0.2153 −0.6706 0.9371 0.094*
C16 0.1138 (3) −0.5183 (6) 0.9492 (3) 0.0678 (19)
H16A 0.0875 −0.6421 0.9108 0.081*
H16B 0.1000 −0.5117 1.0157 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.1145 (17) 0.0388 (9) 0.0898 (14) 0.0007 (9) 0.0533 (12) 0.0066 (8)
N1 0.051 (3) 0.038 (3) 0.068 (4) 0.004 (2) 0.020 (3) 0.007 (2)
N3 0.048 (3) 0.035 (3) 0.121 (5) −0.001 (2) −0.019 (3) 0.006 (3)
N4 0.051 (3) 0.048 (3) 0.060 (4) 0.000 (3) 0.000 (3) 0.011 (2)
C1 0.037 (4) 0.043 (3) 0.059 (4) −0.007 (3) 0.012 (3) −0.004 (3)
C2 0.037 (4) 0.032 (3) 0.066 (4) −0.002 (2) 0.003 (3) −0.002 (3)
C3 0.035 (4) 0.033 (3) 0.113 (6) −0.002 (3) 0.018 (4) −0.016 (3)
C4 0.055 (4) 0.031 (3) 0.100 (5) −0.007 (3) 0.034 (4) −0.013 (3)
C5 0.082 (5) 0.050 (4) 0.129 (7) −0.024 (4) 0.061 (5) −0.024 (4)
C6 0.129 (7) 0.041 (4) 0.113 (6) −0.019 (4) 0.077 (5) −0.011 (4)
C7 0.060 (4) 0.032 (3) 0.071 (5) 0.002 (3) 0.027 (3) −0.005 (3)
Cl1 0.0423 (14) 0.087 (4) 0.094 (4) −0.012 (2) 0.019 (2) −0.012 (2)
N2 0.031 (4) 0.041 (4) 0.144 (8) 0.002 (3) 0.004 (4) −0.005 (4)
C8 0.022 (4) 0.043 (4) 0.126 (11) 0.008 (3) −0.004 (5) −0.012 (5)
C9 0.036 (4) 0.048 (4) 0.166 (9) −0.002 (3) 0.028 (5) −0.035 (5)
C10 0.038 (5) 0.083 (5) 0.162 (8) −0.011 (4) 0.029 (5) −0.061 (5)
C11 0.034 (5) 0.112 (6) 0.154 (8) −0.021 (5) 0.022 (5) −0.075 (6)
C12 0.022 (4) 0.102 (7) 0.147 (11) 0.013 (4) −0.009 (5) −0.057 (7)
C13 0.040 (5) 0.059 (5) 0.097 (12) 0.020 (4) −0.020 (6) −0.024 (7)
Cl1' 0.0423 (14) 0.087 (4) 0.094 (4) −0.012 (2) 0.019 (2) −0.012 (2)
N2' 0.031 (4) 0.041 (4) 0.144 (8) 0.002 (3) 0.004 (4) −0.005 (4)
C8' 0.022 (4) 0.043 (4) 0.126 (11) 0.008 (3) −0.004 (5) −0.012 (5)
C9' 0.036 (4) 0.048 (4) 0.166 (9) −0.002 (3) 0.028 (5) −0.035 (5)
C10' 0.038 (5) 0.083 (5) 0.162 (8) −0.011 (4) 0.029 (5) −0.061 (5)
C11' 0.034 (5) 0.112 (6) 0.154 (8) −0.021 (5) 0.022 (5) −0.075 (6)
C12' 0.022 (4) 0.102 (7) 0.147 (11) 0.013 (4) −0.009 (5) −0.057 (7)
C13' 0.040 (5) 0.059 (5) 0.097 (12) 0.020 (4) −0.020 (6) −0.024 (7)
C14 0.045 (4) 0.035 (3) 0.061 (4) −0.009 (3) −0.003 (3) −0.011 (3)
C15 0.091 (6) 0.042 (4) 0.082 (5) 0.002 (3) −0.026 (4) −0.001 (3)
C16 0.077 (5) 0.044 (3) 0.068 (5) −0.007 (3) −0.015 (4) 0.010 (3)

Geometric parameters (Å, º)

S1—C6 1.710 (8) C9—C10 1.3900
S1—C7 1.738 (6) C9—H9 0.9500
N1—C7 1.336 (7) C10—C11 1.3900
N1—C1 1.341 (6) C10—H10 0.9500
N3—C14 1.281 (6) C11—C12 1.3900
N3—C15 1.474 (6) C12—C13 1.3900
N4—C14 1.348 (6) C12—H12 0.9500
N4—C16 1.449 (6) C13—H13 0.9500
N4—H4N 0.877 (10) Cl1'—C11' 1.674 (10)
C1—C2 1.390 (7) N2'—C8' 1.556 (10)
C1—H1 0.9500 N2'—H2N' 0.88 (1)
C2—C3 1.421 (8) C8'—C9' 1.3900
C2—C14 1.481 (6) C8'—C13' 1.3900
C3—N2' 1.263 (12) C9'—C10' 1.3900
C3—C4 1.420 (8) C9'—H9' 0.9500
C3—N2 1.479 (16) C10'—C11' 1.3900
C4—C7 1.391 (8) C10'—H10' 0.9500
C4—C5 1.447 (8) C11'—C12' 1.3900
C5—C6 1.347 (10) C12'—C13' 1.3900
C5—H5 0.9500 C12'—H12' 0.9500
C6—H6 0.9500 C13'—H13' 0.9500
Cl1—C11 1.815 (9) C15—C16 1.5151
N2—C8 1.394 (17) C15—H15A 0.9900
N2—H2N 0.88 (1) C15—H15B 0.9900
C8—C9 1.3900 C16—H16A 0.9900
C8—C13 1.3900 C16—H16B 0.9900
C6—S1—C7 90.3 (3) C13—C12—C11 120.0
C7—N1—C1 113.7 (5) C13—C12—H12 120.0
C14—N3—C15 105.7 (4) C11—C12—H12 120.0
C14—N4—C16 109.2 (4) C12—C13—C8 120.0
C14—N4—H4N 128 (4) C12—C13—H13 120.0
C16—N4—H4N 119 (4) C8—C13—H13 120.0
N1—C1—C2 126.0 (5) C3—N2'—C8' 138.2 (13)
N1—C1—H1 117.0 C3—N2'—H2N 118 (6)
C2—C1—H1 117.0 C8'—N2'—H2N 92 (6)
C1—C2—C3 118.8 (5) C3—N2'—H2N' 98.6
C1—C2—C14 118.9 (5) C8'—N2'—H2N' 88.6
C3—C2—C14 122.3 (5) C9'—C8'—C13' 120.0
N2'—C3—C4 120.3 (8) C9'—C8'—N2' 117.5 (7)
N2'—C3—C2 122.7 (8) C13'—C8'—N2' 120.4 (8)
C4—C3—C2 116.6 (5) C8'—C9'—C10' 120.0
C4—C3—N2 127.6 (8) C8'—C9'—H9' 120.0
C2—C3—N2 115.8 (8) C10'—C9'—H9' 120.0
C7—C4—C3 117.4 (5) C11'—C10'—C9' 120.0
C7—C4—C5 110.8 (6) C11'—C10'—H10' 120.0
C3—C4—C5 131.6 (6) C9'—C10'—H10' 120.0
C6—C5—C4 111.9 (7) C10'—C11'—C12' 120.0
C6—C5—H5 124.0 C10'—C11'—Cl1' 122.2 (6)
C4—C5—H5 124.0 C12'—C11'—Cl1' 115.9 (6)
C5—C6—S1 114.6 (5) C13'—C12'—C11' 120.0
C5—C6—H6 122.7 C13'—C12'—H12' 120.0
S1—C6—H6 122.7 C11'—C12'—H12' 120.0
N1—C7—C4 127.6 (5) C12'—C13'—C8' 120.0
N1—C7—S1 119.9 (5) C12'—C13'—H13' 120.0
C4—C7—S1 112.4 (4) C8'—C13'—H13' 120.0
C8—N2—C3 114.5 (16) N3—C14—N4 116.2 (4)
C8—N2—H2N 129 (8) N3—C14—C2 123.6 (4)
C3—N2—H2N 116 (8) N4—C14—C2 120.1 (4)
C3—N2—H2N' 93.2 N3—C15—C16 107.1 (2)
C9—C8—C13 120.0 N3—C15—H15A 110.3
C9—C8—N2 123.2 (15) C16—C15—H15A 110.3
C13—C8—N2 111.9 (13) N3—C15—H15B 110.3
C10—C9—C8 120.0 C16—C15—H15B 110.3
C10—C9—H9 120.0 H15A—C15—H15B 108.6
C8—C9—H9 120.0 N4—C16—C15 100.8 (2)
C11—C10—C9 120.0 N4—C16—H16A 111.6
C11—C10—H10 120.0 C15—C16—H16A 111.6
C9—C10—H10 120.0 N4—C16—H16B 111.6
C10—C11—C12 120.0 C15—C16—H16B 111.6
C10—C11—Cl1 117.2 (4) H16A—C16—H16B 109.4
C12—C11—Cl1 122.2 (4)
C7—N1—C1—C2 0.1 (8) C8—C9—C10—C11 0.0
N1—C1—C2—C3 0.1 (8) C9—C10—C11—C12 0.0
N1—C1—C2—C14 −179.7 (5) C9—C10—C11—Cl1 171.4 (3)
C1—C2—C3—N2' −173.2 (10) C10—C11—C12—C13 0.0
C14—C2—C3—N2' 6.6 (13) Cl1—C11—C12—C13 −170.9 (3)
C1—C2—C3—C4 −0.9 (8) C11—C12—C13—C8 0.0
C14—C2—C3—C4 178.9 (5) C9—C8—C13—C12 0.0
C1—C2—C3—N2 179.7 (10) N2—C8—C13—C12 −156.1 (17)
C14—C2—C3—N2 −0.5 (11) C4—C3—N2'—C8' 57 (3)
N2'—C3—C4—C7 174.0 (10) C2—C3—N2'—C8' −131.2 (19)
C2—C3—C4—C7 1.5 (8) N2—C3—N2'—C8' −87 (7)
N2—C3—C4—C7 −179.2 (11) C3—N2'—C8'—C9' −4 (3)
N2'—C3—C4—C5 −0.7 (13) C3—N2'—C8'—C13' −168.0 (18)
C2—C3—C4—C5 −173.2 (6) C13'—C8'—C9'—C10' 0.0
N2—C3—C4—C5 6.1 (15) N2'—C8'—C9'—C10' −163.7 (10)
C7—C4—C5—C6 1.7 (8) C8'—C9'—C10'—C11' 0.0
C3—C4—C5—C6 176.6 (6) C9'—C10'—C11'—C12' 0.0
C4—C5—C6—S1 −1.2 (8) C9'—C10'—C11'—Cl1' −163.6 (6)
C7—S1—C6—C5 0.4 (5) C10'—C11'—C12'—C13' 0.0
C1—N1—C7—C4 0.6 (8) Cl1'—C11'—C12'—C13' 164.6 (6)
C1—N1—C7—S1 176.0 (4) C11'—C12'—C13'—C8' 0.0
C3—C4—C7—N1 −1.5 (9) C9'—C8'—C13'—C12' 0.0
C5—C4—C7—N1 174.3 (6) N2'—C8'—C13'—C12' 163.2 (9)
C3—C4—C7—S1 −177.2 (4) C15—N3—C14—N4 0.7 (6)
C5—C4—C7—S1 −1.4 (6) C15—N3—C14—C2 176.6 (5)
C6—S1—C7—N1 −175.4 (5) C16—N4—C14—N3 −7.2 (7)
C6—S1—C7—C4 0.6 (5) C16—N4—C14—C2 176.7 (4)
N2'—C3—N2—C8 55 (5) C1—C2—C14—N3 174.8 (5)
C4—C3—N2—C8 15 (3) C3—C2—C14—N3 −5.0 (8)
C2—C3—N2—C8 −165.7 (17) C1—C2—C14—N4 −9.4 (8)
C3—N2—C8—C9 55 (2) C3—C2—C14—N4 170.8 (5)
C3—N2—C8—C13 −149.3 (11) C14—N3—C15—C16 5.8 (4)
C13—C8—C9—C10 0.0 C14—N4—C16—C15 9.7 (5)
N2—C8—C9—C10 153.3 (17) N3—C15—C16—N4 −9.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2n···N3 0.88 (10) 1.87 (11) 2.578 (18) 136 (10)
N2′—H2n'···N3 0.88 (10) 2.04 (11) 2.740 (15) 135 (7)
N4—H4n···N1i 0.88 (3) 2.10 (3) 2.956 (8) 167 (5)
C6—H6···Cl1′ii 0.95 2.74 3.559 (10) 146

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5563).

References

  1. Bernardino, A. M. R., Pinheiro, L. C. S., Azevedo, A. R., Frugulhetti, I. C. P. P., Carneiro, J. L. M., Souza, T. M. L. & Ferreira, V. F. (2004). Heterocycl. Commun. 10, 407–410.
  2. Bernardino, A. M. R., Pinheiro, L. C. S., Rodrigues, C. R., Loureiro, N. I., Castro, H. C., Lanfredi-Rangel, A., Sabatini-Lopes, J., Borges, J. C., Carvalho, J. M., Romeiro, G. A., Ferreira, V. F., Frugulhetti, I. C. P. P. & Vannier-Santos, M. A. (2006). Bioorg. Med. Chem. 14, 5765–5770. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. El-Kashef, H., Farghaly, A., Al-Hazmi, A., Terme, T. & Vanelle, P. (2010). Molecules, 15, 2651–2666. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Kaigorodova, Y. A., Vasilin, V. K., Konyushkin, L. D., Usova, Y. B. & Krapivin, G. D. (2000). Molecules, 5, 1085–1093.
  8. Leal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro, L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira, F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos, D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196–8204.
  9. Moloney, G. P. (2001). Molecules, 6, M203.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Panchamukhi, S. I., Mulla, J. A., Shetty, N. S., Khazi, M. I., Khan, A. Y., Kalashetti, M. B. & Khazi, I. A. (2011). Arch. Pharm. 344, 358–65. [DOI] [PubMed]
  12. Pinheiro, L. C. S., Abreu, P. A., Afonso, I. F., Leal, B., Corrêa, L. C. D., Borges, J. C., Marques, I. P., Lourenço, A. L., Sathler, P. C., Medeiros, C. A., Cabral, L. M., Júnior, M. L. O., Romeiro, G. A., Ferreira, V. F., Rodrigues, C. R., Castro, H. C. & Bernardino, A. M. R. (2008). Curr. Microbiol. 57, 463–468. [DOI] [PubMed]
  13. Pinheiro, L. C. S., Borges, J. C., dos Santos, M. S., Ferreira, V. F., Bernardino, A. M. R., Tonioni, R., Sathler, P. C., Helena, C., Castro, H. C., Santos, D. O., Nascimento, S. B., Bourguignon, S. C., Magalhães, U. O., Cabral, L. & Rodrigues, C. R. (2012). J. Microbiol. Antimicrob 4, 32–39.
  14. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Testa, L., Biondi-Zoccai, G. G., Valgimigli, M., Latini, R. A., Pizzocri, S., Lanotte, S., Laudisa, M. L., Brambilla, N., Ward, M. R., Figtree, G. A., Bedogni, F. & Bhindi, R. (2010). Adv. Hematol Article ID 595934. [DOI] [PMC free article] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202658X/xu5563sup1.cif

e-68-o2135-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202658X/xu5563Isup2.hkl

e-68-o2135-Isup2.hkl (124.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202658X/xu5563Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES