Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):o2138. doi: 10.1107/S1600536812026906

2-Hydrazinyl­quinoline

Muhd Hidayat bin Najib a, Ai Ling Tan a, David J Young a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3393948  PMID: 22798813

Abstract

In the title compound, C9H9N3, the 12 non-H atoms are essentially planar (r.m.s. deviation = 0.068 Å). The maximum deviation from planarity is reflected in the torsion angle between the β-N atom of the hydrazinyl residue and the quinolinyl N atom [N—N—C—N = −12.7 (3)°]; these atoms are syn. In the crystal, supra­molecular layers in the bc plane are formed via N—H⋯N hydrogen bonds.

Related literature  

For applications of coordination complexes of hydrazones as organic light emitting diodes and supra­molecular magnetic clusters, see: Zhang et al. (2011); Petukhov et al. (2009). For background to the synthesis of hydrazones, see: Gupta et al. (2007); Anwar et al. (2011). For a related structure, see: Najib et al. (2012).graphic file with name e-68-o2138-scheme1.jpg

Experimental  

Crystal data  

  • C9H9N3

  • M r = 159.19

  • Monoclinic, Inline graphic

  • a = 13.7966 (9) Å

  • b = 3.9648 (3) Å

  • c = 14.0700 (8) Å

  • β = 97.039 (5)°

  • V = 763.84 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.30 × 0.08 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.476, T max = 1.000

  • 2474 measured reflections

  • 1542 independent reflections

  • 1169 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.158

  • S = 1.10

  • 1542 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026906/su2456sup1.cif

e-68-o2138-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026906/su2456Isup2.hkl

e-68-o2138-Isup2.hkl (76KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026906/su2456Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1n⋯N3i 0.93 (3) 2.18 (3) 3.077 (2) 164 (2)
N3—H2n⋯N1ii 0.89 (2) 2.31 (2) 3.200 (2) 175.1 (19)
N3—H3n⋯N2iii 0.90 (2) 2.58 (2) 3.295 (2) 136.4 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

Hydrazones are versatile nitrogen donor ligands which have been used extensively for making coordination complexes for a variety of applications from organic light emitting diode (OLED) materials (Zhang et al., 2011) to supramolecular magnetic clusters (Petukhov et al., 2009). These ligands are made by condensation of a carbonyl compound with an organic hydrazine or hydrazide (Anwar et al., 2011). We have previously reported the solid-state structure of the zinc(II) complex of 3,5-dimethyl-1- (2'-quinolyl)pyrazole (Najib et al., 2012). The ligand in that complex was made by the condensation of acetylacetone with the title compound (Gupta et al., 2007). Herein, the crystal and molecular structure of the title compound is described.

In the title compound, Fig. 1, the 12 non-hydrogen atoms are planar with a r.m.s. deviation = 0.068 Å and maximum deviations of 0.068 (2) and -0.152 (2) Å for the N1 and N3 atoms, respectively. The amine-N3 group is syn with the quinolinyl-N1 atom with the N3—N2—C1—N1 torsion angle being -12.7 (3)°.

In the crystal, molecules assemble into supramolecular layers in the bc plane via N—H···N hydrogen bonds, Fig. 2 and Table 1. The secondary amine-H hydrogen bonds to the primary amine-N2 atom. One of the primary amine-H atoms forms a hydrogen bond with the quinolinyl-N atom and the other forms a weak interaction with the secondary amine-N2 atom. The layers stack along the a axis with no specific interactions between them, Fig. 3.

Experimental

The title compound was prepared by modification of a literature procedure (Gupta et al., 2007). 2-Chloroquinoline (10.06 g) and hydrazine monohydrate (64–65% N2H4) in water (10 ml) were refluxed for 2 h. The water was removed using a rotary evaporator to provide a scarlet residue which was triturated with water and filtered. This scarlet solid was recrystallized from CH2Cl2 and hexane to provide 6.48 g (66.6%) of the title compound [M.p. = 417 K]. Spectroscopic data for the title compound are given in the archived CIF.

Refinement

C-bound H-atoms were placed in calculated positions [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular layer in the bc plane in the crystal of the title compound. The N—H···N hydrogen bonds are shown as blue dashed lines (see Table 1 for details).

Fig. 3.

Fig. 3.

A view of the unit-cell contents of the title compound in projection down the b axis. The N—H···N hydrogen bonds are shown as blue dashed lines (see Table 1 for details).

Crystal data

C9H9N3 F(000) = 336
Mr = 159.19 Dx = 1.384 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 799 reflections
a = 13.7966 (9) Å θ = 3.2–75.8°
b = 3.9648 (3) Å µ = 0.70 mm1
c = 14.0700 (8) Å T = 100 K
β = 97.039 (5)° Plate, red
V = 763.84 (9) Å3 0.30 × 0.08 × 0.03 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1542 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 1169 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.018
Detector resolution: 10.4041 pixels mm-1 θmax = 76.0°, θmin = 3.2°
ω scan h = −16→17
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −3→4
Tmin = 0.476, Tmax = 1.000 l = −17→17
2474 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
1542 reflections (Δ/σ)max < 0.001
121 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. Spectroscopic data for the title compound: IR \v/cm-1: 3282, 3188, 3042, 2954, 2926, 2854, 1621, 1529, 1462, 1404, 1377, 1307, 1146, 1116, 955, 816, 746. 1H NMR 400MHz (CDCl3) δ: 7.82 (1H, d), 7.71 (1H, d), 7.60 (1H, d), 7.54 (1H, dd), 7.23 (1H, dd), 6.75 (1 H, d), 4.0 (3H, br s). 13C NMR 100MHz (CDCl3) δ: 158.8, 147.3, 137.4, 129.7, 127.5, 126.3, 124.2, 122.8, 110.6.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.35068 (10) 0.3907 (4) 0.51371 (10) 0.0241 (4)
N2 0.44545 (11) 0.4959 (4) 0.65825 (10) 0.0315 (4)
N3 0.52127 (11) 0.2769 (4) 0.63649 (11) 0.0305 (4)
C1 0.35855 (13) 0.5229 (5) 0.60074 (12) 0.0261 (4)
C2 0.28104 (14) 0.6982 (5) 0.63892 (12) 0.0285 (4)
H2 0.2907 0.7905 0.7017 0.034*
C3 0.19420 (13) 0.7297 (4) 0.58430 (13) 0.0277 (4)
H3 0.1422 0.8465 0.6084 0.033*
C4 0.18015 (13) 0.5882 (5) 0.49047 (12) 0.0250 (4)
C5 0.09162 (13) 0.6087 (5) 0.42974 (13) 0.0281 (4)
H5 0.0375 0.7219 0.4510 0.034*
C6 0.08226 (13) 0.4670 (5) 0.33990 (13) 0.0287 (4)
H6 0.0220 0.4808 0.2995 0.034*
C7 0.16246 (13) 0.3017 (5) 0.30833 (12) 0.0271 (4)
H7 0.1558 0.2029 0.2464 0.033*
C8 0.25074 (13) 0.2802 (4) 0.36567 (12) 0.0244 (4)
H8 0.3044 0.1700 0.3428 0.029*
C9 0.26140 (12) 0.4220 (4) 0.45841 (11) 0.0225 (4)
H1n 0.4430 (19) 0.564 (7) 0.721 (2) 0.058 (7)*
H2n 0.5538 (16) 0.370 (6) 0.5919 (16) 0.038 (6)*
H3n 0.4950 (14) 0.090 (6) 0.6069 (14) 0.025 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0259 (7) 0.0276 (8) 0.0193 (7) −0.0045 (6) 0.0042 (5) 0.0015 (5)
N2 0.0317 (8) 0.0407 (10) 0.0218 (7) −0.0017 (7) 0.0016 (6) −0.0034 (7)
N3 0.0277 (8) 0.0396 (10) 0.0238 (8) −0.0043 (7) 0.0017 (6) 0.0025 (6)
C1 0.0283 (8) 0.0283 (10) 0.0222 (8) −0.0074 (7) 0.0051 (6) 0.0016 (6)
C2 0.0377 (10) 0.0283 (9) 0.0208 (8) −0.0052 (8) 0.0095 (7) −0.0026 (7)
C3 0.0339 (9) 0.0252 (9) 0.0258 (9) −0.0012 (7) 0.0111 (7) 0.0003 (7)
C4 0.0298 (9) 0.0228 (9) 0.0234 (8) −0.0028 (7) 0.0069 (6) 0.0030 (6)
C5 0.0273 (9) 0.0266 (10) 0.0310 (9) 0.0005 (7) 0.0067 (7) 0.0039 (7)
C6 0.0253 (8) 0.0288 (10) 0.0312 (9) −0.0017 (7) −0.0005 (6) 0.0040 (7)
C7 0.0312 (9) 0.0286 (10) 0.0214 (8) −0.0035 (7) 0.0026 (7) 0.0002 (6)
C8 0.0270 (8) 0.0266 (9) 0.0202 (8) −0.0021 (7) 0.0046 (6) 0.0008 (6)
C9 0.0236 (8) 0.0232 (9) 0.0212 (8) −0.0033 (7) 0.0051 (6) 0.0031 (6)

Geometric parameters (Å, º)

N1—C1 1.324 (2) C3—H3 0.9500
N1—C9 1.380 (2) C4—C5 1.405 (2)
N2—C1 1.366 (2) C4—C9 1.421 (2)
N2—N3 1.421 (2) C5—C6 1.375 (3)
N2—H1n 0.93 (3) C5—H5 0.9500
N3—H2n 0.89 (2) C6—C7 1.404 (2)
N3—H3n 0.90 (2) C6—H6 0.9500
C1—C2 1.434 (2) C7—C8 1.379 (2)
C2—C3 1.348 (3) C7—H7 0.9500
C2—H2 0.9500 C8—C9 1.412 (2)
C3—C4 1.426 (2) C8—H8 0.9500
C1—N1—C9 116.89 (15) C5—C4—C3 123.37 (16)
C1—N2—N3 122.42 (15) C9—C4—C3 116.97 (16)
C1—N2—H1n 114.1 (16) C6—C5—C4 120.82 (16)
N3—N2—H1n 119.8 (17) C6—C5—H5 119.6
N2—N3—H2n 110.1 (15) C4—C5—H5 119.6
N2—N3—H3n 109.6 (13) C5—C6—C7 119.52 (16)
H2n—N3—H3n 102.9 (19) C5—C6—H6 120.2
N1—C1—N2 118.89 (16) C7—C6—H6 120.2
N1—C1—C2 123.91 (16) C8—C7—C6 121.16 (16)
N2—C1—C2 117.19 (15) C8—C7—H7 119.4
C3—C2—C1 118.89 (15) C6—C7—H7 119.4
C3—C2—H2 120.6 C7—C8—C9 120.05 (16)
C1—C2—H2 120.6 C7—C8—H8 120.0
C2—C3—C4 120.13 (16) C9—C8—H8 120.0
C2—C3—H3 119.9 N1—C9—C8 118.03 (15)
C4—C3—H3 119.9 N1—C9—C4 123.20 (15)
C5—C4—C9 119.66 (15) C8—C9—C4 118.77 (15)
C9—N1—C1—N2 179.57 (15) C4—C5—C6—C7 −0.4 (3)
C9—N1—C1—C2 −1.1 (3) C5—C6—C7—C8 −0.3 (3)
N3—N2—C1—N1 −12.7 (3) C6—C7—C8—C9 0.8 (3)
N3—N2—C1—C2 167.89 (16) C1—N1—C9—C8 −179.37 (16)
N1—C1—C2—C3 0.7 (3) C1—N1—C9—C4 0.4 (2)
N2—C1—C2—C3 −179.94 (16) C7—C8—C9—N1 179.17 (16)
C1—C2—C3—C4 0.4 (3) C7—C8—C9—C4 −0.6 (3)
C2—C3—C4—C5 179.51 (18) C5—C4—C9—N1 −179.88 (16)
C2—C3—C4—C9 −1.0 (2) C3—C4—C9—N1 0.6 (3)
C9—C4—C5—C6 0.6 (3) C5—C4—C9—C8 −0.1 (3)
C3—C4—C5—C6 −179.92 (17) C3—C4—C9—C8 −179.61 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1n···N3i 0.93 (3) 2.18 (3) 3.077 (2) 164 (2)
N3—H2n···N1ii 0.89 (2) 2.31 (2) 3.200 (2) 175.1 (19)
N3—H3n···N2iii 0.90 (2) 2.58 (2) 3.295 (2) 136.4 (16)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2456).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Anwar, M. U., Elliott, A. S., Thompson, L. K. & Dawe, L. N. (2011). Dalton Trans. 40, 4623–4635. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gupta, L. K., Bansal, U. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972–975. [DOI] [PubMed]
  6. Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m571–m572. [DOI] [PMC free article] [PubMed]
  7. Petukhov, K., Alam, M. S., Rupp, H., Strömsdörfer, S., Müller, P., Scheurer, A., Saalfrank, R. W., Kortus, J., Postnikov, A., Ruben, M., Thompson, L. K. & Lehn, J.-M. (2009). Coord. Chem. Rev. 253, 2387–2398.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Zhang, W. H., Hu, J. J., Chi, Y., Young, D. J. & Hor, T. S. A. (2011). Organometallics, 30, 2137–2143.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026906/su2456sup1.cif

e-68-o2138-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026906/su2456Isup2.hkl

e-68-o2138-Isup2.hkl (76KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026906/su2456Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES