Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):o2157. doi: 10.1107/S1600536812027031

5-(4-Methyl­phen­yl)-3-phenyl­cyclo­hex-2-en-1-one

Shaaban K Mohamed a, Mehmet Akkurt b,*, Antar A Abdelhamid a, Kuldip Singh c, Omyma A A Abd Allah d
PMCID: PMC3393964  PMID: 22798829

Abstract

In the title compound, C19H18O, the cyclo­hexene ring has an envelope conformation with the methine C atom on the flap. The phenyl and methyl­phenyl rings form a dihedral angle of 85.93 (11)°. The crystal packing is consolidated by van der Waals forces and weak C—H⋯π inter­actions.

Related literature  

For the biological activity of α,β-unsaturated carbonyl compounds, see: Podraze (1991); Suksamrarn et al. (2003); Modzelewska et al. (2006); Shettigar et al. (2006); Ferrer et al. (2009); Asiri (2003); Forestier et al. (1989); Kumar et al. (2003). For the synthesis of cyclo­hexenones, see: Diao & Stahl (2011); González et al. (2009); Zhang et al. (2008). For geometric analysis, see: Cremer & Pople (1975).graphic file with name e-68-o2157-scheme1.jpg

Experimental  

Crystal data  

  • C19H18O

  • M r = 262.33

  • Monoclinic, Inline graphic

  • a = 17.085 (4) Å

  • b = 5.6807 (11) Å

  • c = 15.689 (3) Å

  • β = 113.152 (4)°

  • V = 1400.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.42 × 0.24 × 0.12 mm

Data collection  

  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.979, T max = 0.991

  • 9636 measured reflections

  • 2473 independent reflections

  • 1497 reflections with I > 2σ(I)

  • R int = 0.106

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.114

  • S = 0.90

  • 2473 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027031/xu5565sup1.cif

e-68-o2157-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027031/xu5565Isup2.hkl

e-68-o2157-Isup2.hkl (121.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027031/xu5565Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg i 0.95 2.77 3.601 (3) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Ministry of Egypt for financial support and also thank Manchester Metropolitan University, Erciyes University and the University of Leicester for supporting this study.

supplementary crystallographic information

Comment

α,β-Unsaturated carbonyl compounds have shown various biological activities such as antioxidant (Suksamrarn et al., 2003), antitumor (Kumar et al., 2003), anticancer (Modzelewska et al., 2006) and antimalarial (Ferrer et al., 2009). In addition, chalcones also were widely used in cosmetic compositions (Forestier et al., 1989; Podraze, 1991) and applications of dyes (Asiri, 2003). Apart from being biologically important compounds, chalcone derivatives show non-linear optical (NLO) properties with excellent blue light transmittance and good crystallizability (Shettigar et al., 2006). In this context, herein we report the synthesis and crystal structure of the title compound (I).

As seen in Fig. 1, the title compound is not planar. The C1–C6 cyclohexene ring in (I) has a nearly envelope conformation [puckering parameters (Cremer & Pople, 1975) QT = 0.511 (3) Å, θ = 53.4 (3) ° and φ = 247.6 (4) °]. The C7–C12 phenyl ring makes a dihedral angle of 85.93 (11)° with the methyl-substituted C13 C18 benzene ring.

The crystal packing of (I) is stabilized by van der Waals forces and weak C—H···π interactions (Table 1, Fig. 2).

Experimental

To a solution of 222 mg (1 mmol) (2E)-3-(4-methylphenyl)-1-phenylprop-2-en-1-one in 40 ml e thanol, 100 mg of acetyl acetone was added in presence of 60 mg MeONa. The reaction mixture was refluxed for 7 h then cooled to room temperature (Diao & Stahl, 2011; González et al., 2009; Zhang et al., 2008). The excess solvent was removed under vacuum to afford the solid product which was filltered off and recrystallized from ethanol. The obtained crystals were in good quality (m.p. 343 K) for X-ray diffraction without further crystallization.

Refinement

All H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined by using a riding model, and with Uiso(H) = 1.2 (1.5 for methyl groups)Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the molecular packing of the title compound along the b axis.

Crystal data

C19H18O F(000) = 560
Mr = 262.33 Dx = 1.245 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 879 reflections
a = 17.085 (4) Å θ = 2.6–28.4°
b = 5.6807 (11) Å µ = 0.08 mm1
c = 15.689 (3) Å T = 150 K
β = 113.152 (4)° Plate, colourless
V = 1400.1 (5) Å3 0.42 × 0.24 × 0.12 mm
Z = 4

Data collection

Bruker APEX 2000 CCD area-detector diffractometer 2473 independent reflections
Radiation source: fine-focus sealed tube 1497 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.106
phi and ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −20→20
Tmin = 0.979, Tmax = 0.991 k = −6→6
9636 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3
2473 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.26608 (10) 0.8925 (3) 1.12374 (11) 0.0414 (6)
C1 0.23739 (15) 0.7390 (4) 1.06451 (16) 0.0310 (8)
C2 0.14596 (15) 0.7212 (4) 1.00905 (15) 0.0297 (8)
C3 0.11153 (14) 0.5617 (4) 0.94080 (15) 0.0240 (8)
C4 0.16904 (13) 0.3960 (4) 0.91730 (15) 0.0279 (8)
C5 0.25840 (14) 0.4974 (4) 0.94353 (15) 0.0278 (8)
C6 0.29405 (14) 0.5614 (4) 1.04625 (15) 0.0329 (8)
C7 0.01837 (14) 0.5429 (4) 0.88700 (15) 0.0253 (8)
C8 −0.01655 (14) 0.3458 (4) 0.83212 (15) 0.0303 (8)
C9 −0.10293 (15) 0.3268 (4) 0.78170 (16) 0.0337 (9)
C10 −0.15772 (14) 0.5021 (4) 0.78364 (16) 0.0312 (8)
C11 −0.12489 (15) 0.6993 (4) 0.83717 (16) 0.0315 (9)
C12 −0.03831 (14) 0.7195 (4) 0.88790 (15) 0.0299 (8)
C13 0.31421 (13) 0.3378 (4) 0.91407 (15) 0.0258 (8)
C14 0.34825 (14) 0.1297 (4) 0.96021 (16) 0.0297 (8)
C15 0.39595 (14) −0.0172 (4) 0.92875 (16) 0.0326 (8)
C16 0.41086 (14) 0.0364 (4) 0.85029 (16) 0.0298 (8)
C17 0.37680 (14) 0.2433 (4) 0.80440 (17) 0.0315 (8)
C18 0.32954 (14) 0.3917 (4) 0.83590 (16) 0.0299 (8)
C19 0.46239 (15) −0.1244 (5) 0.81565 (18) 0.0438 (10)
H2 0.10900 0.82740 1.02180 0.0360*
H4A 0.14380 0.36270 0.84990 0.0330*
H4B 0.17310 0.24530 0.95050 0.0330*
H5 0.25190 0.64790 0.90840 0.0330*
H6A 0.29790 0.41820 1.08370 0.0390*
H6B 0.35200 0.62730 1.06470 0.0390*
H8 0.01990 0.22230 0.82950 0.0360*
H9 −0.12500 0.19050 0.74500 0.0400*
H10 −0.21720 0.48770 0.74870 0.0370*
H11 −0.16200 0.82180 0.83910 0.0380*
H12 −0.01680 0.85660 0.92430 0.0360*
H14 0.33870 0.08750 1.01390 0.0360*
H15 0.41900 −0.15800 0.96180 0.0390*
H17 0.38590 0.28460 0.75030 0.0380*
H18 0.30720 0.53340 0.80320 0.0360*
H19A 0.42480 −0.19810 0.75740 0.0660*
H19B 0.48940 −0.24660 0.86200 0.0660*
H19C 0.50630 −0.03270 0.80500 0.0660*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0401 (11) 0.0482 (12) 0.0358 (10) −0.0067 (9) 0.0149 (9) −0.0171 (9)
C1 0.0361 (15) 0.0347 (15) 0.0259 (14) −0.0045 (12) 0.0162 (12) −0.0028 (12)
C2 0.0302 (14) 0.0327 (15) 0.0303 (14) 0.0009 (11) 0.0162 (12) −0.0025 (12)
C3 0.0284 (14) 0.0235 (14) 0.0236 (12) 0.0014 (11) 0.0139 (11) 0.0030 (11)
C4 0.0288 (14) 0.0281 (14) 0.0275 (13) 0.0007 (11) 0.0119 (11) −0.0002 (11)
C5 0.0288 (13) 0.0285 (14) 0.0260 (14) 0.0006 (11) 0.0107 (11) −0.0017 (11)
C6 0.0318 (14) 0.0377 (16) 0.0287 (14) 0.0005 (12) 0.0113 (12) −0.0038 (12)
C7 0.0275 (13) 0.0268 (14) 0.0242 (13) 0.0022 (11) 0.0129 (11) 0.0037 (11)
C8 0.0296 (14) 0.0297 (15) 0.0310 (14) 0.0024 (11) 0.0114 (11) −0.0023 (12)
C9 0.0326 (15) 0.0304 (15) 0.0365 (15) −0.0035 (12) 0.0119 (12) −0.0050 (12)
C10 0.0238 (13) 0.0362 (16) 0.0303 (14) 0.0009 (11) 0.0071 (11) 0.0056 (12)
C11 0.0319 (15) 0.0313 (15) 0.0336 (15) 0.0065 (12) 0.0153 (12) 0.0033 (12)
C12 0.0324 (15) 0.0275 (14) 0.0305 (14) −0.0014 (11) 0.0132 (12) −0.0029 (11)
C13 0.0214 (13) 0.0275 (14) 0.0266 (13) −0.0026 (11) 0.0073 (11) −0.0027 (11)
C14 0.0293 (14) 0.0347 (15) 0.0274 (13) −0.0023 (12) 0.0135 (11) 0.0008 (12)
C15 0.0276 (14) 0.0294 (15) 0.0384 (15) 0.0008 (11) 0.0105 (12) 0.0015 (12)
C16 0.0230 (13) 0.0312 (15) 0.0351 (14) −0.0040 (11) 0.0113 (11) −0.0062 (12)
C17 0.0282 (14) 0.0359 (15) 0.0338 (15) −0.0041 (12) 0.0159 (12) −0.0028 (12)
C18 0.0314 (14) 0.0285 (15) 0.0283 (13) −0.0031 (11) 0.0103 (11) −0.0012 (11)
C19 0.0377 (16) 0.0459 (17) 0.0542 (17) 0.0025 (13) 0.0250 (14) −0.0032 (14)

Geometric parameters (Å, º)

O1—C1 1.227 (3) C16—C19 1.510 (4)
C1—C2 1.462 (4) C17—C18 1.386 (3)
C1—C6 1.502 (4) C2—H2 0.9500
C2—C3 1.348 (3) C4—H4A 0.9900
C3—C4 1.507 (3) C4—H4B 0.9900
C3—C7 1.484 (3) C5—H5 1.0000
C4—C5 1.529 (3) C6—H6A 0.9900
C5—C6 1.526 (3) C6—H6B 0.9900
C5—C13 1.514 (3) C8—H8 0.9500
C7—C8 1.395 (3) C9—H9 0.9500
C7—C12 1.398 (3) C10—H10 0.9500
C8—C9 1.378 (4) C11—H11 0.9500
C9—C10 1.375 (4) C12—H12 0.9500
C10—C11 1.380 (3) C14—H14 0.9500
C11—C12 1.382 (4) C15—H15 0.9500
C13—C14 1.389 (3) C17—H17 0.9500
C13—C18 1.385 (3) C18—H18 0.9500
C14—C15 1.386 (3) C19—H19A 0.9800
C15—C16 1.385 (3) C19—H19B 0.9800
C16—C17 1.382 (3) C19—H19C 0.9800
O1—C1—C2 121.0 (2) C5—C4—H4B 109.00
O1—C1—C6 121.8 (2) H4A—C4—H4B 108.00
C2—C1—C6 117.3 (2) C4—C5—H5 107.00
C1—C2—C3 123.3 (2) C6—C5—H5 107.00
C2—C3—C4 119.4 (2) C13—C5—H5 107.00
C2—C3—C7 122.4 (2) C1—C6—H6A 110.00
C4—C3—C7 118.20 (19) C1—C6—H6B 110.00
C3—C4—C5 112.14 (19) C5—C6—H6A 110.00
C4—C5—C6 108.40 (19) C5—C6—H6B 110.00
C4—C5—C13 111.98 (19) H6A—C6—H6B 108.00
C6—C5—C13 115.3 (2) C7—C8—H8 119.00
C1—C6—C5 110.00 (19) C9—C8—H8 119.00
C3—C7—C8 120.8 (2) C8—C9—H9 119.00
C3—C7—C12 122.3 (2) C10—C9—H9 119.00
C8—C7—C12 116.9 (2) C9—C10—H10 121.00
C7—C8—C9 121.3 (2) C11—C10—H10 121.00
C8—C9—C10 121.0 (2) C10—C11—H11 120.00
C9—C10—C11 118.9 (2) C12—C11—H11 120.00
C10—C11—C12 120.3 (2) C7—C12—H12 119.00
C7—C12—C11 121.6 (2) C11—C12—H12 119.00
C5—C13—C14 122.4 (2) C13—C14—H14 120.00
C5—C13—C18 119.9 (2) C15—C14—H14 120.00
C14—C13—C18 117.6 (2) C14—C15—H15 119.00
C13—C14—C15 120.8 (2) C16—C15—H15 119.00
C14—C15—C16 121.6 (2) C16—C17—H17 119.00
C15—C16—C17 117.6 (2) C18—C17—H17 119.00
C15—C16—C19 121.6 (2) C13—C18—H18 119.00
C17—C16—C19 120.8 (2) C17—C18—H18 119.00
C16—C17—C18 121.1 (2) C16—C19—H19A 109.00
C13—C18—C17 121.4 (2) C16—C19—H19B 109.00
C1—C2—H2 118.00 C16—C19—H19C 109.00
C3—C2—H2 118.00 H19A—C19—H19B 110.00
C3—C4—H4A 109.00 H19A—C19—H19C 109.00
C3—C4—H4B 109.00 H19B—C19—H19C 110.00
C5—C4—H4A 109.00
O1—C1—C2—C3 177.4 (2) C6—C5—C13—C18 −132.9 (2)
C6—C1—C2—C3 −3.0 (3) C3—C7—C8—C9 −179.8 (2)
O1—C1—C6—C5 −146.2 (2) C12—C7—C8—C9 −0.3 (3)
C2—C1—C6—C5 34.2 (3) C3—C7—C12—C11 179.8 (2)
C1—C2—C3—C4 −1.8 (3) C8—C7—C12—C11 0.3 (3)
C1—C2—C3—C7 178.4 (2) C7—C8—C9—C10 0.1 (4)
C2—C3—C4—C5 −25.3 (3) C8—C9—C10—C11 0.0 (4)
C7—C3—C4—C5 154.5 (2) C9—C10—C11—C12 0.0 (4)
C2—C3—C7—C8 −165.5 (2) C10—C11—C12—C7 −0.2 (4)
C2—C3—C7—C12 15.0 (4) C5—C13—C14—C15 177.1 (2)
C4—C3—C7—C8 14.8 (3) C18—C13—C14—C15 0.2 (4)
C4—C3—C7—C12 −164.7 (2) C5—C13—C18—C17 −176.7 (2)
C3—C4—C5—C6 55.5 (2) C14—C13—C18—C17 0.3 (4)
C3—C4—C5—C13 −176.21 (18) C13—C14—C15—C16 −0.5 (4)
C4—C5—C6—C1 −59.4 (2) C14—C15—C16—C17 0.4 (4)
C13—C5—C6—C1 174.2 (2) C14—C15—C16—C19 −179.6 (2)
C4—C5—C13—C14 −74.3 (3) C15—C16—C17—C18 0.1 (4)
C4—C5—C13—C18 102.5 (2) C19—C16—C17—C18 −179.9 (2)
C6—C5—C13—C14 50.3 (3) C16—C17—C18—C13 −0.4 (4)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C13–C18 benzene ring.

D—H···A D—H H···A D···A D—H···A
C10—H10···Cgi 0.95 2.77 3.601 (3) 147

Symmetry code: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5565).

References

  1. Asiri, A. M. (2003). Bull. Korean Chem. Soc. 24, 426–430.
  2. Bruker (2005). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Diao, T. & Stahl, S. S. (2011). J. Am. Chem. Soc. 133, 14566–14569. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Ferrer, R., Lobo, G., Gamboa, N., Rodrigues, J., Abramjuk, C., Jung, K., Lein, M. & Charris, J. E. (2009). Sci. Pharm. 77, 725–741.
  8. Forestier, S., Moire, C. & Lang, G. (1989). US Patent No. 4867964.
  9. González, -R. C., Escalante, L., Varela, J. A., Castedo, L. & Sáa, C. (2009). Org. Lett. 11, 1531–1533. [DOI] [PubMed]
  10. Kumar, S. K., Hager, E., Catherine, P., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815. [DOI] [PubMed]
  11. Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495. [DOI] [PubMed]
  12. Podraze, K. F. (1991). Org. Prep. Proced. Int. 23, 217.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Suksamrarn, A., Poomsing, P., Aroonrerk, N., Punjanon, T., Suksamrarn, S. & Kongkun, S. (2003). Arch. Pharm. Res. 26, 816–820. [DOI] [PubMed]
  17. Zhang, C., Cui, D.-M., Yao, L.-Y., Wang, B.-S., Hu, Y.-Z. & Hayashi, T. (2008). J. Org. Chem. 73, 7811–7813. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027031/xu5565sup1.cif

e-68-o2157-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027031/xu5565Isup2.hkl

e-68-o2157-Isup2.hkl (121.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027031/xu5565Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES