Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):o2158. doi: 10.1107/S1600536812027146

8-[(2-Hy­droxy­phen­yl)imino]-3,5a,9-trimethyl-3a,4,5,5a,8,9b-hexa­hydro­naphtho­[1,2-b]furan-2(3H)-one

Sammer Yousuf a,*, Syed M Younas b, Nida Ambreen a, Khalid M Khan a, Ghulam A Miana c
PMCID: PMC3393965  PMID: 22798830

Abstract

The title compound, C21H23NO3, is a phenyl­imine derivative of the well known anthelmintic agent α-santonin. The trans-fused cyclo­hexane and γ-lactone rings of the α-santonin ring system adopt chair and envelope conformations, respectively, whereas the hexa­diene ring is approximately planar [maximum deviation = 0.029 (4) Å] and forms a dihedral angle of 62.30 (11)° with the benzene ring. An intra­molecular O—H⋯N hydrogen bond is observed.

Related literature  

For the isolation and anthelmintic use of α-santonin, see: Miana & Al-Lohedan (1986). For the crystal structure and stereochemistry of α-santonin, see: White & Sim (1975); Coggon & Sim (1969). For the crystal structure of a related compound, see: Yousuf et al. (2012).graphic file with name e-68-o2158-scheme1.jpg

Experimental  

Crystal data  

  • C21H23NO3

  • M r = 337.40

  • Orthorhombic, Inline graphic

  • a = 8.6000 (9) Å

  • b = 10.7458 (11) Å

  • c = 19.729 (2) Å

  • V = 1823.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.54 × 0.14 × 0.04 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.957, T max = 0.997

  • 10874 measured reflections

  • 1955 independent reflections

  • 1385 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.101

  • S = 1.04

  • 1955 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027146/rz2770sup1.cif

e-68-o2158-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027146/rz2770Isup2.hkl

e-68-o2158-Isup2.hkl (96.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027146/rz2770Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.82 2.28 2.747 (4) 116

Acknowledgments

The authors gratefully acknowledge the Pakistan Academy of Sciences for funding Project Reference No. 5–9/PAS/1335 entitled "Biology-Oriented Syntheses (BIOS) Based Synthesis of Libraries of Santonin".

supplementary crystallographic information

Comment

α-Santonin was isolated from Artemisia santonica (Miana & Al-Lohedan, 1986) and widely used in the past as an anthelmintic drug to expels parasitic worms (helminths) from the body, by either killing or stunning them. The title compound was prepared as a part of our ongoing reaserch to synthesize bioactive derivatives of α-santonin via biology oriented synthesis (BIOS). The title compound is an analogue of our previously reported compound 3,5a,9-trimethyl-3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione-8-(N-phenylhydrazone), with the difference that the phenylhydrazine moiety is replaced by a 2-hydroxyphenylimine group (C16–C21) attached to the α-santonin ring system (O1–O2/C1–C15). The cyclohexadiene ring (C6–C11) is almost planar with a maximum deviation from the least square plane of 0.029 (3) Å for atom C7 and forms a dihedral angle of 62.30 (11)° with the phenyl ring. The cyclohexane ring (C3–C6/C11–C12) adopts a chair conformation [Q = 0.594 (4) Å, θ = 8.2 (4)° and φ = 304 (2)°] and is trans fused to the γ-lactone ring (O1/C1–C3/C12) which adopts an envelope conformation with atom C3 0.228 (3) Å out of the plane formed by the rest of the ring atoms. The two methyl substituents at atoms C6 and C2 exist in axial and pseudo equatorial orientations, respectively (Fig. 1). The bond dimensions are similar to those found in the structurally related compounds (Yousuf et al., 2012; White & Sim, 1975; Coggon & Sim, 1969). An intramolecular O—H···N hydrogen bond is present (Table 1). In the crystal, molecules are arranged into layers parallel to the ab plane only by van der Waals forces (Fig. 2).

Experimental

In a 100 ml round bottomed flask toluene (25 ml) and α-santonin (400 mg, 1.6 mmol) were taken, then 2-amino phenol (11.2 mmol) was added with continuous stirring. The reaction mixture was refluxed and monitored by TLC. After completion of reaction (24 h), the mixture was cooled and extracted with water. The organic layer was dried over Na2SO4, filtered and the solvent evaporated under vacuum in a rotary evaporator. The crude product was chromatographed on a silica gel column using n-hexane:ethyl acetate (7:3 v/v) as mobile phase to obtain yellow crystals of title compound in 85% yield.

Refinement

H atoms were positioned geometrically with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2 Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms. A rotating group model was applied to the methyl groups. 1433 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the c axis.

Crystal data

C21H23NO3 F(000) = 720
Mr = 337.40 Dx = 1.229 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1151 reflections
a = 8.6000 (9) Å θ = 2.8–18.6°
b = 10.7458 (11) Å µ = 0.08 mm1
c = 19.729 (2) Å T = 273 K
V = 1823.2 (3) Å3 Plate, yellow
Z = 4 0.54 × 0.14 × 0.04 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1955 independent reflections
Radiation source: fine-focus sealed tube 1385 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
ω scan θmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→10
Tmin = 0.957, Tmax = 0.997 k = −12→13
10874 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.1849P] where P = (Fo2 + 2Fc2)/3
1955 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2992 (3) 0.14972 (19) 0.03121 (11) 0.0530 (6)
O2 0.2744 (3) 0.3535 (2) 0.01341 (12) 0.0647 (7)
O3 −0.1643 (3) −0.2894 (3) 0.23668 (15) 0.0871 (9)
H3A −0.1272 −0.2265 0.2196 0.131*
N1 0.0397 (3) −0.2580 (2) 0.13093 (14) 0.0542 (7)
C1 0.3452 (4) 0.2701 (3) 0.03985 (17) 0.0491 (8)
C2 0.4849 (4) 0.2769 (3) 0.08582 (16) 0.0501 (8)
H2A 0.5785 0.2805 0.0576 0.060*
C3 0.4799 (4) 0.1507 (3) 0.12056 (15) 0.0450 (8)
H3B 0.4037 0.1550 0.1574 0.054*
C4 0.6257 (4) 0.0914 (3) 0.14781 (18) 0.0553 (9)
H4A 0.6661 0.1403 0.1852 0.066*
H4B 0.7043 0.0881 0.1126 0.066*
C5 0.5871 (4) −0.0399 (3) 0.17203 (17) 0.0569 (9)
H5A 0.5236 −0.0338 0.2125 0.068*
H5B 0.6832 −0.0812 0.1845 0.068*
C6 0.4998 (4) −0.1229 (3) 0.11905 (16) 0.0501 (8)
C7 0.4574 (4) −0.2407 (3) 0.15386 (18) 0.0585 (10)
H7A 0.5362 −0.2855 0.1750 0.070*
C8 0.3150 (4) −0.2855 (3) 0.15666 (17) 0.0546 (9)
H8A 0.2984 −0.3620 0.1775 0.066*
C9 0.1825 (4) −0.2191 (3) 0.12821 (17) 0.0476 (8)
C10 0.2116 (4) −0.0959 (3) 0.09669 (17) 0.0500 (8)
C11 0.3588 (4) −0.0537 (3) 0.09191 (15) 0.0417 (8)
C12 0.4121 (4) 0.0698 (3) 0.06425 (16) 0.0446 (8)
H12A 0.4955 0.0533 0.0316 0.053*
C13 0.4820 (5) 0.3915 (3) 0.1308 (2) 0.0783 (12)
H13A 0.4735 0.4647 0.1031 0.118*
H13B 0.5763 0.3953 0.1568 0.118*
H13C 0.3945 0.3870 0.1609 0.118*
C14 0.0693 (4) −0.0278 (3) 0.0730 (2) 0.0805 (14)
H14A 0.0889 0.0084 0.0294 0.121*
H14B 0.0440 0.0367 0.1048 0.121*
H14C −0.0161 −0.0850 0.0697 0.121*
C15 0.6148 (4) −0.1591 (3) 0.0611 (2) 0.0707 (11)
H15A 0.5614 −0.2090 0.0281 0.106*
H15B 0.7000 −0.2056 0.0797 0.106*
H15C 0.6536 −0.0850 0.0399 0.106*
C16 0.0030 (4) −0.3792 (3) 0.15327 (17) 0.0525 (8)
C17 0.0571 (4) −0.4863 (3) 0.12167 (19) 0.0626 (10)
H17A 0.1292 −0.4800 0.0867 0.075*
C18 0.0048 (5) −0.6021 (3) 0.1418 (2) 0.0709 (11)
H18A 0.0405 −0.6733 0.1200 0.085*
C19 −0.0998 (5) −0.6117 (4) 0.1940 (2) 0.0745 (12)
H19A −0.1337 −0.6898 0.2080 0.089*
C20 −0.1549 (4) −0.5067 (4) 0.2258 (2) 0.0701 (11)
H20A −0.2257 −0.5136 0.2612 0.084*
C21 −0.1051 (4) −0.3920 (3) 0.20502 (18) 0.0567 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0561 (14) 0.0463 (13) 0.0566 (14) −0.0012 (12) −0.0146 (12) 0.0084 (10)
O2 0.0708 (16) 0.0514 (14) 0.0718 (16) 0.0061 (14) −0.0142 (14) 0.0115 (12)
O3 0.0668 (18) 0.081 (2) 0.114 (2) −0.0007 (15) 0.0180 (17) −0.0079 (17)
N1 0.0475 (17) 0.0515 (17) 0.0638 (19) −0.0068 (15) 0.0000 (15) 0.0104 (14)
C1 0.050 (2) 0.048 (2) 0.049 (2) −0.0008 (18) 0.0019 (16) 0.0019 (16)
C2 0.046 (2) 0.0471 (18) 0.057 (2) −0.0002 (17) 0.0028 (17) −0.0032 (16)
C3 0.0446 (18) 0.0487 (18) 0.0416 (18) −0.0018 (16) −0.0005 (16) 0.0006 (15)
C4 0.053 (2) 0.057 (2) 0.057 (2) −0.0018 (18) −0.0101 (18) 0.0053 (17)
C5 0.044 (2) 0.066 (2) 0.061 (2) −0.0025 (18) −0.0112 (17) 0.0118 (17)
C6 0.047 (2) 0.0504 (19) 0.053 (2) 0.0012 (17) −0.0003 (18) 0.0115 (15)
C7 0.054 (2) 0.051 (2) 0.071 (2) 0.0098 (19) −0.0099 (19) 0.0143 (18)
C8 0.059 (2) 0.0432 (19) 0.061 (2) 0.0028 (18) −0.0053 (19) 0.0095 (17)
C9 0.049 (2) 0.0442 (18) 0.050 (2) −0.0004 (17) −0.0018 (16) 0.0050 (15)
C10 0.048 (2) 0.0449 (19) 0.057 (2) −0.0007 (17) −0.0079 (17) 0.0057 (15)
C11 0.046 (2) 0.0399 (18) 0.0392 (18) −0.0007 (15) −0.0039 (15) 0.0024 (14)
C12 0.0452 (18) 0.0470 (19) 0.0415 (19) 0.0053 (16) −0.0012 (15) 0.0054 (14)
C13 0.082 (3) 0.061 (2) 0.093 (3) 0.006 (2) −0.027 (3) −0.021 (2)
C14 0.052 (2) 0.060 (2) 0.129 (4) −0.003 (2) −0.016 (2) 0.033 (2)
C15 0.061 (2) 0.066 (2) 0.085 (3) 0.015 (2) 0.009 (2) 0.004 (2)
C16 0.0445 (19) 0.053 (2) 0.060 (2) −0.0052 (17) −0.0041 (18) 0.0100 (17)
C17 0.066 (2) 0.058 (2) 0.064 (2) −0.006 (2) 0.0036 (19) 0.0054 (19)
C18 0.073 (3) 0.057 (2) 0.083 (3) −0.011 (2) −0.002 (3) 0.001 (2)
C19 0.064 (3) 0.064 (3) 0.095 (3) −0.017 (2) −0.004 (2) 0.022 (2)
C20 0.051 (2) 0.083 (3) 0.076 (3) −0.012 (2) 0.007 (2) 0.019 (2)
C21 0.0457 (19) 0.059 (2) 0.065 (2) −0.0004 (19) 0.0006 (19) 0.0023 (19)

Geometric parameters (Å, º)

O1—C1 1.363 (4) C8—H8A 0.9300
O1—C12 1.451 (3) C9—C10 1.484 (4)
O2—C1 1.203 (4) C10—C11 1.348 (4)
O3—C21 1.366 (4) C10—C14 1.500 (5)
O3—H3A 0.8200 C11—C12 1.506 (4)
N1—C9 1.299 (4) C12—H12A 0.9800
N1—C16 1.411 (4) C13—H13A 0.9600
C1—C2 1.507 (5) C13—H13B 0.9600
C2—C13 1.517 (4) C13—H13C 0.9600
C2—C3 1.521 (4) C14—H14A 0.9600
C2—H2A 0.9800 C14—H14B 0.9600
C3—C4 1.506 (4) C14—H14C 0.9600
C3—C12 1.526 (4) C15—H15A 0.9600
C3—H3B 0.9800 C15—H15B 0.9600
C4—C5 1.527 (4) C15—H15C 0.9600
C4—H4A 0.9700 C16—C21 1.388 (5)
C4—H4B 0.9700 C16—C17 1.389 (5)
C5—C6 1.566 (4) C17—C18 1.382 (5)
C5—H5A 0.9700 C17—H17A 0.9300
C5—H5B 0.9700 C18—C19 1.372 (5)
C6—C7 1.486 (4) C18—H18A 0.9300
C6—C11 1.520 (4) C19—C20 1.375 (5)
C6—C15 1.561 (5) C19—H19A 0.9300
C7—C8 1.317 (4) C20—C21 1.368 (5)
C7—H7A 0.9300 C20—H20A 0.9300
C8—C9 1.457 (5)
C1—O1—C12 108.1 (2) C9—C10—C14 115.3 (3)
C21—O3—H3A 109.5 C10—C11—C12 127.4 (3)
C9—N1—C16 121.4 (3) C10—C11—C6 124.1 (3)
O2—C1—O1 120.4 (3) C12—C11—C6 108.4 (3)
O2—C1—C2 128.9 (3) O1—C12—C11 118.7 (3)
O1—C1—C2 110.7 (3) O1—C12—C3 104.2 (2)
C1—C2—C13 112.3 (3) C11—C12—C3 110.7 (2)
C1—C2—C3 101.8 (3) O1—C12—H12A 107.6
C13—C2—C3 117.4 (3) C11—C12—H12A 107.6
C1—C2—H2A 108.3 C3—C12—H12A 107.6
C13—C2—H2A 108.3 C2—C13—H13A 109.5
C3—C2—H2A 108.3 C2—C13—H13B 109.5
C4—C3—C2 121.0 (3) H13A—C13—H13B 109.5
C4—C3—C12 109.7 (3) C2—C13—H13C 109.5
C2—C3—C12 101.0 (2) H13A—C13—H13C 109.5
C4—C3—H3B 108.2 H13B—C13—H13C 109.5
C2—C3—H3B 108.2 C10—C14—H14A 109.5
C12—C3—H3B 108.2 C10—C14—H14B 109.5
C3—C4—C5 108.8 (3) H14A—C14—H14B 109.5
C3—C4—H4A 109.9 C10—C14—H14C 109.5
C5—C4—H4A 109.9 H14A—C14—H14C 109.5
C3—C4—H4B 109.9 H14B—C14—H14C 109.5
C5—C4—H4B 109.9 C6—C15—H15A 109.5
H4A—C4—H4B 108.3 C6—C15—H15B 109.5
C4—C5—C6 115.0 (3) H15A—C15—H15B 109.5
C4—C5—H5A 108.5 C6—C15—H15C 109.5
C6—C5—H5A 108.5 H15A—C15—H15C 109.5
C4—C5—H5B 108.5 H15B—C15—H15C 109.5
C6—C5—H5B 108.5 C21—C16—C17 118.2 (3)
H5A—C5—H5B 107.5 C21—C16—N1 118.1 (3)
C7—C6—C11 112.6 (3) C17—C16—N1 123.4 (3)
C7—C6—C15 106.4 (3) C18—C17—C16 120.5 (4)
C11—C6—C15 111.7 (3) C18—C17—H17A 119.7
C7—C6—C5 107.1 (3) C16—C17—H17A 119.7
C11—C6—C5 109.8 (3) C19—C18—C17 119.8 (4)
C15—C6—C5 109.1 (3) C19—C18—H18A 120.1
C8—C7—C6 124.0 (3) C17—C18—H18A 120.1
C8—C7—H7A 118.0 C18—C19—C20 120.4 (4)
C6—C7—H7A 118.0 C18—C19—H19A 119.8
C7—C8—C9 122.1 (3) C20—C19—H19A 119.8
C7—C8—H8A 118.9 C21—C20—C19 119.6 (3)
C9—C8—H8A 118.9 C21—C20—H20A 120.2
N1—C9—C8 124.5 (3) C19—C20—H20A 120.2
N1—C9—C10 117.6 (3) O3—C21—C20 118.3 (3)
C8—C9—C10 117.8 (3) O3—C21—C16 120.4 (3)
C11—C10—C9 119.2 (3) C20—C21—C16 121.3 (3)
C11—C10—C14 125.5 (3)
C12—O1—C1—O2 175.7 (3) C14—C10—C11—C6 177.4 (3)
C12—O1—C1—C2 −5.8 (3) C7—C6—C11—C10 −2.1 (5)
O2—C1—C2—C13 34.0 (5) C15—C6—C11—C10 117.5 (4)
O1—C1—C2—C13 −144.4 (3) C5—C6—C11—C10 −121.3 (3)
O2—C1—C2—C3 160.4 (3) C7—C6—C11—C12 174.2 (3)
O1—C1—C2—C3 −18.0 (3) C15—C6—C11—C12 −66.2 (3)
C1—C2—C3—C4 153.7 (3) C5—C6—C11—C12 54.9 (3)
C13—C2—C3—C4 −83.3 (4) C1—O1—C12—C11 151.1 (3)
C1—C2—C3—C12 32.6 (3) C1—O1—C12—C3 27.3 (3)
C13—C2—C3—C12 155.6 (3) C10—C11—C12—O1 −8.0 (5)
C2—C3—C4—C5 −173.5 (3) C6—C11—C12—O1 175.9 (3)
C12—C3—C4—C5 −56.6 (3) C10—C11—C12—C3 112.5 (4)
C3—C4—C5—C6 51.6 (4) C6—C11—C12—C3 −63.6 (3)
C4—C5—C6—C7 −173.9 (3) C4—C3—C12—O1 −166.0 (2)
C4—C5—C6—C11 −51.4 (4) C2—C3—C12—O1 −37.2 (3)
C4—C5—C6—C15 71.3 (4) C4—C3—C12—C11 65.3 (3)
C11—C6—C7—C8 4.8 (5) C2—C3—C12—C11 −165.9 (3)
C15—C6—C7—C8 −117.8 (4) C9—N1—C16—C21 126.8 (4)
C5—C6—C7—C8 125.6 (4) C9—N1—C16—C17 −60.1 (5)
C6—C7—C8—C9 −3.2 (6) C21—C16—C17—C18 −0.4 (5)
C16—N1—C9—C8 −9.8 (5) N1—C16—C17—C18 −173.5 (3)
C16—N1—C9—C10 173.1 (3) C16—C17—C18—C19 −0.9 (6)
C7—C8—C9—N1 −178.5 (4) C17—C18—C19—C20 1.0 (6)
C7—C8—C9—C10 −1.4 (5) C18—C19—C20—C21 0.1 (6)
N1—C9—C10—C11 −178.8 (3) C19—C20—C21—O3 178.7 (4)
C8—C9—C10—C11 3.9 (5) C19—C20—C21—C16 −1.4 (6)
N1—C9—C10—C14 1.7 (5) C17—C16—C21—O3 −178.6 (3)
C8—C9—C10—C14 −175.6 (3) N1—C16—C21—O3 −5.1 (5)
C9—C10—C11—C12 −177.6 (3) C17—C16—C21—C20 1.5 (5)
C14—C10—C11—C12 1.9 (6) N1—C16—C21—C20 175.0 (3)
C9—C10—C11—C6 −2.0 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N1 0.82 2.28 2.747 (4) 116

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2770).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Coggon, P. & Sim, G. A. (1969). J. Chem. Soc. B, pp. 237–242.
  3. Miana, G. A. & Al-Lohedan, H. A. (1986). J. Chem. Soc. Pak. 8, 241–274.
  4. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. White, D. N. J. & Sim, G. A. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1826–1831.
  8. Yousuf, S., Younas, S. M., Ambreen, N., Khan, K. M. & Miana, G. A. (2012). Acta Cryst. E68, o2112. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027146/rz2770sup1.cif

e-68-o2158-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027146/rz2770Isup2.hkl

e-68-o2158-Isup2.hkl (96.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027146/rz2770Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES