Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 23;68(Pt 7):o2183–o2184. doi: 10.1107/S1600536812027080

2-Amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium chloride

Masoumeh Tabatabaee a,*, Mahboubeh A Sharif b, Michal Dušek c, Michaela Pojarová c
PMCID: PMC3393986  PMID: 22798851

Abstract

In the crystal structure of the title compound, C4H8N3O+·Cl, N—H⋯Cl hydrogen bonds link the components into chains along [010]. In addition, weak C—H⋯Cl hydrogen bonds link the chains into a two-dimensional network perpendicular to (001).

Related literature  

For creatinine (2-amino-1-methyl-5H-imidazol-4-one), which is used in the synthesis of some 1:1 proton-transfer compounds, see; Moghimi et al. (2004); Soleimannejad et al. (2005). For related structures, see: Tabatabaee et al. (2007); Bujak & Zaleski (2002); Tabatabaee, Abbasi et al. (2011); Tabatabaee, Tahriri et al. (2011, 2012); Tabatabaee, Adineh et al. (2012). For background information on weak C—H⋯Cl hydrogen bonds, see: Freytag & Jones (2000); Taylor & Kennard (1982).graphic file with name e-68-o2183-scheme1.jpg

Experimental  

Crystal data  

  • C4H8N3O+·Cl

  • M r = 149.58

  • Monoclinic, Inline graphic

  • a = 8.4617 (2) Å

  • b = 7.7073 (2) Å

  • c = 10.2215 (3) Å

  • β = 98.369 (2)°

  • V = 659.52 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.51 mm−1

  • T = 120 K

  • 0.57 × 0.35 × 0.15 mm

Data collection  

  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.509, T max = 1.000

  • 5373 measured reflections

  • 1167 independent reflections

  • 1158 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.074

  • S = 1.08

  • 1167 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027080/lh5487sup1.cif

e-68-o2183-sup1.cif (13.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027080/lh5487Isup2.hkl

e-68-o2183-Isup2.hkl (57.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027080/lh5487Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.86 2.42 3.2714 (12) 169
N1—H2⋯Cl1ii 0.86 2.32 3.1506 (12) 163
N2—H3⋯Cl1 0.89 2.31 3.1808 (11) 165
C2—H4⋯Cl1iii 0.97 2.69 3.6271 (14) 162
C4—H8⋯Cl1i 0.96 2.77 3.7241 (13) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research was supported by the Islamic Azad University, Yazd Branch (grant No. 50678) and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

supplementary crystallographic information

Comment

In continuation of our research to synthesize transition metal complexes with dicarboxylic acids (especially pyridine-2,6-dicarboxilic acid) in the presence of some amino compounds (Tabatabaee, Abbasi et al., 2011; Tabatabaee, Tahriri et al., 2011; Tabatabaee, Tahriri et al., 2012; Tabatabaee, Adineh et al., 2012), the reaction of zirconium tetrachloride, with pyridine-2,6-dicarboxilic acid in the presence of creatinine was performed. The title compound (I) was fortuitously obtained as a result of this reaction. Creatinine has previously been used as a proton acceptor in the synthesis of some 1:1 proton-transfer compounds (Moghimi et al., 2004; Soleimannejad et al., 2005).

The molecular structure of (I) is shown in Fig. 1. During the reaction a proton was transferred to the ring N atom of the creatinine (2-Amino-1-methyl-5H-imidazol-4-one) molecule. In (I) the C3—N1 bond [1.3094 (18) Å] and C3—N2 bond [1.3647 (17) Å] can be compared to the C═N bond [1.3108 (18) Å] and C—N bond [1.3612 (17) Å] in the reported proton transfer compound, bis(creatininium)2,5-dicarboxybenzene-1,4-dicarboxylate (Tabatabaee et al., 2007).

In the crystal, intermolecular N—H···Cl hydrogen bonds link the components into one-dimensional chains along [010]. In addition, weak intermolecular C—H···Cl hydrogen bonds link one-dimensional-chains into a two-dimensional network perpendicular to (001) (Fig. 2). When compared with the crystal structure of 1,2,4-triazolium chloride (Bujak & Zaleski 2002), the N—H···Cl interactions are weaker in the present structure while C—H···Cl interactions are similar. For the weak intermolecular hydrogen bonds the C—H···Cl angles are in the range of those previously reported (Freytag & Jones, 2000; Taylor & Kennard, 1982).

Experimental

An aqueous solution of ZrCl4, (0.233 g, 1 mmol) in water (10 ml) was added to a stirring solution of (20 ml) pyridine-2,6-dicarboxylic acid (0.167 g, 1 mmol) and creatinine (0.113 g, 1 mmol). The reaction mixture was stirred at 298K for 4 h. The resulting solid residue was filtered and the colorless crystals of the title compound were obtained after few days at 277K from mother liquor.

Refinement

H atoms bonded to C atoms were included in calculated positions with C—H = 0.96 and 0.97Å and with Uiso(H) = 1.5Ueq(C). H atoms bonded to N atom were included with N—H 0.86 amd 0.89Å and with Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability.

Fig. 2.

Fig. 2.

Part of the crystal structure with N—H···Cl hydrogen bonds shown as black dashed lines and weak C—H···Cl hydrogen bonds shown as grey dashed lines.

Crystal data

C4H8N3O+·Cl F(000) = 312
Mr = 149.58 Dx = 1.507 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2yn Cell parameters from 5086 reflections
a = 8.4617 (2) Å θ = 4.4–66.9°
b = 7.7073 (2) Å µ = 4.51 mm1
c = 10.2215 (3) Å T = 120 K
β = 98.369 (2)° Plate, colourless
V = 659.52 (3) Å3 0.57 × 0.35 × 0.15 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer 1167 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 1158 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.023
Detector resolution: 10.3784 pixels mm-1 θmax = 67.0°, θmin = 6.4°
Rotation method data acquisition using ω scans h = −10→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −9→9
Tmin = 0.509, Tmax = 1.000 l = −12→11
5373 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.1996P] where P = (Fo2 + 2Fc2)/3
1167 reflections (Δ/σ)max < 0.001
83 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms and the nitrogen atom in amino group were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2 times Ueq of the parent atom). The distance between hydrogen atom H3 and N2 was left unrestrained.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.86814 (3) 0.71590 (4) 0.45236 (3) 0.02046 (16)
O1 0.43618 (13) 0.57647 (13) 0.32081 (12) 0.0358 (3)
N1 0.79940 (13) 0.13245 (15) 0.41934 (11) 0.0238 (3)
H1 0.8035 0.0210 0.4217 0.029*
H2 0.8847 0.1923 0.4421 0.029*
N2 0.64629 (13) 0.38708 (14) 0.37714 (11) 0.0217 (3)
H3 0.7227 0.4646 0.4031 0.026*
C1 0.48933 (16) 0.43236 (18) 0.33205 (13) 0.0234 (3)
C2 0.40103 (16) 0.26312 (17) 0.30246 (14) 0.0211 (3)
H4 0.3128 0.2525 0.3529 0.025*
H5 0.3606 0.2526 0.2090 0.025*
N3 0.52395 (13) 0.13463 (14) 0.34360 (11) 0.0189 (3)
C3 0.66330 (16) 0.21100 (17) 0.38107 (13) 0.0184 (3)
C4 0.49578 (15) −0.04876 (17) 0.31667 (13) 0.0222 (3)
H6 0.4772 −0.0674 0.2228 0.027*
H7 0.4040 −0.0858 0.3545 0.027*
H8 0.5876 −0.1142 0.3549 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0170 (2) 0.0197 (2) 0.0238 (2) −0.00117 (10) 0.00001 (14) −0.00029 (10)
O1 0.0308 (6) 0.0202 (6) 0.0562 (7) 0.0037 (4) 0.0058 (5) 0.0023 (5)
N1 0.0176 (6) 0.0207 (6) 0.0312 (6) −0.0022 (4) −0.0029 (5) −0.0001 (5)
N2 0.0203 (6) 0.0182 (6) 0.0262 (6) −0.0030 (4) 0.0019 (5) −0.0020 (4)
C1 0.0225 (7) 0.0205 (7) 0.0279 (7) 0.0009 (5) 0.0055 (5) 0.0006 (5)
C2 0.0162 (7) 0.0191 (6) 0.0276 (7) 0.0028 (5) 0.0021 (5) 0.0011 (6)
N3 0.0166 (5) 0.0163 (6) 0.0233 (6) −0.0002 (4) 0.0007 (4) 0.0001 (4)
C3 0.0203 (7) 0.0188 (7) 0.0163 (6) −0.0019 (5) 0.0032 (5) −0.0007 (4)
C4 0.0195 (7) 0.0175 (6) 0.0285 (7) −0.0017 (5) 0.0002 (5) −0.0008 (5)

Geometric parameters (Å, º)

O1—C1 1.1976 (18) C2—N3 1.4533 (16)
N1—C3 1.3094 (18) C2—H4 0.9700
N1—H1 0.8600 C2—H5 0.9700
N1—H2 0.8600 N3—C3 1.3237 (18)
N2—C3 1.3647 (17) N3—C4 1.4530 (17)
N2—C1 1.3856 (17) C4—H6 0.9600
N2—H3 0.8921 C4—H7 0.9600
C1—C2 1.5118 (19) C4—H8 0.9600
C3—N1—H1 120.0 H4—C2—H5 109.2
C3—N1—H2 120.0 C3—N3—C4 127.01 (11)
H1—N1—H2 120.0 C3—N3—C2 110.53 (11)
C3—N2—C1 110.62 (11) C4—N3—C2 121.15 (10)
C3—N2—H3 126.1 N1—C3—N3 126.05 (12)
C1—N2—H3 123.3 N1—C3—N2 123.57 (12)
O1—C1—N2 126.44 (13) N3—C3—N2 110.36 (11)
O1—C1—C2 127.82 (12) N3—C4—H6 109.5
N2—C1—C2 105.73 (11) N3—C4—H7 109.5
N3—C2—C1 102.59 (11) H6—C4—H7 109.5
N3—C2—H4 111.2 N3—C4—H8 109.5
C1—C2—H4 111.2 H6—C4—H8 109.5
N3—C2—H5 111.2 H7—C4—H8 109.5
C1—C2—H5 111.2

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1i 0.86 2.42 3.2714 (12) 169
N1—H2···Cl1ii 0.86 2.32 3.1506 (12) 163
N2—H3···Cl1 0.89 2.31 3.1808 (11) 165
C2—H4···Cl1iii 0.97 2.69 3.6271 (14) 162
C4—H8···Cl1i 0.96 2.77 3.7241 (13) 175

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5487).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bujak, M. & Zaleski, J. (2002). Z. Naturforsch. Teil B, 57, 157–164.
  3. Freytag, M. & Jones, P. G. (2000). Chem. Commun. pp. 277–278.
  4. Moghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790–o1792.
  5. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  6. Oxford Diffraction Ltd. (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Soleimannejad, J., Sharif, M. A., Sheshmani, S., Alizadeh, R., Moghimi, A. & Aghabozorg, H. (2005). Anal. Sci. 21, x49–x50.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Tabatabaee, M., Abbasi, F., Kukovec, B.-M. & Nasirizadeh, N. (2011). J. Coord. Chem. 64, 1718–1728.
  11. Tabatabaee, M., Adineh, M., Derikvand, Z. & Attar Gharamaleki, J. (2012). Acta Cryst. E68, m462–m463. [DOI] [PMC free article] [PubMed]
  12. Tabatabaee, M., Ghassemzadeh, M., Jafari, P. & Khavasi, H. R. (2007). Acta Cryst. E63, o1001–o1002.
  13. Tabatabaee, M., Tahriri, M., Tahriri, M., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, m769–m770. [DOI] [PMC free article] [PubMed]
  14. Tabatabaee, M., Tahriri, M., Tahriri, M., Ozawa, Y., Neumüller, B., Fujioka, H. & Toriumi, K. (2012). Polyhedron, 33, 336–340.
  15. Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027080/lh5487sup1.cif

e-68-o2183-sup1.cif (13.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027080/lh5487Isup2.hkl

e-68-o2183-Isup2.hkl (57.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027080/lh5487Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES