Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 23;68(Pt 7):o2188–o2189. doi: 10.1107/S1600536812027894

(Z)-4-(2-Hy­droxy­anilino)pent-3-en-2-one

Benghanem Fatiha a, Keraghel Saida a,*, Chahmana Safia a, Ourari Ali a, Brelot Lydia b
PMCID: PMC3393989  PMID: 22798854

Abstract

In the title compound, C11H13NO2, the dihedral angle between the planes defined by the 2-hy­droxy­phenyl­amino group and the pent-3-en-2-one mean plane [maximum deviations = 0.0275 (19) and 0.054 (2) Å, respectively] is 31.01 (10)°. There are intra­molecular bifurcated N—H⋯(O,O) hydrogen bonds involving the amine NH group and the adjacent carbonyl and hy­droxy O atoms. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains propagating along [100].

Related literature  

For transition metal complexes of Schiff bases, see: Salavati-Niasari (2006); Xiong et al. (2007); Basu et al. (2010). For the biological activity of Schiff bases, see: Jarrahpour et al. (2007); El-Masry et al. (2000); Singh & Dash (1988). For the use of Schiff bases as inter­midiates in many industrial processes, see: Salavati-Niasari & Nezamoddin Mirsattari (2007); Katsuki (1995); Ahamad et al. (2010); Da Silva et al. (2010); Soltani et al. (2010). For the tautomeric properties and conformations of the title compound, see: Kabak et al. (1998). For the photoconductivity of the title compound, see: Parekh et al. (2007), and for its thermochromic properties, see: Moustakali-Mavridis et al. (1978); Hadjoudis et al. (1987). For hydrogen bonding and graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o2188-scheme1.jpg

Experimental  

Crystal data  

  • C11H13NO2

  • M r = 191.22

  • Orthorhombic, Inline graphic

  • a = 8.7826 (4) Å

  • b = 10.3999 (5) Å

  • c = 11.1827 (3) Å

  • V = 1021.41 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.50 × 0.30 × 0.20 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 7005 measured reflections

  • 1359 independent reflections

  • 1260 reflections with I > 2σ(I)

  • R int = 0.105

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.126

  • S = 1.07

  • 1359 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027894/su2455sup1.cif

e-68-o2188-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027894/su2455Isup2.hkl

e-68-o2188-Isup2.hkl (65.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027894/su2455Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.96 (3) 2.28 (3) 2.633 (2) 100.9 (18)
N1—H1N⋯O2 0.96 (3) 1.85 (3) 2.641 (2) 139 (2)
O1—H1⋯O2i 0.93 (3) 1.72 (3) 2.637 (2) 172 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank Professor J. P. Gisselbrecht, Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, Strasbourg University, France, for his valuable contributions.

supplementary crystallographic information

Comment

Schiff bases have played an important role in the development of coordination chemistry. They have a great capacity for complexation of transition metal (Salavati-Niasari, 2006; Xiong et al., 2007; Basu et al., 2010). A literature survey revealed that this kind of compound possesses diverse biological activities such as antimicrobial (Jarrahpour et al., 2007; El-Masry et al., 2000) and antifungal (Singh & Dash, 1988). They also serve as intermediates in many industrial processes (Salavati-Niasari & Nezamoddin Mirsattari, 2007; Katsuki, 1995) and are used as corrosion inhibitors (Ahamad et al., 2010; Da Silva et al., 2010; Soltani et al., 2010). In order to expand this field of research the title compound, a novel Schiff base derived from a non-aromatic aldehyde, has been synthesized and its crystal structure is reported herein.

The tautomeric properties and conformations of the title compound were investigated by (Kabak et al., 1998). The enol tautomer form of the crystal of the title compound is established by the present crystal structure analysis. The positive photoconductivity of this compound has been studied by (Parekh et al., 2007). The crystal exhibits positive photoconductivity and poor NLO responses, and it is photochromic not thermochromic in the solid state (Moustakali-Mavridis et al., 1978; Hadjoudis et al., 1987).

The molecular structure of the title molecule is shown in Fig. 1. It was prepared by the condensation of acetylacetone and 2-aminophenol and crystallized in the chiral space group P212121.

The molecule is not planar and the dihedral angle between the two planes defined by O1,C1-C6,N1 and O2,C7-C11 is equal to 31.01 (10) °. The small value of bond N1—C7 (1.346 (2) A°) in comparison to bond N1—C6 (1.416 (3) A°) results in a significant change in the bond angle C7—N1—C6 of 130.76 (17)°. The difference in the C—N bond distances is assumed to be due to the presence of the carbonyl group located at the C10 position. Shortening of the C7—N1 bond length and the large value of the C7—N1—C6 bond angle leads to the existence of an N1—H1···O2 intramolecular hydrogen bond (Table 1) with an S(6) ring motif (Bernstein et al., 1995). The second intramolecular N1-H1···O1 hydrogen bond gives an S(5) ring motif.

In the crystal, molecules are linked via O-H···O hydrogen bonds to form chains propagating along [100] - see Table 1 and Fig. 2.

Experimental

To a ethanol solution (5 ml) of (0.109 g, 1 mmol) of 2-aminophenol was slowly added a ethanol solution (5 ml) of acetylacetone (0.1 g, 1 mmol). The mixture was refluxed with constant stirring under a nitrogen atmosphere for 5 h. The mixture was removed and allowed to cool to rt and the solvent to evaporate slowly. After 20 days yellow crystals of the title compound were obtained. They were washed with ethanol then with diethyl ether.

Refinement

The OH and NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined using a riding model: C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for methyl H atoms and = 1.2 for other H atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, the Friedel pairs were merged and Δf " set to zero.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular bifurcated N-H···O/O hydrogen bond are shown as dashed lines (see Table 1 for details).

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the b axis. The N-H···O and O-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

C11H13NO2 F(000) = 408
Mr = 191.22 Dx = 1.244 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4219 reflections
a = 8.7826 (4) Å θ = 1.0–27.5°
b = 10.3999 (5) Å µ = 0.09 mm1
c = 11.1827 (3) Å T = 173 K
V = 1021.41 (7) Å3 Prism, yellow
Z = 4 0.50 × 0.30 × 0.20 mm

Data collection

Nonius KappaCCD diffractometer 1260 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.105
Graphite monochromator θmax = 27.5°, θmin = 2.7°
phi and ω scans h = −10→11
7005 measured reflections k = −12→13
1359 independent reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.0946P] where P = (Fo2 + 2Fc2)/3
1359 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.58388 (17) 0.70724 (15) 0.03852 (14) 0.0320 (4)
O2 0.95582 (17) 0.68677 (15) 0.15060 (12) 0.0331 (4)
N1 0.69854 (19) 0.57884 (17) 0.22040 (14) 0.0248 (4)
C1 0.4942 (2) 0.61181 (19) 0.08258 (17) 0.0257 (5)
C2 0.3527 (2) 0.5805 (2) 0.03503 (19) 0.0322 (6)
C3 0.2679 (3) 0.4816 (2) 0.0850 (2) 0.0387 (7)
C4 0.3242 (3) 0.4126 (2) 0.1812 (2) 0.0402 (7)
C5 0.4665 (3) 0.4415 (2) 0.2282 (2) 0.0349 (6)
C6 0.5510 (2) 0.54332 (18) 0.18138 (17) 0.0256 (5)
C7 0.7611 (2) 0.57778 (19) 0.33025 (16) 0.0253 (5)
C8 0.6698 (3) 0.5315 (3) 0.43570 (18) 0.0392 (7)
C9 0.9069 (2) 0.6227 (2) 0.34810 (17) 0.0276 (5)
C10 0.9993 (2) 0.6778 (2) 0.25800 (17) 0.0275 (5)
C11 1.1530 (3) 0.7300 (3) 0.2911 (2) 0.0400 (7)
H1 0.542 (3) 0.738 (3) −0.032 (3) 0.044 (7)*
H1N 0.762 (3) 0.619 (3) 0.162 (2) 0.033 (6)*
H2 0.31400 0.62690 −0.03160 0.0390*
H3 0.17070 0.46110 0.05310 0.0460*
H4 0.26530 0.34520 0.21510 0.0480*
H5 0.50630 0.39190 0.29240 0.0420*
H8A 0.56570 0.56470 0.42990 0.0590*
H8B 0.71680 0.56240 0.50980 0.0590*
H8C 0.66760 0.43730 0.43600 0.0590*
H9 0.94840 0.61620 0.42630 0.0330*
H11A 1.23200 0.68290 0.24730 0.0600*
H11B 1.16920 0.71960 0.37730 0.0600*
H11C 1.15810 0.82140 0.27030 0.0600*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0344 (8) 0.0336 (8) 0.0281 (7) −0.0051 (7) −0.0054 (6) 0.0101 (6)
O2 0.0357 (7) 0.0395 (8) 0.0241 (7) −0.0059 (7) 0.0004 (6) 0.0062 (6)
N1 0.0271 (8) 0.0257 (8) 0.0217 (7) −0.0021 (7) 0.0009 (6) 0.0040 (6)
C1 0.0274 (9) 0.0234 (9) 0.0263 (9) 0.0023 (8) 0.0021 (8) 0.0009 (7)
C2 0.0305 (10) 0.0324 (10) 0.0336 (10) 0.0031 (10) −0.0033 (8) −0.0031 (9)
C3 0.0308 (10) 0.0342 (11) 0.0511 (13) −0.0023 (10) −0.0051 (10) −0.0075 (10)
C4 0.0403 (12) 0.0300 (11) 0.0503 (14) −0.0086 (11) −0.0004 (10) 0.0027 (10)
C5 0.0407 (12) 0.0263 (10) 0.0377 (11) −0.0044 (10) −0.0006 (9) 0.0057 (8)
C6 0.0271 (9) 0.0236 (9) 0.0261 (9) 0.0004 (8) −0.0002 (7) −0.0003 (7)
C7 0.0319 (9) 0.0236 (8) 0.0205 (9) 0.0043 (8) 0.0006 (7) 0.0043 (7)
C8 0.0406 (12) 0.0513 (13) 0.0258 (10) −0.0059 (12) 0.0040 (9) 0.0093 (10)
C9 0.0324 (10) 0.0281 (10) 0.0223 (8) 0.0029 (9) −0.0028 (8) 0.0042 (7)
C10 0.0304 (9) 0.0250 (9) 0.0272 (9) 0.0023 (9) 0.0004 (7) −0.0007 (7)
C11 0.0374 (11) 0.0434 (13) 0.0393 (11) −0.0088 (12) −0.0011 (10) −0.0005 (10)

Geometric parameters (Å, º)

O1—C1 1.359 (2) C9—C10 1.415 (3)
O2—C10 1.264 (2) C10—C11 1.501 (3)
O1—H1 0.93 (3) C2—H2 0.9500
N1—C6 1.416 (2) C3—H3 0.9500
N1—C7 1.346 (2) C4—H4 0.9500
N1—H1N 0.96 (3) C5—H5 0.9500
C1—C2 1.390 (3) C8—H8A 0.9800
C1—C6 1.406 (3) C8—H8B 0.9800
C2—C3 1.387 (3) C8—H8C 0.9800
C3—C4 1.385 (3) C9—H9 0.9500
C4—C5 1.389 (4) C11—H11A 0.9800
C5—C6 1.395 (3) C11—H11B 0.9800
C7—C8 1.505 (3) C11—H11C 0.9800
C7—C9 1.378 (3)
C1—O1—H1 109.3 (18) C3—C2—H2 120.00
C6—N1—C7 130.74 (16) C2—C3—H3 120.00
C6—N1—H1N 115.9 (15) C4—C3—H3 120.00
C7—N1—H1N 112.9 (15) C3—C4—H4 120.00
O1—C1—C2 123.38 (18) C5—C4—H4 120.00
O1—C1—C6 116.69 (16) C4—C5—H5 120.00
C2—C1—C6 119.93 (18) C6—C5—H5 120.00
C1—C2—C3 120.0 (2) C7—C8—H8A 109.00
C2—C3—C4 120.4 (2) C7—C8—H8B 109.00
C3—C4—C5 120.2 (2) C7—C8—H8C 109.00
C4—C5—C6 120.1 (2) H8A—C8—H8B 109.00
N1—C6—C1 115.76 (16) H8A—C8—H8C 110.00
N1—C6—C5 124.68 (18) H8B—C8—H8C 109.00
C1—C6—C5 119.39 (18) C7—C9—H9 118.00
C8—C7—C9 119.35 (17) C10—C9—H9 118.00
N1—C7—C8 120.02 (17) C10—C11—H11A 109.00
N1—C7—C9 120.60 (17) C10—C11—H11B 109.00
C7—C9—C10 124.56 (17) C10—C11—H11C 109.00
O2—C10—C9 122.23 (17) H11A—C11—H11B 109.00
O2—C10—C11 118.64 (18) H11A—C11—H11C 110.00
C9—C10—C11 119.12 (17) H11B—C11—H11C 110.00
C1—C2—H2 120.00
C6—N1—C7—C9 −177.06 (19) C1—C2—C3—C4 −0.8 (3)
C7—N1—C6—C1 148.6 (2) C2—C3—C4—C5 −0.3 (3)
C7—N1—C6—C5 −36.2 (3) C3—C4—C5—C6 2.3 (3)
C6—N1—C7—C8 0.8 (3) C4—C5—C6—N1 −178.26 (19)
C6—C1—C2—C3 −0.1 (3) C4—C5—C6—C1 −3.2 (3)
O1—C1—C6—N1 −2.5 (3) N1—C7—C9—C10 3.0 (3)
O1—C1—C6—C5 −177.92 (18) C8—C7—C9—C10 −174.9 (2)
O1—C1—C2—C3 179.93 (18) C7—C9—C10—O2 −2.2 (3)
C2—C1—C6—N1 177.60 (17) C7—C9—C10—C11 176.5 (2)
C2—C1—C6—C5 2.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1 0.96 (3) 2.28 (3) 2.633 (2) 100.9 (18)
N1—H1N···O2 0.96 (3) 1.85 (3) 2.641 (2) 139 (2)
O1—H1···O2i 0.93 (3) 1.72 (3) 2.637 (2) 172 (3)

Symmetry code: (i) x−1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2455).

References

  1. Ahamad, I., Gupta, C., Prasad, R. & Quraishi, A. (2010). J. Appl. Electrochem. 40, 2171–2183.
  2. Basu, S., Gupta, G., Das, B. & Rao, K. M. (2010). J. Organomet. Chem. 695, 2098–2104.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Da Silva, A. B. D., Elia, E. & Gunha Ponciano Gomes, J. A. D. (2010). Corros. Sci. 52, 788–793.
  5. El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.
  8. Jarrahpour, A., Khalilil, D., Clercq, E. D., Salmi, C. & Michel, J. (2007). Molecules, 12, 1720–1730. [DOI] [PMC free article] [PubMed]
  9. Kabak, M., Elmali, A. & Elerman, Y. (1998). J. Mol. Struct. 470, 295–300.
  10. Katsuki, T. (1995). Coord. Chem. Rev. 140, 189–214.
  11. Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.
  12. Nonius (1998). COLLECT Nonuis BV, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Parekh, B. B., Purohit, D. H., Sagayaraj, P., Joshi, H. S. & Josh, M. J. (2007). Cryst. Res. Technol. 42, 407–415.
  15. Salavati-Niasari, M. (2006). Microporous Mesoporous Mater. 95, 248–256.
  16. Salavati-Niasari, M. & Nezamoddin Mirsattari, S. (2007). J. Mol. Catal. A Chem. 268, 50–58.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.
  19. Soltani, N., Behpour, M., Ghoreishi, S. M. & Naeini, H. (2010). Corros. Sci. 52, 1351–1361.
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Xiong, D., Fu, Z., Zhong, S., Jiang, X. & Yin, D. (2007). Catal. Lett. 113, 155–159.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027894/su2455sup1.cif

e-68-o2188-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027894/su2455Isup2.hkl

e-68-o2188-Isup2.hkl (65.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027894/su2455Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES