Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 27;68(Pt 7):o2213. doi: 10.1107/S1600536812027377

c-5-Hy­droxy-r-2,c-4-bis­(meth­oxy­carbon­yl)-t-5-methyl-t-3-(3-nitro­phen­yl)cyclo­hexa­none

S Rizwana Begum a, R Hema a,*, K Pandiarajan b, Sridhar Balasubramanian c, AG Anitha a
PMCID: PMC3394008  PMID: 22798873

Abstract

In the title compound, C17H19NO8 [systematic name = dimethyl 4-hydroxy-4-methyl-2-(3-nitrophenyl)-6-oxocyclohexane-1,3-dicarboxylate], the cyclo­hexa­none ring exhibits a chair conformation. The meth­oxy­carbonyl groups are oriented in opposite directions with respect to the cyclo­hexa­none ring. In the crystal, O—H⋯O hydrogen bonds links the mol­ecules into chains running parallel to the a axis. These chains are connected by weak C—H⋯O hydrogen bonds, forming sheets parallel to the ab plane.

Related literature  

For the pharmacological activity of cyclo­hexa­none derivatives, see: Puetz et al.(2003); Danyi et al. (1989); For related structure, see: Hema et al. (2006). For conformational analysis, see: Allinger (1977); Cremer & Pople (1975). For graph-set analysis, see: Bernstein et al. (1995).graphic file with name e-68-o2213-scheme1.jpg

Experimental  

Crystal data  

  • C17H19NO8

  • M r = 365.33

  • Monoclinic, Inline graphic

  • a = 20.1842 (18) Å

  • b = 5.7380 (5) Å

  • c = 15.5771 (14) Å

  • β = 108.357 (1)°

  • V = 1712.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.3 × 0.18 × 0.15 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • 7818 measured reflections

  • 1513 independent reflections

  • 1469 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.112

  • S = 1.17

  • 1513 reflections

  • 239 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027377/go2056sup1.cif

e-68-o2213-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027377/go2056Isup2.hkl

e-68-o2213-Isup2.hkl (73.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027377/go2056Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.98 2.46 3.374 (5) 154
C36—H36⋯O2i 0.93 2.51 3.414 (5) 164
O8—H8⋯O5ii 0.82 2.22 2.969 (5) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Cyclohexanone derivatives have potent pharmacological activity in the treatment of a broad spectrum of medical conditions(Puetz et al., 2003). Cyclohexanone derivatives penetrate into the stratum corneum and alter the skin permeability of indomethacin by fluidizing or modifying the hard hydrophobic barrier of the corneum(Danyi et al., 1989), thus giving an alternative method of administration of this compound which can cause serious gastric upsets.

In C17H19NO8, (I), (Fig. 1), the cyclohexanone ring adopts a chair conformation [Q=0.589 (4) Å, θ=173.0 (4)° and φ=16 (3)° (Cremer & Pople, 1975)]. The mean value [56.55 (16)°] of the endocyclic torsion angles of the cyclohexanone ring in (I) shows that it is slightly more puckered than the idealized cyclohexanone ring [54.1 (3)°, MM2 calculation; (Allinger, 1977)]. The two methoxycarbonyl groups at C2 (C4—C3—C2—C21=-178.4 (2)°) and at C4 (C2—C3—C4—C41=-179.2 (3)°) are substituted in β-equatorial positions. The nitrophenyl ring(ring A) attached to C3 adopts an α equatorial orientation. The methyl and hydroxyl groups at C5 are oriented in β axial and equatorial positions respectively. The mean planes through C1, C3, C4 and C6 and ring A make a dihedral angle of 82.06 (12)°. This value is greater than that reported for a similar structure (73.76°) (Hema et al., 2006). The dihedral angle between ring A and the carboxy groups O2–C21–O3 and O6–C41–O4 are 61.14 (24)° and 74.71 (27)°, respectively. These two carbonyl groups in (I) are twisted in opposite direction with C5–C4–C41–O7 and C1–C2–C21–O2 torsion angles of 75.8 (5)° and -73.0 (4)°, respectively.

The hydroxyl group forms a strong intermolecular hydrogen bond, O8–H8···O5(-0.5+x,0.5+y,z) linking the molecules into C(10) chains, (Bernstein et al., 1995), Table 1 and Figure 2. The weak hydrogen bonds C4-H2···O2(x,-1+y,z) and C36-H36···O2(x,-1+y,z) link these chains into sheets which lie parallel to theab-plane.

Experimental

A mixture of methyl acetoacetate(11.6 g, 100 mmol), 3-nitrobenzaldehyde(7.55 g, 50 mmol) and methylamine(1.55 g, 50 mmol) in ethanol(50 ml) was heated to boiling. The reaction mixture was allowed to stand overnight. The separated solid was filtered and purified by recrystallization from ethanol to yield the title compound (yield 11.2 g, 75%, mp 475K).

Refinement

H atoms were treated as riding atoms with C—H(aromatic), 0.93Å and C—H (aliphatic), 0.98Å with Uiso = 1.2Ueq(C) and C—H(methyl), 0.96Å, O—H, 0.82Å with Uiso = 1.5Ueq(). Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

View of the molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.

Fig. 2.

Fig. 2.

The O8–H8···O5 CHAINS, viewed along b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C17H19NO8 F(000) = 768
Mr = 365.33 Dx = 1.417 Mg m3
Monoclinic, Cc Melting point: 475 K
Hall symbol: C -2yc Mo Kα radiation, λ = 0.71073 Å
a = 20.1842 (18) Å Cell parameters from 2970 reflections
b = 5.7380 (5) Å θ = 2.8–25°
c = 15.5771 (14) Å µ = 0.11 mm1
β = 108.357 (1)° T = 273 K
V = 1712.3 (3) Å3 Prism, colourless
Z = 4 0.3 × 0.18 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1469 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
Graphite monochromator θmax = 25.0°, θmin = 2.1°
ω scan h = −24→24
7818 measured reflections k = −6→6
1513 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.665P] where P = (Fo2 + 2Fc2)/3
1513 reflections (Δ/σ)max < 0.001
239 parameters Δρmax = 0.27 e Å3
2 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C3 0.12737 (18) 0.5989 (6) 0.1103 (2) 0.0308 (7)
H3 0.0992 0.7412 0.0959 0.037*
C2 0.17193 (17) 0.6084 (6) 0.2116 (2) 0.0316 (8)
H2 0.2008 0.4675 0.2250 0.038*
C1 0.12635 (19) 0.6086 (6) 0.2729 (2) 0.0370 (8)
C6 0.0735 (2) 0.4139 (7) 0.2538 (3) 0.0400 (9)
H61 0.0438 0.4325 0.2916 0.048*
H62 0.0975 0.2657 0.2686 0.048*
C5 0.02901 (18) 0.4137 (6) 0.1554 (3) 0.0348 (8)
C4 0.07746 (18) 0.3893 (6) 0.0952 (2) 0.0311 (7)
H4 0.1052 0.2467 0.1126 0.037*
C31 0.17510 (18) 0.5939 (6) 0.0524 (2) 0.0312 (7)
C32 0.1713 (2) 0.7685 (7) −0.0109 (2) 0.0381 (8)
H32 0.1375 0.8839 −0.0197 0.046*
C33 0.2168 (2) 0.7735 (8) −0.0610 (3) 0.0468 (10)
H33 0.2127 0.8903 −0.1037 0.056*
C34 0.2678 (2) 0.6082 (8) −0.0482 (3) 0.0444 (9)
H34 0.2992 0.6120 −0.0809 0.053*
C35 0.27115 (19) 0.4360 (7) 0.0145 (3) 0.0380 (8)
C36 0.22569 (18) 0.4240 (6) 0.0639 (2) 0.0361 (8)
H36 0.2289 0.3029 0.1047 0.043*
C41 0.03373 (17) 0.3699 (6) −0.0021 (2) 0.0317 (7)
C42 −0.0151 (3) 0.1008 (8) −0.1194 (3) 0.0558 (11)
H421 −0.0626 0.1288 −0.1220 0.084*
H422 −0.0100 −0.0590 −0.1345 0.084*
H423 −0.0032 0.2008 −0.1617 0.084*
C21 0.22025 (18) 0.8146 (6) 0.2304 (2) 0.0335 (8)
C22 0.3365 (2) 0.9385 (9) 0.2956 (4) 0.0607 (13)
H221 0.3412 0.9999 0.2405 0.091*
H222 0.3806 0.8782 0.3326 0.091*
H223 0.3217 1.0603 0.3277 0.091*
C51 −0.0253 (2) 0.2189 (7) 0.1379 (3) 0.0452 (9)
H511 −0.0524 0.2361 0.1782 0.068*
H512 −0.0021 0.0706 0.1479 0.068*
H513 −0.0555 0.2278 0.0765 0.068*
N1 0.32670 (18) 0.2619 (7) 0.0308 (2) 0.0492 (9)
O1 0.13259 (17) 0.7525 (5) 0.3311 (2) 0.0556 (8)
O2 0.20216 (15) 1.0111 (5) 0.2094 (2) 0.0485 (7)
O3 0.28532 (14) 0.7538 (5) 0.2748 (2) 0.0472 (7)
O7 0.00392 (16) 0.5267 (5) −0.04872 (19) 0.0502 (7)
O8 −0.00399 (14) 0.6359 (4) 0.14196 (19) 0.0415 (6)
H8 −0.0331 0.6410 0.0915 0.062*
O6 0.03014 (14) 0.1479 (4) −0.03018 (19) 0.0434 (7)
O4 0.32638 (19) 0.1005 (7) 0.0817 (3) 0.0780 (12)
O5 0.37036 (18) 0.2827 (8) −0.0070 (2) 0.0742 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C3 0.0308 (17) 0.0229 (15) 0.0379 (19) 0.0038 (13) 0.0098 (14) 0.0007 (14)
C2 0.0335 (18) 0.0236 (16) 0.0343 (19) 0.0063 (13) 0.0057 (15) 0.0026 (14)
C1 0.039 (2) 0.0347 (19) 0.035 (2) 0.0031 (16) 0.0090 (16) 0.0009 (17)
C6 0.050 (2) 0.0342 (19) 0.039 (2) −0.0011 (16) 0.0178 (17) 0.0015 (15)
C5 0.0335 (18) 0.0222 (17) 0.050 (2) −0.0015 (13) 0.0144 (17) −0.0028 (14)
C4 0.0281 (16) 0.0228 (16) 0.0383 (19) 0.0020 (13) 0.0045 (14) −0.0022 (14)
C31 0.0296 (16) 0.0269 (16) 0.0316 (17) −0.0010 (13) 0.0017 (14) −0.0028 (13)
C32 0.038 (2) 0.034 (2) 0.0384 (19) 0.0075 (15) 0.0061 (16) 0.0040 (15)
C33 0.054 (2) 0.049 (2) 0.038 (2) 0.0008 (19) 0.0149 (19) 0.0114 (17)
C34 0.039 (2) 0.056 (2) 0.041 (2) −0.0011 (17) 0.0170 (17) 0.0022 (18)
C35 0.0299 (18) 0.044 (2) 0.0379 (19) 0.0031 (15) 0.0074 (15) −0.0089 (16)
C36 0.0356 (19) 0.0345 (19) 0.0371 (19) 0.0040 (15) 0.0099 (16) 0.0010 (15)
C41 0.0226 (16) 0.0292 (17) 0.0418 (19) 0.0021 (13) 0.0081 (14) −0.0025 (15)
C42 0.062 (3) 0.045 (2) 0.050 (3) −0.0019 (19) 0.004 (2) −0.012 (2)
C21 0.0342 (18) 0.0328 (19) 0.0324 (18) 0.0013 (15) 0.0090 (14) −0.0007 (15)
C22 0.042 (2) 0.067 (3) 0.066 (3) −0.017 (2) 0.007 (2) 0.006 (2)
C51 0.042 (2) 0.036 (2) 0.058 (3) −0.0063 (16) 0.0160 (19) −0.0048 (18)
N1 0.0377 (18) 0.060 (2) 0.047 (2) 0.0110 (16) 0.0095 (16) −0.0060 (17)
O1 0.066 (2) 0.0561 (18) 0.0502 (17) −0.0150 (15) 0.0260 (15) −0.0196 (15)
O2 0.0460 (16) 0.0306 (15) 0.0640 (18) 0.0004 (11) 0.0102 (13) 0.0031 (13)
O3 0.0317 (13) 0.0435 (15) 0.0584 (17) −0.0014 (11) 0.0027 (12) 0.0060 (13)
O7 0.0573 (17) 0.0346 (14) 0.0435 (15) 0.0095 (13) −0.0060 (13) 0.0020 (12)
O8 0.0380 (14) 0.0319 (13) 0.0539 (16) 0.0078 (11) 0.0135 (12) −0.0042 (12)
O6 0.0487 (16) 0.0309 (14) 0.0432 (14) 0.0031 (12) 0.0039 (12) −0.0083 (11)
O4 0.066 (2) 0.067 (2) 0.109 (3) 0.0325 (18) 0.039 (2) 0.023 (2)
O5 0.0514 (19) 0.118 (3) 0.061 (2) 0.033 (2) 0.0295 (17) 0.005 (2)

Geometric parameters (Å, º)

C3—C31 1.513 (5) C34—C35 1.376 (6)
C3—C4 1.539 (5) C34—H34 0.9300
C3—C2 1.551 (5) C35—C36 1.372 (5)
C3—H3 0.9800 C35—N1 1.463 (5)
C2—C21 1.502 (5) C36—H36 0.9300
C2—C1 1.521 (5) C41—O7 1.193 (4)
C2—H2 0.9800 C41—O6 1.341 (4)
C1—O1 1.203 (4) C42—O6 1.428 (5)
C1—C6 1.508 (5) C42—H421 0.9600
C6—C5 1.513 (5) C42—H422 0.9600
C6—H61 0.9700 C42—H423 0.9600
C6—H62 0.9700 C21—O2 1.199 (5)
C5—O8 1.423 (4) C21—O3 1.324 (4)
C5—C51 1.529 (5) C22—O3 1.444 (5)
C5—C4 1.559 (5) C22—H221 0.9600
C4—C41 1.499 (5) C22—H222 0.9600
C4—H4 0.9800 C22—H223 0.9600
C31—C36 1.382 (5) C51—H511 0.9600
C31—C32 1.392 (5) C51—H512 0.9600
C32—C33 1.378 (5) C51—H513 0.9600
C32—H32 0.9300 N1—O5 1.209 (5)
C33—C34 1.368 (6) N1—O4 1.221 (5)
C33—H33 0.9300 O8—H8 0.8200
C31—C3—C4 113.8 (3) C32—C33—H33 119.7
C31—C3—C2 109.4 (3) C33—C34—C35 117.9 (4)
C4—C3—C2 109.0 (3) C33—C34—H34 121.1
C31—C3—H3 108.2 C35—C34—H34 121.1
C4—C3—H3 108.2 C36—C35—C34 122.8 (3)
C2—C3—H3 108.2 C36—C35—N1 118.7 (3)
C21—C2—C1 111.2 (3) C34—C35—N1 118.5 (4)
C21—C2—C3 111.0 (3) C35—C36—C31 119.3 (3)
C1—C2—C3 111.5 (3) C35—C36—H36 120.3
C21—C2—H2 107.6 C31—C36—H36 120.3
C1—C2—H2 107.6 O7—C41—O6 123.5 (3)
C3—C2—H2 107.6 O7—C41—C4 125.7 (3)
O1—C1—C6 123.8 (3) O6—C41—C4 110.8 (3)
O1—C1—C2 122.2 (3) O6—C42—H421 109.5
C6—C1—C2 113.9 (3) O6—C42—H422 109.5
C1—C6—C5 111.0 (3) H421—C42—H422 109.5
C1—C6—H61 109.4 O6—C42—H423 109.5
C5—C6—H61 109.4 H421—C42—H423 109.5
C1—C6—H62 109.4 H422—C42—H423 109.5
C5—C6—H62 109.4 O2—C21—O3 123.9 (3)
H61—C6—H62 108.0 O2—C21—C2 124.4 (3)
O8—C5—C6 104.4 (3) O3—C21—C2 111.8 (3)
O8—C5—C51 110.6 (3) O3—C22—H221 109.5
C6—C5—C51 110.1 (3) O3—C22—H222 109.5
O8—C5—C4 110.2 (3) H221—C22—H222 109.5
C6—C5—C4 109.0 (3) O3—C22—H223 109.5
C51—C5—C4 112.2 (3) H221—C22—H223 109.5
C41—C4—C3 111.2 (3) H222—C22—H223 109.5
C41—C4—C5 109.5 (3) C5—C51—H511 109.5
C3—C4—C5 110.0 (3) C5—C51—H512 109.5
C41—C4—H4 108.7 H511—C51—H512 109.5
C3—C4—H4 108.7 C5—C51—H513 109.5
C5—C4—H4 108.7 H511—C51—H513 109.5
C36—C31—C32 118.2 (3) H512—C51—H513 109.5
C36—C31—C3 121.3 (3) O5—N1—O4 123.0 (4)
C32—C31—C3 120.4 (3) O5—N1—C35 119.0 (4)
C33—C32—C31 121.2 (3) O4—N1—C35 118.0 (3)
C33—C32—H32 119.4 C21—O3—C22 116.5 (3)
C31—C32—H32 119.4 C5—O8—H8 109.5
C34—C33—C32 120.5 (4) C41—O6—C42 116.7 (3)
C34—C33—H33 119.7
C31—C3—C2—C21 56.6 (3) C36—C31—C32—C33 −0.3 (5)
C4—C3—C2—C21 −178.4 (3) C3—C31—C32—C33 176.6 (4)
C31—C3—C2—C1 −178.8 (3) C31—C32—C33—C34 −1.1 (6)
C4—C3—C2—C1 −53.8 (4) C32—C33—C34—C35 1.2 (6)
C21—C2—C1—O1 −3.4 (5) C33—C34—C35—C36 0.1 (6)
C3—C2—C1—O1 −128.0 (4) C33—C34—C35—N1 −178.3 (4)
C21—C2—C1—C6 176.5 (3) C34—C35—C36—C31 −1.5 (6)
C3—C2—C1—C6 52.0 (4) N1—C35—C36—C31 176.9 (3)
O1—C1—C6—C5 125.7 (4) C32—C31—C36—C35 1.5 (5)
C2—C1—C6—C5 −54.2 (4) C3—C31—C36—C35 −175.3 (3)
C1—C6—C5—O8 −59.9 (4) C3—C4—C41—O7 −46.0 (5)
C1—C6—C5—C51 −178.7 (3) C5—C4—C41—O7 75.8 (5)
C1—C6—C5—C4 57.9 (4) C3—C4—C41—O6 136.2 (3)
C31—C3—C4—C41 −56.8 (4) C5—C4—C41—O6 −102.0 (3)
C2—C3—C4—C41 −179.2 (3) C1—C2—C21—O2 −72.9 (4)
C31—C3—C4—C5 −178.2 (3) C3—C2—C21—O2 51.9 (5)
C2—C3—C4—C5 59.4 (3) C1—C2—C21—O3 105.8 (3)
O8—C5—C4—C41 −70.4 (3) C3—C2—C21—O3 −129.4 (3)
C6—C5—C4—C41 175.6 (3) C36—C35—N1—O5 −173.9 (4)
C51—C5—C4—C41 53.3 (4) C34—C35—N1—O5 4.6 (5)
O8—C5—C4—C3 52.0 (4) C36—C35—N1—O4 6.6 (6)
C6—C5—C4—C3 −62.0 (4) C34—C35—N1—O4 −174.9 (4)
C51—C5—C4—C3 175.8 (3) O2—C21—O3—C22 −1.9 (6)
C4—C3—C31—C36 −65.9 (4) C2—C21—O3—C22 179.4 (4)
C2—C3—C31—C36 56.3 (4) O7—C41—O6—C42 −3.4 (5)
C4—C3—C31—C32 117.4 (3) C4—C41—O6—C42 174.5 (3)
C2—C3—C31—C32 −120.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O2i 0.98 2.46 3.374 (5) 154
C36—H36···O2i 0.93 2.51 3.414 (5) 164
O8—H8···O5ii 0.82 2.22 2.969 (5) 152

Symmetry codes: (i) x, y−1, z; (ii) x−1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2056).

References

  1. Allinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127–8134.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Danyi, Q., Takayama, K. & Nagai, T. (1989). Drug Des. Deliv. 4, 323–330. [PubMed]
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Hema, R., Parthasarathi, V., Ravikumar, K., Pandiarajan, K. & Murugavel, K. (2006). Acta Cryst. E62, o703–o705.
  9. Puetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Appl. No. 20030096811.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027377/go2056sup1.cif

e-68-o2213-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027377/go2056Isup2.hkl

e-68-o2213-Isup2.hkl (73.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027377/go2056Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES