Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 27;68(Pt 7):o2214. doi: 10.1107/S1600536812027511

10-(6-Hy­droxy­hexa-2,4-diyn-1-yl)-10H-phenothia­zine 5-oxide

Hideyuki Tabata a, Tsunehisa Okuno a,*
PMCID: PMC3394009  PMID: 22798874

Abstract

The title compound, C18H13NO2S, has two independent mol­ecules (A and B) with similar conformations in the asymmetric unit. Both phenothia­zine moieties have a butterfly structure [dihedral angles between benzene rings = 155.17 (7) and 161.71 (7)°, respectively], and the central six-membered rings have a boat form. In the crystal, the A and B mol­ecules stack alternately along the b axis. The A and B mol­ecules are linked by O—H⋯O=S hydrogen bonds, forming zigzag chains along [10-1].

Related literature  

For related structures of phenothia­zine 5-oxide compounds, see: Chu et al. (1985); Dahl et al. (1982); Hough et al. (1985a ,b , 1982); Jin et al. (2010); Jovanovic et al. (1986); Okuno et al. (2006); Wang et al. (2009); Xu et al. (2009). For the related preparation of 10-(6-hy­droxy­hexa-2,4-diyn-1-yl)-10H-pheno­thia­zine, see: Zaugg et al. (1958) and for the preparation of the title compound, see: Gilman & Ranck (1958).graphic file with name e-68-o2214-scheme1.jpg

Experimental  

Crystal data  

  • C18H13NO2S

  • M r = 307.37

  • Monoclinic, Inline graphic

  • a = 16.797 (5) Å

  • b = 10.197 (3) Å

  • c = 17.664 (5) Å

  • β = 94.934 (5)°

  • V = 3014.3 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 93 K

  • 0.15 × 0.15 × 0.05 mm

Data collection  

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999) T min = 0.969, T max = 0.989

  • 24445 measured reflections

  • 6932 independent reflections

  • 5523 reflections with F 2 > 2σ(F 2)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.135

  • S = 1.08

  • 6931 reflections

  • 404 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027511/ff2072sup1.cif

e-68-o2214-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027511/ff2072Isup2.hkl

e-68-o2214-Isup2.hkl (339.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027511/ff2072Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H13⋯O3i 0.82 (3) 1.85 (3) 2.663 (3) 172 (3)
O4—H26⋯O1ii 0.85 (2) 1.81 (2) 2.659 (3) 175 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Research for Promoting Technological Seeds of the Japan Science and Technology Agency (JST).

supplementary crystallographic information

Comment

Aromatic compounds that contain S-atom in a substituent and/or within an aromatic ring have attracted interest from the viewpoint of electronic property of the compounds. Oxidation of S-atom to form S=O bond enables to control its electronic condition without remarkable structural changes. S=O bonds have also been paid attention due to their ability to control the molecular arrangements.

In the title compound, there are two independent molecules (A and B) in the unit cell (Figure 1). The molecular structures of A and B are similar. The phenothiazine moieties have a butterfly structure, where the dihedral angles between two benzene rings (the C1—C6 plane: r.m.s. deviation = 0.0114 Å and the C7—C12 plane: r.m.s. deviation = 0.0020 Å in A, the C19—C24 plane: r.m.s. deviation = 0.0033 Å and the C25—C30 plane: r.m.s. deviation = 0.0052 Å in B) are 155.17 (7)° and 161.71 (7)°, respectively. The central six-membered rings (the N1/C1/C6/S1/C7/C12 and the N2/C19/C24/S2/C25/C30 rings) have a boat form. The S1—O1 and S2—O3 bonds showed longer bond lengths compared with the reported values (1.434 (13) Å - 1.511 (3) Å) of phenothiazine 5-oxide compounds. (Chu et al., 1985; Dahl et al., 1982; Hough et al., 1982; Hough et al., 1985a; Hough et al., 1985b; Jin et al., 2010; Jovanovic et al., 1986; Okuno et al., 2006; Wang et al., 2009; Xu et al., 2009). The elongation might be caused by the intermolecular hydrogen bonds.

The A and B stack alternately along the b axis. There are not any remarkable contacts within the stacks. The A and B molecules are connected by O—H···O=S hydrogen bonds, forming zig-zag chains along the [101] direction, where the distances of O2···O3i and O4···O1ii [Symmetry codes: (i) -x, y - 1/2, -z + 3/2; (ii) -x + 1, y + 1/2, -z + 1/2] are 2.663 (3) Å and 2.659 (3) Å, respectively (Figure 2). In this compound, S=O bonds play an important role to link the stacks by the intermolecular hydrogen bonds.

Experimental

10-(6-Hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine

N1,N1,N4,N4-Tetramethylethylenediamine (TMEDA; 30 µl, 0.20 mmol) was added to a suspension of copper(I) chloride (57 mg, 0.58 mmol) in degassed acetone (4 ml), and the suspension was stirred for 30 min. The supernatant solution containing the CuCl-TMEDA catalyst was transferred to a solution of 10-(prop-2-yn-1-yl)-10H-phenothiazine (0.67 g, 2.82 mmol) (Zaugg et al., 1958) and 2-propyn-1-ol (1.6 ml, 28 mmol) in acetone (3 ml). The solution was stirred for 6 days under an oxygen atmosphere. After the concentration of the solution, the residue was extracted with dichloromethane (20 ml). The solution was washed with 0.5 M aqueous hydrogen chloride (7 ml) and water (20 ml × 3) successively. The water layer was extracted twice with dichloromethane (200 ml). After the concentration of the combined solution, the residue was purified by a recrystallization from a n-hexane to give a 10-(6-hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine as a white powder (0.60 g, yield 73%).

10-(6-Hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine 5-oxide (Gilman & Ranck, 1958)

To a solution of 10-(6-hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine (0.04 g, 0.14 mmol) in ethanol (30 ml), hydrogen peroxide (0.2 ml, 3.9 mmol × 2) was added successively. Then, the solution was refluxed for 5 h. After the solvent was evaporated, the residue was extracted with dichloromethane (20 ml × 3) and washed with water (20 ml). After the organic layer was concentrated, the residue was purified by a column chromatography with dichloromethane/ethanol (50:1 v/v) as an eluent to give 10-(6-hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine 5-oxide (0.03 g, yield 71%). The single crystals with sufficient quality for X-ray analysis were obtained by concentration of a chloroform solution.

Refinement

The C-bound H atoms were placed at ideal positions and were treated as riding on their parent C atoms. The Uiso(H) values of the H atoms were set at 1.2Ueq(parent C atom). The O-bound H atoms were obtained from a difference Fourier map. The H13 atom was refined isotropically without any restrictions. The position of the H26 atom was refined with the restraint of O—H range between 0.82 Å and 0.86 Å. The Uiso(H26) value was fixed at 1.5Ueq of O4.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.

Fig. 2.

Fig. 2.

A view of the two-dimensional array of the title compound on the (101) plane. Hydrogen bonds are shown as dashed lines, and hydrogen atoms are omitted for clarity. [Symmetry codes: (i) -x, y - 1/2, -z + 3/2; (ii) -x + 1, y + 1/2, -z + 1/2; (iii) -x, y + 1/2, -z + 3/2; (iv) -x + 1, y - 1/2, -z + 1/2; (v) x, y - 1, z].

Crystal data

C18H13NO2S F(000) = 1280.00
Mr = 307.37 Dx = 1.355 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 9306 reflections
a = 16.797 (5) Å θ = 2.3–31.2°
b = 10.197 (3) Å µ = 0.22 mm1
c = 17.664 (5) Å T = 93 K
β = 94.934 (5)° Prism, colourless
V = 3014.3 (15) Å3 0.15 × 0.15 × 0.05 mm
Z = 8

Data collection

Rigaku Saturn724+ diffractometer 5523 reflections with F2 > 2σ(F2)
Detector resolution: 7.111 pixels mm-1 Rint = 0.033
ω scans θmax = 27.5°
Absorption correction: numerical (NUMABS; Rigaku, 1999) h = −21→21
Tmin = 0.969, Tmax = 0.989 k = −13→11
24445 measured reflections l = −22→22
6932 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.9115P] where P = (Fo2 + 2Fc2)/3
6931 reflections (Δ/σ)max = 0.001
404 parameters Δρmax = 0.88 e Å3
1 restraint Δρmin = −0.47 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Refinement. Refinement was performed using all reflections except for 1 with very negative F2. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.30626 (3) 0.37416 (5) 0.39495 (3) 0.02511 (13)
S2 0.16339 (3) 0.80322 (5) 0.61113 (3) 0.02991 (14)
O1 0.36361 (8) 0.25896 (13) 0.40014 (8) 0.0299 (3)
O2 −0.10191 (8) 0.61158 (15) 0.80031 (8) 0.0280 (3)
O3 0.09579 (9) 0.90034 (15) 0.61077 (10) 0.0420 (4)
O4 0.61087 (8) 0.67228 (15) 0.23764 (8) 0.0326 (4)
N1 0.25753 (9) 0.34698 (15) 0.55932 (8) 0.0206 (4)
N2 0.23463 (9) 0.90242 (15) 0.46339 (9) 0.0249 (4)
C1 0.20387 (11) 0.29706 (17) 0.50186 (10) 0.0212 (4)
C2 0.13522 (11) 0.22802 (18) 0.51913 (11) 0.0255 (4)
C3 0.08004 (12) 0.18508 (19) 0.46171 (11) 0.0292 (5)
C4 0.09045 (12) 0.20915 (19) 0.38558 (11) 0.0298 (5)
C5 0.15870 (12) 0.27348 (18) 0.36725 (11) 0.0278 (5)
C6 0.21564 (11) 0.31566 (17) 0.42466 (10) 0.0233 (4)
C7 0.33286 (12) 0.47585 (18) 0.47324 (11) 0.0251 (4)
C8 0.38433 (13) 0.5795 (2) 0.45994 (12) 0.0341 (5)
C9 0.41471 (14) 0.6578 (3) 0.51915 (13) 0.0388 (6)
C10 0.39262 (13) 0.6322 (2) 0.59173 (12) 0.0346 (5)
C11 0.34146 (12) 0.53097 (19) 0.60589 (11) 0.0274 (4)
C12 0.31011 (11) 0.44917 (17) 0.54639 (10) 0.0221 (4)
C13 0.24625 (11) 0.31145 (18) 0.63824 (10) 0.0224 (4)
C14 0.18691 (11) 0.39347 (18) 0.67257 (10) 0.0234 (4)
C15 0.13874 (11) 0.46074 (18) 0.70120 (10) 0.0234 (4)
C16 0.08236 (11) 0.53360 (18) 0.73504 (10) 0.0246 (4)
C17 0.03417 (11) 0.59378 (18) 0.76754 (11) 0.0251 (4)
C18 −0.02351 (11) 0.6651 (2) 0.81011 (12) 0.0286 (5)
C19 0.18737 (11) 0.78941 (18) 0.45680 (11) 0.0244 (4)
C20 0.16976 (12) 0.72862 (18) 0.38549 (11) 0.0273 (5)
C21 0.12277 (12) 0.61690 (19) 0.37921 (12) 0.0286 (5)
C22 0.09196 (12) 0.56089 (19) 0.44271 (12) 0.0294 (5)
C23 0.10966 (12) 0.61816 (19) 0.51256 (12) 0.0286 (5)
C24 0.15653 (11) 0.73151 (18) 0.52011 (11) 0.0255 (4)
C25 0.25119 (11) 0.89494 (19) 0.60253 (11) 0.0266 (4)
C26 0.29188 (12) 0.9335 (2) 0.67147 (12) 0.0298 (5)
C27 0.35514 (12) 1.0200 (2) 0.67242 (12) 0.0328 (5)
C28 0.37838 (12) 1.0661 (2) 0.60378 (13) 0.0327 (5)
C29 0.34015 (12) 1.02790 (19) 0.53504 (12) 0.0290 (5)
C30 0.27439 (11) 0.94121 (18) 0.53302 (11) 0.0248 (4)
C31 0.25409 (12) 0.96831 (19) 0.39337 (11) 0.0278 (4)
C32 0.31969 (12) 0.90391 (19) 0.35750 (11) 0.0282 (5)
C33 0.37120 (12) 0.8436 (2) 0.32972 (11) 0.0280 (5)
C34 0.42881 (12) 0.77033 (19) 0.29766 (11) 0.0277 (5)
C35 0.47657 (12) 0.70260 (19) 0.26922 (11) 0.0272 (4)
C36 0.53335 (11) 0.6173 (2) 0.23356 (12) 0.0287 (5)
H1 0.1266 0.2107 0.5706 0.0306*
H2 0.0342 0.1383 0.4745 0.0350*
H3 0.0513 0.1818 0.3468 0.0358*
H4 0.1670 0.2891 0.3155 0.0334*
H5 0.3984 0.5960 0.4099 0.0410*
H6 0.4501 0.7279 0.5105 0.0465*
H7 0.4133 0.6860 0.6327 0.0415*
H8 0.3273 0.5163 0.6561 0.0328*
H9 0.2981 0.3191 0.6691 0.0269*
H10 0.2291 0.2187 0.6398 0.0269*
H11 −0.0049 0.6636 0.8648 0.0343*
H12 −0.0254 0.7578 0.7934 0.0343*
H13 −0.1010 (16) 0.542 (3) 0.8238 (16) 0.050 (8)*
H14 0.1903 0.7646 0.3415 0.0328*
H15 0.1113 0.5776 0.3308 0.0344*
H16 0.0594 0.4847 0.4377 0.0353*
H17 0.0898 0.5802 0.5563 0.0343*
H18 0.2758 0.8998 0.7179 0.0357*
H19 0.3822 1.0475 0.7191 0.0394*
H20 0.4219 1.1257 0.6041 0.0393*
H21 0.3581 1.0600 0.4890 0.0348*
H22 0.2692 1.0603 0.4053 0.0333*
H23 0.2059 0.9697 0.3569 0.0333*
H24 0.5357 0.5310 0.2593 0.0344*
H25 0.5142 0.6029 0.1796 0.0344*
H26 0.6186 (16) 0.695 (3) 0.1926 (11) 0.0489*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0337 (3) 0.0229 (3) 0.0194 (3) 0.00180 (18) 0.00666 (19) 0.00054 (17)
S2 0.0313 (3) 0.0278 (3) 0.0311 (3) −0.0024 (2) 0.0052 (2) −0.0050 (2)
O1 0.0342 (8) 0.0273 (8) 0.0292 (7) 0.0066 (6) 0.0081 (6) −0.0021 (6)
O2 0.0261 (7) 0.0278 (8) 0.0304 (8) 0.0005 (6) 0.0040 (6) 0.0057 (6)
O3 0.0294 (8) 0.0407 (9) 0.0559 (11) −0.0002 (7) 0.0047 (7) −0.0241 (8)
O4 0.0266 (8) 0.0436 (9) 0.0273 (8) −0.0095 (7) 0.0008 (6) 0.0045 (7)
N1 0.0240 (8) 0.0213 (8) 0.0168 (7) 0.0002 (6) 0.0031 (6) −0.0001 (6)
N2 0.0271 (8) 0.0201 (8) 0.0273 (8) 0.0003 (7) 0.0015 (7) −0.0018 (7)
C1 0.0260 (9) 0.0176 (9) 0.0198 (9) 0.0040 (7) 0.0010 (7) −0.0010 (7)
C2 0.0289 (10) 0.0254 (10) 0.0225 (9) 0.0017 (8) 0.0039 (8) −0.0012 (8)
C3 0.0273 (10) 0.0264 (11) 0.0334 (11) −0.0005 (8) 0.0002 (9) −0.0041 (8)
C4 0.0326 (11) 0.0275 (11) 0.0280 (10) 0.0022 (9) −0.0059 (9) −0.0067 (8)
C5 0.0382 (11) 0.0230 (10) 0.0216 (9) 0.0084 (8) −0.0010 (8) −0.0037 (8)
C6 0.0307 (10) 0.0176 (9) 0.0216 (9) 0.0062 (8) 0.0029 (8) −0.0004 (7)
C7 0.0315 (10) 0.0196 (10) 0.0246 (9) 0.0011 (8) 0.0052 (8) 0.0013 (8)
C8 0.0474 (13) 0.0270 (11) 0.0294 (11) −0.0044 (9) 0.0110 (10) 0.0041 (9)
C9 0.0478 (14) 0.0278 (12) 0.0414 (13) −0.0128 (10) 0.0075 (11) −0.0005 (10)
C10 0.0398 (12) 0.0298 (12) 0.0336 (11) −0.0058 (9) 0.0003 (10) −0.0047 (9)
C11 0.0304 (10) 0.0276 (11) 0.0239 (10) −0.0011 (8) 0.0018 (8) −0.0020 (8)
C12 0.0234 (9) 0.0190 (9) 0.0242 (9) 0.0022 (7) 0.0031 (8) 0.0000 (7)
C13 0.0242 (9) 0.0266 (10) 0.0166 (8) 0.0022 (8) 0.0021 (7) 0.0020 (7)
C14 0.0256 (9) 0.0262 (10) 0.0182 (9) −0.0027 (8) 0.0009 (8) 0.0013 (7)
C15 0.0286 (10) 0.0233 (10) 0.0184 (9) −0.0027 (8) 0.0030 (8) 0.0003 (7)
C16 0.0277 (10) 0.0245 (10) 0.0217 (9) −0.0012 (8) 0.0029 (8) 0.0015 (8)
C17 0.0286 (10) 0.0225 (10) 0.0244 (9) −0.0015 (8) 0.0040 (8) 0.0021 (8)
C18 0.0275 (10) 0.0269 (11) 0.0324 (11) 0.0007 (8) 0.0089 (9) −0.0027 (9)
C19 0.0223 (9) 0.0191 (9) 0.0313 (10) 0.0035 (7) −0.0009 (8) −0.0023 (8)
C20 0.0300 (10) 0.0230 (10) 0.0284 (10) 0.0052 (8) −0.0010 (8) −0.0006 (8)
C21 0.0312 (11) 0.0215 (10) 0.0324 (11) 0.0036 (8) −0.0022 (9) −0.0062 (8)
C22 0.0273 (10) 0.0185 (10) 0.0420 (12) 0.0001 (8) 0.0002 (9) −0.0032 (9)
C23 0.0268 (10) 0.0238 (10) 0.0355 (11) 0.0002 (8) 0.0036 (9) 0.0013 (8)
C24 0.0242 (10) 0.0227 (10) 0.0296 (10) 0.0033 (8) 0.0013 (8) −0.0037 (8)
C25 0.0259 (10) 0.0219 (10) 0.0317 (10) 0.0029 (8) −0.0001 (8) −0.0034 (8)
C26 0.0306 (11) 0.0282 (11) 0.0302 (10) 0.0071 (9) 0.0002 (9) −0.0032 (9)
C27 0.0294 (11) 0.0300 (11) 0.0371 (12) 0.0065 (9) −0.0087 (9) −0.0051 (9)
C28 0.0268 (10) 0.0239 (11) 0.0461 (13) −0.0006 (8) −0.0048 (9) −0.0044 (9)
C29 0.0263 (10) 0.0236 (10) 0.0364 (11) 0.0019 (8) −0.0009 (9) 0.0002 (9)
C30 0.0252 (9) 0.0185 (9) 0.0298 (10) 0.0043 (8) −0.0027 (8) −0.0032 (8)
C31 0.0331 (11) 0.0193 (10) 0.0304 (10) 0.0027 (8) −0.0000 (9) 0.0022 (8)
C32 0.0335 (11) 0.0228 (10) 0.0280 (10) −0.0026 (8) 0.0012 (9) 0.0030 (8)
C33 0.0324 (11) 0.0256 (10) 0.0257 (10) −0.0044 (9) 0.0016 (8) 0.0046 (8)
C34 0.0313 (11) 0.0273 (11) 0.0245 (10) −0.0044 (8) 0.0022 (8) 0.0013 (8)
C35 0.0289 (10) 0.0270 (10) 0.0254 (10) −0.0055 (8) 0.0009 (8) 0.0038 (8)
C36 0.0250 (10) 0.0285 (11) 0.0328 (11) −0.0044 (8) 0.0040 (8) −0.0010 (9)

Geometric parameters (Å, º)

S1—O1 1.5169 (15) C25—C26 1.400 (3)
S1—C6 1.757 (2) C25—C30 1.402 (3)
S1—C7 1.755 (2) C26—C27 1.380 (3)
S2—O3 1.5063 (17) C27—C28 1.387 (4)
S2—C24 1.761 (2) C28—C29 1.380 (3)
S2—C25 1.764 (2) C29—C30 1.413 (3)
O2—C18 1.422 (3) C31—C32 1.472 (3)
O4—C36 1.414 (3) C32—C33 1.200 (3)
N1—C1 1.394 (3) C33—C34 1.382 (3)
N1—C12 1.397 (3) C34—C35 1.201 (3)
N1—C13 1.468 (3) C35—C36 1.472 (3)
N2—C19 1.398 (3) O2—H13 0.82 (3)
N2—C30 1.405 (3) O4—H26 0.85 (2)
N2—C31 1.469 (3) C2—H1 0.950
C1—C2 1.407 (3) C3—H2 0.950
C1—C6 1.407 (3) C4—H3 0.950
C2—C3 1.385 (3) C5—H4 0.950
C3—C4 1.393 (3) C8—H5 0.950
C4—C5 1.383 (3) C9—H6 0.950
C5—C6 1.400 (3) C10—H7 0.950
C7—C8 1.398 (3) C11—H8 0.950
C7—C12 1.405 (3) C13—H9 0.990
C8—C9 1.378 (3) C13—H10 0.990
C9—C10 1.390 (4) C18—H11 0.990
C10—C11 1.380 (3) C18—H12 0.990
C11—C12 1.408 (3) C20—H14 0.950
C13—C14 1.471 (3) C21—H15 0.950
C14—C15 1.205 (3) C22—H16 0.950
C15—C16 1.380 (3) C23—H17 0.950
C16—C17 1.201 (3) C26—H18 0.950
C17—C18 1.469 (3) C27—H19 0.950
C19—C20 1.412 (3) C28—H20 0.950
C19—C24 1.403 (3) C29—H21 0.950
C20—C21 1.385 (3) C31—H22 0.990
C21—C22 1.397 (3) C31—H23 0.990
C22—C23 1.374 (3) C36—H24 0.990
C23—C24 1.398 (3) C36—H25 0.990
O1—S1—C6 106.32 (9) C31—C32—C33 175.7 (2)
O1—S1—C7 107.01 (9) C32—C33—C34 178.0 (3)
C6—S1—C7 97.68 (10) C33—C34—C35 177.3 (3)
O3—S2—C24 106.20 (10) C34—C35—C36 178.5 (2)
O3—S2—C25 106.65 (10) O4—C36—C35 111.80 (17)
C24—S2—C25 97.53 (10) C18—O2—H13 107.0 (18)
C1—N1—C12 122.09 (15) C36—O4—H26 106.0 (17)
C1—N1—C13 118.22 (15) C1—C2—H1 119.704
C12—N1—C13 118.30 (14) C3—C2—H1 119.707
C19—N2—C30 121.91 (16) C2—C3—H2 119.339
C19—N2—C31 118.21 (16) C4—C3—H2 119.344
C30—N2—C31 119.01 (16) C3—C4—H3 120.499
N1—C1—C2 121.03 (17) C5—C4—H3 120.487
N1—C1—C6 121.34 (17) C4—C5—H4 119.860
C2—C1—C6 117.62 (16) C6—C5—H4 119.855
C1—C2—C3 120.59 (18) C7—C8—H5 119.862
C2—C3—C4 121.32 (19) C9—C8—H5 119.853
C3—C4—C5 119.01 (18) C8—C9—H6 120.631
C4—C5—C6 120.28 (18) C10—C9—H6 120.638
S1—C6—C1 122.19 (14) C9—C10—H7 119.087
S1—C6—C5 116.32 (15) C11—C10—H7 119.090
C1—C6—C5 121.07 (18) C10—C11—H8 119.778
S1—C7—C8 115.68 (16) C12—C11—H8 119.773
S1—C7—C12 122.63 (15) N1—C13—H9 108.873
C8—C7—C12 121.46 (18) N1—C13—H10 108.869
C7—C8—C9 120.3 (2) C14—C13—H9 108.874
C8—C9—C10 118.7 (2) C14—C13—H10 108.874
C9—C10—C11 121.8 (2) H9—C13—H10 107.721
C10—C11—C12 120.45 (19) O2—C18—H11 108.960
N1—C12—C7 121.36 (16) O2—C18—H12 108.959
N1—C12—C11 121.39 (17) C17—C18—H11 108.953
C7—C12—C11 117.25 (17) C17—C18—H12 108.954
N1—C13—C14 113.48 (15) H11—C18—H12 107.770
C13—C14—C15 179.47 (19) C19—C20—H14 119.777
C14—C15—C16 177.9 (2) C21—C20—H14 119.778
C15—C16—C17 177.0 (2) C20—C21—H15 119.346
C16—C17—C18 177.8 (2) C22—C21—H15 119.332
O2—C18—C17 113.11 (17) C21—C22—H16 120.648
N2—C19—C20 120.65 (18) C23—C22—H16 120.628
N2—C19—C24 121.76 (17) C22—C23—H17 119.548
C20—C19—C24 117.58 (17) C24—C23—H17 119.561
C19—C20—C21 120.45 (19) C25—C26—H18 119.757
C20—C21—C22 121.32 (19) C27—C26—H18 119.744
C21—C22—C23 118.72 (19) C26—C27—H19 120.657
C22—C23—C24 120.9 (2) C28—C27—H19 120.645
S2—C24—C19 123.61 (15) C27—C28—H20 119.032
S2—C24—C23 114.99 (16) C29—C28—H20 119.052
C19—C24—C23 121.02 (18) C28—C29—H21 119.919
S2—C25—C26 115.02 (16) C30—C29—H21 119.915
S2—C25—C30 123.47 (14) N2—C31—H22 109.035
C26—C25—C30 121.04 (18) N2—C31—H23 109.035
C25—C26—C27 120.5 (2) C32—C31—H22 109.032
C26—C27—C28 118.70 (19) C32—C31—H23 109.027
C27—C28—C29 121.92 (19) H22—C31—H23 107.797
C28—C29—C30 120.2 (2) O4—C36—H24 109.253
N2—C30—C25 121.68 (17) O4—C36—H25 109.261
N2—C30—C29 120.66 (18) C35—C36—H24 109.256
C25—C30—C29 117.66 (18) C35—C36—H25 109.256
N2—C31—C32 112.79 (16) H24—C36—H25 107.939
O1—S1—C6—C1 77.83 (14) C2—C1—C6—C5 3.6 (3)
O1—S1—C6—C5 −94.80 (13) C6—C1—C2—C3 −2.6 (3)
O1—S1—C7—C8 94.67 (14) C1—C2—C3—C4 −0.3 (3)
O1—S1—C7—C12 −79.86 (16) C2—C3—C4—C5 2.2 (3)
C6—S1—C7—C8 −155.59 (13) C3—C4—C5—C6 −1.1 (3)
C6—S1—C7—C12 29.88 (16) C4—C5—C6—S1 170.93 (15)
C7—S1—C6—C1 −32.48 (15) C4—C5—C6—C1 −1.8 (3)
C7—S1—C6—C5 154.89 (12) S1—C7—C8—C9 −174.02 (13)
O3—S2—C24—C19 82.48 (15) S1—C7—C12—N1 −6.9 (3)
O3—S2—C24—C23 −90.47 (14) S1—C7—C12—C11 174.06 (12)
O3—S2—C25—C26 90.62 (14) C8—C7—C12—N1 178.84 (17)
O3—S2—C25—C30 −81.60 (16) C8—C7—C12—C11 −0.2 (3)
C24—S2—C25—C26 −159.91 (13) C12—C7—C8—C9 0.6 (3)
C24—S2—C25—C30 27.87 (16) C7—C8—C9—C10 −0.5 (3)
C25—S2—C24—C19 −27.36 (16) C8—C9—C10—C11 0.1 (4)
C25—S2—C24—C23 159.69 (12) C9—C10—C11—C12 0.3 (3)
C1—N1—C12—C7 −23.1 (3) C10—C11—C12—N1 −179.29 (17)
C1—N1—C12—C11 155.82 (15) C10—C11—C12—C7 −0.3 (3)
C12—N1—C1—C2 −158.65 (15) N2—C19—C20—C21 −179.84 (15)
C12—N1—C1—C6 20.3 (3) N2—C19—C24—S2 7.7 (3)
C1—N1—C13—C14 −82.95 (19) N2—C19—C24—C23 −179.71 (15)
C13—N1—C1—C2 7.7 (3) C20—C19—C24—S2 −172.93 (15)
C13—N1—C1—C6 −173.35 (14) C20—C19—C24—C23 −0.4 (3)
C12—N1—C13—C14 83.93 (19) C24—C19—C20—C21 0.8 (3)
C13—N1—C12—C7 170.51 (14) C19—C20—C21—C22 −0.4 (3)
C13—N1—C12—C11 −10.5 (3) C20—C21—C22—C23 −0.6 (3)
C19—N2—C30—C25 −19.6 (3) C21—C22—C23—C24 1.0 (3)
C19—N2—C30—C29 159.75 (15) C22—C23—C24—S2 172.62 (16)
C30—N2—C19—C20 −159.11 (15) C22—C23—C24—C19 −0.5 (3)
C30—N2—C19—C24 20.2 (3) S2—C25—C26—C27 −171.30 (13)
C19—N2—C31—C32 −79.65 (19) S2—C25—C30—N2 −8.9 (3)
C31—N2—C19—C20 10.0 (3) S2—C25—C30—C29 171.77 (12)
C31—N2—C19—C24 −170.65 (15) C26—C25—C30—N2 179.37 (16)
C30—N2—C31—C32 89.82 (19) C26—C25—C30—C29 −0.0 (3)
C31—N2—C30—C25 171.34 (15) C30—C25—C26—C27 1.1 (3)
C31—N2—C30—C29 −9.3 (3) C25—C26—C27—C28 −1.1 (3)
N1—C1—C2—C3 176.43 (15) C26—C27—C28—C29 −0.0 (3)
N1—C1—C6—S1 12.3 (3) C27—C28—C29—C30 1.1 (3)
N1—C1—C6—C5 −175.40 (14) C28—C29—C30—N2 179.52 (17)
C2—C1—C6—S1 −168.70 (14) C28—C29—C30—C25 −1.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H13···O3i 0.82 (3) 1.85 (3) 2.663 (3) 172 (3)
O4—H26···O1ii 0.85 (2) 1.81 (2) 2.659 (3) 175 (3)

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2072).

References

  1. Chu, S. S. C., de Meester, P., Jovanovic, M. V. & Biehl, E. R. (1985). Acta Cryst. C41, 1111–1114.
  2. Dahl, S. G., Hjorth, M. & Hough, E. (1982). Mol. Pharmacol. 21, 409–414. [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Gilman, H. & Ranck, R. O. (1958). J. Org. Chem. 23, 1903–1906.
  5. Hough, E., Hjorth, M. & Dahl, S. G. (1982). Acta Cryst. B38, 2424–2428.
  6. Hough, E., Hjorth, M. & Dahl, S. G. (1985a). Acta Cryst. C41, 383–386.
  7. Hough, E., Wold, E. & Dahl, S. G. (1985b). Acta Cryst. C41, 386–389.
  8. Jin, R.-F., Yu, K., Yang, S.-Y. & Huang, R.-B. (2010). Acta Cryst. E66, o3267. [DOI] [PMC free article] [PubMed]
  9. Jovanovic, M. V., de Meester, P., Biehl, E. R. & Chu, S. S. C. (1986). J. Heterocycl. Chem. 23, 801–807.
  10. Okuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35–44.
  11. Rigaku (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  12. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  13. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978. [DOI] [PMC free article] [PubMed]
  16. Xu, Z., Sun, Y., Yang, L. & Wang, Q. (2009). Acta Cryst. E65, o1799. [DOI] [PMC free article] [PubMed]
  17. Zaugg, H. E., Sweett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389–1390.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027511/ff2072sup1.cif

e-68-o2214-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027511/ff2072Isup2.hkl

e-68-o2214-Isup2.hkl (339.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027511/ff2072Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES