Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 27;68(Pt 7):o2220. doi: 10.1107/S1600536812027420

1,2-Diphenyl-2-[(1-phenyl­eth­yl)amino]­ethanol

Qing-Gao Hou a, Chang-Qiu Zhao a,*
PMCID: PMC3394014  PMID: 22798879

Abstract

In the mol­ecule of the title compound, C22H23NO, there are two chiral atoms (R* for the C atom attached to the OH group and S* for the C atom attached to the phenyl ring). In the crystal, neighbouring mol­ecules are connected into a chain along the b axis by N—H⋯O hydrogen bonds.

Related literature  

For background to the synthesis of chiral organic compounds, see: Alcaide et al. (1981)graphic file with name e-68-o2220-scheme1.jpg

Experimental  

Crystal data  

  • C22H23NO

  • M r = 317.41

  • Orthorhombic, Inline graphic

  • a = 6.307 (4) Å

  • b = 12.801 (7) Å

  • c = 22.490 (12) Å

  • V = 1815.7 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.50 × 0.29 × 0.21 mm

Data collection  

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.966, T max = 0.985

  • 11619 measured reflections

  • 4471 independent reflections

  • 2660 reflections with I > 2σ(I)

  • R int = 0.071

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.160

  • S = 1.00

  • 4471 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027420/ds2194sup1.cif

e-68-o2220-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027420/ds2194Isup2.hkl

e-68-o2220-Isup2.hkl (219.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027420/ds2194Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.90 2.04 2.908 (2) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the National Natural Science Foundation of China (grant No. 20772055) for the financial support of this study.

supplementary crystallographic information

Comment

In the molecule of chiral title compound 1,2-dipheny1-2-((1-phenylethyl)amino)ethanol,which derived from (Rp) phenylamine,accroding to the Cram rules and the molecular structure, two chiral atoms: C1(R*) and C8(S*) are observed. In the crystal structure, intermolecular N—H···O hydrogen bonds connect the same neighbour molecules into a one-dimensional chain,giving rise along b axis. The angle of C1-O1-H1,O1-N1-H1A, C8-N1-H1A and C15-N1-H1A are 109.47°, 160.4°, 108.11° and 108.19°. The torsion angle of O1-C1-C8-N1 is 56.46 (0.22)°. The arrangement between two neighbour molecules are same.

Experimental

Benzil (0.75 g, 3.6 mmol) was added to a stirred ethanol solution of R-phenylethylamine (0.87 g, 3.96 mmol) in a round-bottomed flask under a nitrogen atmosphere and heated until ethanol refluxed. This reaction took about 31 h. In the ice bath environment, sodium borohydride (0.27 g, 7.92 mmol) was added to the mixture in batches. Then drained ethanol, white solid was obtained. The crude product was extracted with dichloromethane three times. The organic phase was dried over anhydrous magnesium sulfate and then evaporated. The pure product was obtained after recrystallized with petroleum ether. Single crystal of the title compound suitable for X–ray diffraction were obtained by slow evaporation of petroleum ether solution of the title compound.

Refinement

All H atoms attached to C N O atoms were fixed geometrically and treated as riding with C—H = 0.93 - 0.98 Å, N—H = 0.90 Å, O—H = 0.820 Å with Uiso(H) = 1.5 Ueq(methyl) and Uiso(H) = 1.2 Ueq(C) for all other H atoms.In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute structure was assigned arbitrarily.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The one–dimensional chain, linked by N—H···O hydrogen bonds.

Crystal data

C22H23NO F(000) = 680
Mr = 317.41 Dx = 1.161 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3097 reflections
a = 6.307 (4) Å θ = 2.4–21.5°
b = 12.801 (7) Å µ = 0.07 mm1
c = 22.490 (12) Å T = 298 K
V = 1815.7 (17) Å3 Needle, colourless
Z = 4 0.50 × 0.29 × 0.21 mm

Data collection

Siemens SMART CCD area-detector diffractometer 4471 independent reflections
Radiation source: fine-focus sealed tube 2660 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.071
phi and ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.966, Tmax = 0.985 k = −16→17
11619 measured reflections l = −29→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0777P)2] where P = (Fo2 + 2Fc2)/3
4471 reflections (Δ/σ)max = 0.001
218 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1361 (3) 0.17083 (12) 0.92509 (8) 0.0483 (5)
H1A 0.2115 0.2278 0.9353 0.058*
O1 −0.1676 (3) 0.15306 (12) 1.01455 (7) 0.0583 (5)
H1 −0.1779 0.1634 0.9787 0.087*
C1 0.0499 (4) 0.13193 (16) 1.02933 (10) 0.0485 (5)
H1C 0.1173 0.1976 1.0414 0.058*
C2 0.0702 (4) 0.05485 (16) 1.07981 (10) 0.0470 (5)
C3 −0.0921 (5) −0.01341 (18) 1.09504 (11) 0.0610 (7)
H3 −0.2206 −0.0099 1.0749 0.073*
C4 −0.0662 (6) −0.0858 (2) 1.13920 (12) 0.0772 (8)
H4 −0.1770 −0.1307 1.1487 0.093*
C5 0.1249 (6) −0.0928 (2) 1.17002 (12) 0.0811 (9)
H5 0.1427 −0.1424 1.1998 0.097*
C6 0.2869 (5) −0.0255 (2) 1.15575 (12) 0.0775 (9)
H6 0.4153 −0.0295 1.1760 0.093*
C7 0.2594 (5) 0.04835 (19) 1.11128 (11) 0.0621 (7)
H7 0.3693 0.0942 1.1024 0.075*
C8 0.1619 (4) 0.09159 (15) 0.97284 (9) 0.0455 (5)
H8 0.3136 0.0881 0.9820 0.055*
C9 0.0926 (4) −0.01903 (16) 0.95574 (9) 0.0478 (5)
C10 −0.1051 (4) −0.03981 (18) 0.93349 (11) 0.0580 (6)
H10 −0.2015 0.0145 0.9285 0.070*
C11 −0.1636 (5) −0.1413 (2) 0.91822 (12) 0.0695 (7)
H11 −0.2984 −0.1546 0.9032 0.083*
C12 −0.0218 (6) −0.2215 (2) 0.92537 (13) 0.0787 (9)
H12 −0.0601 −0.2891 0.9148 0.094*
C13 0.1766 (6) −0.2023 (2) 0.94810 (11) 0.0790 (9)
H13 0.2721 −0.2569 0.9535 0.095*
C14 0.2331 (5) −0.10146 (18) 0.96280 (10) 0.0621 (7)
H14 0.3680 −0.0885 0.9777 0.075*
C15 0.2056 (4) 0.13711 (19) 0.86494 (10) 0.0557 (6)
H15 0.1306 0.0720 0.8558 0.067*
C16 0.4411 (5) 0.1131 (3) 0.86352 (13) 0.0943 (11)
H16A 0.5194 0.1738 0.8757 0.141*
H16B 0.4818 0.0939 0.8239 0.141*
H16C 0.4711 0.0563 0.8901 0.141*
C17 0.1383 (4) 0.21679 (17) 0.81918 (9) 0.0529 (6)
C18 −0.0514 (5) 0.2047 (2) 0.78936 (12) 0.0708 (7)
H18 −0.1364 0.1473 0.7982 0.085*
C19 −0.1189 (7) 0.2751 (3) 0.74684 (14) 0.1008 (12)
H19 −0.2490 0.2665 0.7280 0.121*
C20 0.0119 (11) 0.3595 (3) 0.73269 (16) 0.1194 (17)
H20 −0.0280 0.4064 0.7031 0.143*
C21 0.1949 (9) 0.3727 (3) 0.76188 (19) 0.1124 (15)
H21 0.2794 0.4302 0.7530 0.135*
C22 0.2613 (6) 0.3028 (2) 0.80495 (12) 0.0826 (9)
H22 0.3894 0.3136 0.8245 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0643 (13) 0.0404 (8) 0.0402 (9) −0.0054 (8) 0.0012 (9) −0.0029 (8)
O1 0.0641 (12) 0.0634 (9) 0.0473 (8) 0.0145 (8) −0.0044 (8) 0.0033 (7)
C1 0.0546 (14) 0.0432 (11) 0.0478 (12) 0.0012 (10) −0.0004 (11) −0.0010 (10)
C2 0.0614 (14) 0.0433 (10) 0.0363 (10) 0.0026 (10) 0.0002 (11) −0.0068 (9)
C3 0.0647 (16) 0.0626 (14) 0.0556 (14) −0.0012 (13) 0.0005 (13) 0.0061 (12)
C4 0.106 (2) 0.0668 (16) 0.0587 (16) −0.0146 (16) 0.0050 (18) 0.0115 (14)
C5 0.125 (3) 0.0666 (16) 0.0515 (15) 0.0088 (19) −0.0084 (19) 0.0114 (13)
C6 0.094 (2) 0.0794 (17) 0.0587 (16) 0.0127 (18) −0.0215 (17) −0.0033 (15)
C7 0.0732 (18) 0.0578 (13) 0.0552 (14) −0.0007 (13) −0.0096 (14) −0.0035 (12)
C8 0.0490 (12) 0.0431 (10) 0.0446 (11) 0.0008 (10) 0.0004 (10) −0.0011 (9)
C9 0.0598 (15) 0.0451 (11) 0.0385 (11) 0.0054 (10) 0.0038 (11) −0.0021 (9)
C10 0.0578 (16) 0.0548 (13) 0.0613 (14) 0.0041 (11) −0.0007 (13) −0.0060 (11)
C11 0.0788 (19) 0.0655 (15) 0.0643 (15) −0.0126 (14) −0.0010 (15) −0.0126 (13)
C12 0.128 (3) 0.0460 (13) 0.0621 (16) −0.0081 (16) 0.0044 (18) −0.0076 (13)
C13 0.120 (3) 0.0516 (14) 0.0654 (16) 0.0206 (17) −0.0123 (18) −0.0053 (13)
C14 0.0788 (18) 0.0537 (12) 0.0540 (13) 0.0154 (12) −0.0063 (14) −0.0070 (11)
C15 0.0649 (16) 0.0579 (12) 0.0443 (12) 0.0038 (12) 0.0067 (11) −0.0047 (11)
C16 0.077 (2) 0.144 (3) 0.0618 (18) 0.038 (2) 0.0151 (16) 0.011 (2)
C17 0.0719 (17) 0.0502 (11) 0.0368 (11) −0.0049 (12) 0.0050 (12) −0.0075 (10)
C18 0.079 (2) 0.0720 (16) 0.0615 (15) −0.0004 (15) −0.0066 (15) −0.0065 (15)
C19 0.130 (3) 0.107 (3) 0.0654 (19) 0.032 (2) −0.031 (2) −0.016 (2)
C20 0.214 (6) 0.091 (3) 0.053 (2) 0.040 (3) 0.006 (3) 0.0041 (19)
C21 0.183 (5) 0.0677 (19) 0.086 (2) −0.012 (3) 0.035 (3) 0.0164 (19)
C22 0.116 (3) 0.0656 (15) 0.0658 (15) −0.0227 (17) 0.0110 (17) −0.0010 (14)

Geometric parameters (Å, º)

N1—C8 1.486 (3) C11—C12 1.371 (4)
N1—C15 1.486 (3) C11—H11 0.9300
N1—H1A 0.9000 C12—C13 1.374 (4)
O1—C1 1.437 (3) C12—H12 0.9300
O1—H1 0.8200 C13—C14 1.380 (4)
C1—C2 1.510 (3) C13—H13 0.9300
C1—C8 1.543 (3) C14—H14 0.9300
C1—H1C 0.9800 C15—C17 1.510 (3)
C2—C3 1.389 (4) C15—C16 1.517 (4)
C2—C7 1.390 (4) C15—H15 0.9800
C3—C4 1.368 (3) C16—H16A 0.9600
C3—H3 0.9300 C16—H16B 0.9600
C4—C5 1.393 (5) C16—H16C 0.9600
C4—H4 0.9300 C17—C18 1.380 (4)
C5—C6 1.375 (4) C17—C22 1.384 (4)
C5—H5 0.9300 C18—C19 1.382 (4)
C6—C7 1.387 (4) C18—H18 0.9300
C6—H6 0.9300 C19—C20 1.396 (6)
C7—H7 0.9300 C19—H19 0.9300
C8—C9 1.531 (3) C20—C21 1.339 (6)
C8—H8 0.9800 C20—H20 0.9300
C9—C10 1.370 (4) C21—C22 1.384 (5)
C9—C14 1.387 (3) C21—H21 0.9300
C10—C11 1.394 (4) C22—H22 0.9300
C10—H10 0.9300
C8—N1—C15 115.29 (17) C12—C11—H11 120.1
C8—N1—H1A 108.1 C10—C11—H11 120.1
C15—N1—H1A 108.1 C11—C12—C13 120.3 (3)
C1—O1—H1 109.5 C11—C12—H12 119.9
O1—C1—C2 112.21 (19) C13—C12—H12 119.9
O1—C1—C8 108.02 (18) C12—C13—C14 119.4 (3)
C2—C1—C8 111.21 (17) C12—C13—H13 120.3
O1—C1—H1C 108.4 C14—C13—H13 120.3
C2—C1—H1C 108.4 C13—C14—C9 121.3 (3)
C8—C1—H1C 108.4 C13—C14—H14 119.3
C3—C2—C7 118.0 (2) C9—C14—H14 119.3
C3—C2—C1 122.3 (2) N1—C15—C17 109.95 (18)
C7—C2—C1 119.7 (2) N1—C15—C16 111.5 (2)
C4—C3—C2 121.1 (3) C17—C15—C16 113.5 (2)
C4—C3—H3 119.4 N1—C15—H15 107.2
C2—C3—H3 119.4 C17—C15—H15 107.2
C3—C4—C5 120.5 (3) C16—C15—H15 107.2
C3—C4—H4 119.7 C15—C16—H16A 109.5
C5—C4—H4 119.7 C15—C16—H16B 109.5
C6—C5—C4 119.1 (3) H16A—C16—H16B 109.5
C6—C5—H5 120.5 C15—C16—H16C 109.5
C4—C5—H5 120.5 H16A—C16—H16C 109.5
C5—C6—C7 120.2 (3) H16B—C16—H16C 109.5
C5—C6—H6 119.9 C18—C17—C22 117.6 (3)
C7—C6—H6 119.9 C18—C17—C15 119.9 (2)
C6—C7—C2 121.0 (3) C22—C17—C15 122.5 (3)
C6—C7—H7 119.5 C17—C18—C19 122.0 (3)
C2—C7—H7 119.5 C17—C18—H18 119.0
N1—C8—C9 114.75 (17) C19—C18—H18 119.0
N1—C8—C1 108.46 (16) C18—C19—C20 118.8 (4)
C9—C8—C1 112.69 (18) C18—C19—H19 120.6
N1—C8—H8 106.8 C20—C19—H19 120.6
C9—C8—H8 106.8 C21—C20—C19 119.7 (4)
C1—C8—H8 106.8 C21—C20—H20 120.2
C10—C9—C14 118.4 (2) C19—C20—H20 120.2
C10—C9—C8 122.1 (2) C20—C21—C22 121.5 (4)
C14—C9—C8 119.5 (2) C20—C21—H21 119.2
C9—C10—C11 120.8 (2) C22—C21—H21 119.2
C9—C10—H10 119.6 C21—C22—C17 120.4 (4)
C11—C10—H10 119.6 C21—C22—H22 119.8
C12—C11—C10 119.8 (3) C17—C22—H22 119.8
O1—C1—C2—C3 21.1 (3) C14—C9—C10—C11 −0.1 (4)
C8—C1—C2—C3 −100.0 (3) C8—C9—C10—C11 179.9 (2)
O1—C1—C2—C7 −161.18 (19) C9—C10—C11—C12 −0.1 (4)
C8—C1—C2—C7 77.7 (3) C10—C11—C12—C13 0.7 (4)
C7—C2—C3—C4 −0.8 (3) C11—C12—C13—C14 −1.0 (4)
C1—C2—C3—C4 177.0 (2) C12—C13—C14—C9 0.8 (4)
C2—C3—C4—C5 −0.1 (4) C10—C9—C14—C13 −0.2 (4)
C3—C4—C5—C6 0.4 (4) C8—C9—C14—C13 179.8 (2)
C4—C5—C6—C7 0.1 (4) C8—N1—C15—C17 170.64 (18)
C5—C6—C7—C2 −1.0 (4) C8—N1—C15—C16 −62.6 (3)
C3—C2—C7—C6 1.3 (3) N1—C15—C17—C18 −93.4 (2)
C1—C2—C7—C6 −176.5 (2) C16—C15—C17—C18 140.9 (3)
C15—N1—C8—C9 −43.9 (3) N1—C15—C17—C22 87.2 (3)
C15—N1—C8—C1 −170.87 (19) C16—C15—C17—C22 −38.4 (3)
O1—C1—C8—N1 56.5 (2) C22—C17—C18—C19 −0.2 (4)
C2—C1—C8—N1 −179.96 (17) C15—C17—C18—C19 −179.5 (2)
O1—C1—C8—C9 −71.7 (2) C17—C18—C19—C20 1.7 (5)
C2—C1—C8—C9 51.9 (3) C18—C19—C20—C21 −2.5 (5)
N1—C8—C9—C10 −53.9 (3) C19—C20—C21—C22 1.8 (6)
C1—C8—C9—C10 70.9 (3) C20—C21—C22—C17 −0.2 (5)
N1—C8—C9—C14 126.1 (2) C18—C17—C22—C21 −0.6 (4)
C1—C8—C9—C14 −109.1 (2) C15—C17—C22—C21 178.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.90 2.04 2.908 (2) 160

Symmetry code: (i) x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2194).

References

  1. B. Alcaide, R. Ferndndez de la Pradilla, C. L6pez-Mardomingo, R. Pbrez-Ossorio, & J. Plumet, (1981). J. Org. Chem. 46, 3234–3238.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027420/ds2194sup1.cif

e-68-o2220-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027420/ds2194Isup2.hkl

e-68-o2220-Isup2.hkl (219.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027420/ds2194Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES