Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 27;68(Pt 7):o2224–o2225. doi: 10.1107/S1600536812027900

(Z,1S,10aR)-(−)-Menthyl 1-hy­droxy-1,2,3,5,6,7,10,10a-octa­hydro­pyrrolo­[1,2-a]azocine-10a-carboxyl­ate

Daniele Muroni a,*, Emilio Napolitano a, Olivier Perez b, Nicola Culeddu c, Antonio Saba a
PMCID: PMC3394017  PMID: 22798882

Abstract

The structure determination confirms the stereochemistry of the title compound, C21H35NO3, obtained as an inter­mediate in the enanti­oselective synthesis of de­oxy­nojirimicine analogs. The system contains a pyrrolo­[1,2-a]azocine backbone, which was synthesized by a domino process involving a [2,3]-sigmatropic rearrangement. The incorporation of a chiral auxiliary (−)-menthyl, whose stereocentres are not involved during the synthesis, enables the assignation of absolute configuration. The crystal structure features O—H⋯O hydrogen bonds involving the hy­droxy groups as donors and the carbonyl groups as acceptors, which link the mol­ecules into chains running along [010].

Related literature  

For the construction of the pyrrolo­[1,2-a]azocine backbone by the domino sequence, see: Clark et al. (2001); Muroni et al. (2006). For domino processes promoted by catalytic decomposition of diazo­compounds, see: Doyle et al. (1997). For [2,3]-sigmatropic rearrangement, see: Sweeney (2009); Zhang & Wang (2010). For manzamine alkaloids and other biologically active compounds containing the pyrrolo­[1,2-a]azocine subunit, see: Rao et al. (2006); Yap et al. (2011); Sun et al. (2011). For de­oxy­nojirimicine and imino­sugars, see: Asano et al. (2000); Watson et al. (2001). For chiral auxiliary (−)-menthyl, see: Wang et al. (2006).graphic file with name e-68-o2224-scheme1.jpg

Experimental  

Crystal data  

  • C21H35NO3

  • M r = 349.5

  • Orthorhombic, Inline graphic

  • a = 10.7804 (8) Å

  • b = 7.7938 (7) Å

  • c = 23.8862 (17) Å

  • V = 2006.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.36 × 0.13 × 0.13 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.716, T max = 0.746

  • 21709 measured reflections

  • 3281 independent reflections

  • 2331 reflections with I > 3σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.047

  • S = 1.23

  • 3281 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: JANA2006 (Petricek et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027900/bh2433sup1.cif

e-68-o2224-sup1.cif (20.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812027900/bh2433Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027900/bh2433Isup3.hkl

e-68-o2224-Isup3.hkl (157.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027900/bh2433Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.81 (2) 2.02 (2) 2.8259 (19) 174 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to the Fondazione Banco di Sardegna and the Regione Autonoma della Sardegna (programma operativo FSE Sardegna 2007–2013 legge regionale 7 agosto 2007, n. 7 promozione della ricerca scientifica e dell’innovazione tecnologica in Sardegna). EN is particularly grateful to Professor D. Chateigner and the staff of the CRISMAT Laboratoire (Caen, France) for crystallographic support and useful discussions about diffraction.

supplementary crystallographic information

Comment

The pyrrolo[1,2-a]azocine backbone is contained as the CE subunit in the structures of manzamine and ircinal alkaloids (Rao et al., 2006), as well as other natural and synthetic compounds which have shown interesting biological properties (Yap et al., 2011; Sun et al., 2011). Among the methods for a rapid construction of bicycle alkaloid, domino processes promoted by catalytic decomposition of diazo compounds have become commonly employed since they give a rapid access to complex structures in a stereoselective way (Doyle et al., 1997; Clark et al., 2001).

The used route for the synthesis of the title compound is described in Figure 1. The diazocarbonyl derivative 1 was synthesized starting from L-proline and (–)-menthyl acetate. The decomposition in refluxing toluene with Cu(acac)2 or Rh2(OAc)4 brought in one step to the pyrroloazocine alkaloid 3. The decomposition triggers a domino process that involved a carbenoidic attack to the nitrogen lone pair and the formation of the [5,5]-spirocyclic ammonium ylide 2. The ylide undergoes a [2,3]-sigmatropic rearrangement and it was possible to isolate the alkaloid 3 in 70% yield and 97% enantiomeric excess (Muroni et al., 2006). The stereo specific nature of [2,3]-sigmatropic rearrangement allows a complete transfer of chirality (Sweeney, 2009; Zhang & Wang, 2010). As first step in the conversion in deoxynojirimicine analogs (Asano et al., 2000; Watson et al., 2001), the reduction of the carbonyl with L-selectride gave, after chromatography and recrystallization, the title compound 4 as a single diastereoisomer. The structure determination confirms the configuration of the quaternary stereocentre formed during the domino sequence and the configuration of the carbinol function, which is in accordance with the attack of L-selectride at the opposite face of the ester function.

The structural model (Fig. 2) showed standard bond lengths and angles; the X-ray analysis confirmed a cis C7═C8 double bond in the azocine ring, and the stereochemistry of C atoms known from literature in the auxiliary chiral (–)-menthyl: S-C13, R-C12 and R-C16. Two new chiral centers were identified S-C1 and R-C10.

The crystal structure (Fig. 3 and 4) consists of one type of O—H···O hydrogen-bond, with each molecule acting as a donor and acceptor of two hydrogen bonds. One molecule is linked through hydrogen interaction to other two symmetry-related molecules in the crystal, resulting in the formation of chains parallel to the [010] direction.

Experimental

All 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Varian Mercury plus 400 spectrometer. Infrared (IR) spectra were performed on a FT/IR-480plus JASKO spectrophotometer. The optical rotations were measured by a polarimeter P-1010 JASCO in a 1 dm tube. All reagents and solvents employed were reagent grade materials purified by standard methods and redistilled before use. (1R)-(–)-menthyl acetate (>98%) and L-proline (>99.0%) were purchased from Sigma-Aldrich.

To a solution of compound 3 (210 mg, 0.6 mmol, see Fig. 1) in dry THF (5 ml) was added L-selectride (1.21 ml of 1.0 M solution in THF, 1.21 mmol) dropwise at 273 K. The reaction mixture was stirred for 1 h at 273 K and then allowed to warm to room temperature for another 1 h. The mixture was then diluted with EtOAc (50 ml) and filtered through a pad of silica gel, which was rinsed with EtOAc (50 ml). The filtrate was concentrated under reduced pressure, and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 9:1) to give 180 mg of 4 (85%) as white oil. Recrystallization from EtOH/H2O (8:2) gave the title compound 4 as white crystals: m.p. 389 K; [α]25D = -92.94 (c 0.32, CHCl3); 1H NMR (CDCl3): δ 0.74 (d, 3H, J=7.0 Hz), 0.89 (d, 3H, J=6.8 Hz), 0.91 (d, 3H, J=6.8 Hz), 0.80–1.11 (m, 3H), 1.30–1.58 (m, 3H), 1.60–1.73 (m, 3H), 1.73–1.86 (m, 1H), 1.92–2.10 (m, 3H), 2.12–2.32 (m, 3H), 2.37 (d, 1H, J=8.4 Hz), 2.64–2.80 (m, 2H), 2.92 (ddd, 1H, J=15.8, 12.1, 3.1 Hz), 3.00 (dt, 1H, J=9, 5.2 Hz), 3.15 (dt, 1H, J=8.4, 5.2 Hz), 3.98 (q, 1H, J=8.0 Hz), 4.74 (dt, 1H, J=4.4, 10.8 Hz), 5.65–5.80 p.p.m. (m, 2H). 13C NMR (CDCl3): δ 15.71, 20.90, 22.03, 22.91, 25.40, 25.89, 29.12, 31.39, 31.45, 32.50, 34.22, 41.18, 47.07 48.21, 50.04, 74.97, 75.08, 78.01, 126.17, 132.84, 173.64 p.p.m.; IR (neat): 3465, 3019, 2954, 1708, 1456, 1214 cm-1. Anal. Calc. for C21H35NO3: C 72.17, H 10.09, N 4.01%; Found: C 72.20, H 10.05, N 4.05%.

Refinement

All C-bonded H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(carrier C). The hydroxyl H-atom H1o was located in a difference map, and included in the subsequent refinement with Uiso(H1o) = 1.2Ueq(O1). All H atoms were refined isotropically. The absolute configuration was assigned from the use of the chiral auxiliary (–)-menthyl (Wang et al., 2006) as the starting material, whose stereo centres are not involved in the reaction. Owing to the absence of significant anomalous dispersion for data collected with the Mo radiation, 2332 measured Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Synthesis scheme.

Fig. 2.

Fig. 2.

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.

Fig. 3.

Fig. 3.

H-bridged molecule of title compound in the solid state. The The O—H···O hydrogen bonding is shown as blue dashed lines.

Fig. 4.

Fig. 4.

The crystal packing of the title compound viewed along the b axis. The H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C21H35NO3 Dx = 1.156 Mg m3
Mr = 349.5 Melting point: 389 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2ab Cell parameters from 192 reflections
a = 10.7804 (8) Å θ = 3.8–17.2°
b = 7.7938 (7) Å µ = 0.08 mm1
c = 23.8862 (17) Å T = 120 K
V = 2006.9 (3) Å3 Prism, colourless
Z = 4 0.36 × 0.13 × 0.13 mm
F(000) = 768

Data collection

Bruker APEXII CCD diffractometer 3281 independent reflections
Radiation source: sealed X-ray tube 2331 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.048
ω scans θmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −15→14
Tmin = 0.716, Tmax = 0.746 k = −10→4
21709 measured reflections l = −33→33

Refinement

Refinement on F H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2)
wR(F2) = 0.047 (Δ/σ)max = 0.016
S = 1.23 Δρmax = 0.23 e Å3
3281 reflections Δρmin = −0.28 e Å3
230 parameters Extinction correction: B-C type 1 Gaussian isotropic
0 restraints Extinction coefficient: 16900 (1800)
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.67923 (4) 0.06933 (14) 0.867458 (19) 0.0178 (4)
C4 0.67762 (4) −0.11800 (4) 0.865956 (9) 0.0220 (5)
C5 0.80174 (3) −0.19770 (3) 0.849823 (11) 0.0257 (6)
C6 0.83930 (2) −0.17312 (6) 0.788428 (13) 0.0300 (6)
C7 0.87823 (6) 0.0057 (2) 0.77279 (3) 0.0269 (6)
C8 0.80364 (17) 0.13680 (12) 0.76224 (5) 0.0248 (6)
C9 0.66451 (6) 0.12758 (8) 0.76547 (3) 0.0217 (5)
C10 0.61339 (12) 0.16447 (13) 0.82487 (7) 0.0164 (5)
C1 0.63656 (4) 0.35106 (14) 0.84420 (7) 0.0191 (5)
O1 0.54447 (13) 0.46881 (18) 0.82643 (6) 0.0257 (4)
C2 0.63894 (2) 0.34119 (7) 0.90814 (3) 0.0217 (5)
C3 0.67015 (2) 0.15400 (4) 0.92186 (3) 0.0210 (5)
C11 0.47217 (16) 0.1302 (2) 0.82373 (7) 0.0164 (5)
O2 0.41170 (12) 0.10136 (18) 0.78189 (5) 0.0266 (4)
O3 0.42289 (10) 0.13359 (17) 0.87513 (5) 0.0182 (4)
C12 0.28911 (11) 0.1047 (2) 0.88055 (3) 0.0181 (5)
C17 0.22301 (3) 0.27715 (11) 0.880303 (16) 0.0229 (6)
C16 0.08230 (4) 0.24991 (5) 0.88606 (2) 0.0268 (6)
C21 0.01309 (2) 0.42102 (2) 0.886679 (15) 0.0438 (8)
C15 0.05454 (3) 0.14406 (3) 0.93799 (2) 0.0280 (6)
C14 0.12697 (3) −0.02306 (5) 0.940244 (13) 0.0253 (6)
C13 0.26755 (15) 0.00578 (9) 0.93465 (2) 0.0188 (5)
C18 0.34514 (5) −0.16029 (4) 0.93837 (3) 0.0251 (6)
C20 0.32327 (3) −0.25601 (4) 0.993247 (7) 0.0414 (8)
C19 0.32833 (4) −0.27844 (2) 0.888694 (8) 0.0426 (8)
H4a 0.614688 −0.156111 0.840384 0.0264*
H4b 0.6521 −0.161351 0.901768 0.0264*
H5a 0.800812 −0.317901 0.858591 0.0309*
H5b 0.865733 −0.153207 0.873703 0.0309*
H6b 0.904465 −0.252127 0.779173 0.036*
H6a 0.772558 −0.209188 0.764565 0.036*
H7a 0.965749 0.027044 0.77019 0.0323*
H8a 0.840656 0.244258 0.75191 0.0298*
H9a 0.637241 0.016292 0.753417 0.0261*
H9b 0.629027 0.207304 0.739349 0.0261*
H1a 0.712104 0.393489 0.828043 0.023*
H2a 0.558255 0.368556 0.922615 0.0261*
H2b 0.703241 0.414569 0.92227 0.0261*
H3b 0.749001 0.148824 0.940459 0.0251*
H3a 0.603436 0.104084 0.94292 0.0251*
H12a 0.256529 0.038941 0.849922 0.0217*
H17b 0.24025 0.335803 0.845829 0.0275*
H17a 0.25235 0.34555 0.910993 0.0275*
H16a 0.053248 0.1875 0.853987 0.0322*
H21a 0.032739 0.48441 0.853379 0.0526*
H21c −0.074614 0.400151 0.888079 0.0526*
H21b 0.037679 0.485998 0.91897 0.0526*
H15b −0.032695 0.11983 0.939646 0.0336*
H15a 0.072245 0.210793 0.970814 0.0336*
H14a 0.099119 −0.097775 0.910867 0.0303*
H14b 0.10981 −0.080807 0.974889 0.0303*
H13a 0.296357 0.071257 0.96611 0.0225*
H18a 0.430002 −0.123046 0.937575 0.0302*
H20a 0.33419 −0.178579 1.024112 0.0496*
H20c 0.240371 −0.300948 0.993776 0.0496*
H20b 0.381516 −0.348697 0.996362 0.0496*
H19a 0.34236 −0.215556 0.854721 0.0512*
H19c 0.386534 −0.371357 0.89113 0.0512*
H19b 0.245414 −0.32338 0.88871 0.0512*
H1o 0.556 (2) 0.499 (3) 0.7944 (9) 0.0309*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0178 (7) 0.0180 (8) 0.0174 (7) 0.0028 (6) −0.0002 (6) 0.0006 (6)
C4 0.0200 (9) 0.0191 (10) 0.0268 (10) 0.0010 (7) −0.0007 (8) 0.0041 (8)
C5 0.0218 (10) 0.0180 (10) 0.0374 (11) 0.0050 (7) −0.0012 (8) −0.0013 (9)
C6 0.0215 (10) 0.0320 (12) 0.0364 (11) 0.0038 (9) 0.0023 (9) −0.0108 (10)
C7 0.0169 (9) 0.0376 (12) 0.0263 (10) −0.0026 (8) 0.0056 (8) −0.0079 (10)
C8 0.0239 (9) 0.0303 (11) 0.0203 (9) −0.0050 (9) 0.0069 (8) −0.0030 (9)
C9 0.0211 (9) 0.0252 (10) 0.0189 (9) 0.0016 (8) 0.0046 (7) −0.0009 (8)
C10 0.0148 (8) 0.0183 (9) 0.0162 (8) 0.0005 (7) 0.0025 (7) 0.0033 (8)
C1 0.0180 (8) 0.0179 (9) 0.0215 (9) 0.0000 (7) 0.0040 (7) 0.0033 (8)
O1 0.0307 (7) 0.0224 (7) 0.0241 (7) 0.0078 (6) 0.0055 (6) 0.0083 (6)
C2 0.0214 (9) 0.0205 (10) 0.0232 (9) −0.0018 (8) 0.0017 (7) −0.0020 (8)
C3 0.0173 (9) 0.0263 (10) 0.0193 (9) 0.0007 (8) −0.0017 (7) 0.0004 (8)
C11 0.0193 (8) 0.0142 (9) 0.0159 (8) 0.0040 (7) 0.0016 (7) 0.0014 (8)
O2 0.0197 (6) 0.0408 (9) 0.0192 (7) 0.0014 (6) −0.0014 (5) −0.0028 (6)
O3 0.0139 (6) 0.0243 (7) 0.0164 (6) −0.0016 (5) 0.0022 (5) 0.0009 (6)
C12 0.0132 (8) 0.0227 (10) 0.0184 (9) −0.0017 (7) 0.0015 (6) −0.0005 (8)
C17 0.0226 (9) 0.0239 (11) 0.0223 (10) 0.0032 (8) 0.0007 (8) 0.0037 (8)
C16 0.0189 (9) 0.0340 (12) 0.0276 (11) 0.0040 (9) −0.0018 (8) 0.0000 (9)
C21 0.0283 (11) 0.0506 (16) 0.0527 (15) 0.0167 (11) 0.0056 (10) 0.0170 (13)
C15 0.0183 (9) 0.0321 (12) 0.0336 (11) 0.0022 (9) 0.0067 (8) −0.0013 (10)
C14 0.0189 (9) 0.0251 (11) 0.0318 (11) −0.0023 (8) 0.0052 (8) 0.0000 (9)
C13 0.0177 (8) 0.0202 (10) 0.0185 (9) −0.0009 (7) 0.0014 (7) −0.0001 (8)
C18 0.0202 (9) 0.0203 (10) 0.0348 (11) 0.0020 (8) 0.0071 (8) 0.0055 (9)
C20 0.0396 (13) 0.0359 (13) 0.0485 (13) 0.0092 (11) 0.0061 (11) 0.0186 (11)
C19 0.0566 (16) 0.0222 (12) 0.0492 (14) 0.0067 (11) 0.0135 (12) −0.0031 (10)

Geometric parameters (Å, º)

N1—C4 1.4605 (11) C11—O3 1.338 (2)
N1—C10 1.4450 (16) O3—C12 1.4654 (16)
N1—C3 1.4607 (9) C12—C17 1.5209 (17)
C4—C5 1.5247 (5) C12—C13 1.5228 (11)
C4—H4a 0.9600 C12—H12a 0.9600
C4—H4b 0.9600 C17—C16 1.5379 (6)
C5—C6 1.5335 (4) C17—H17b 0.9600
C5—H5a 0.9600 C17—H17a 0.9600
C5—H5b 0.9600 C16—C21 1.5282 (4)
C6—C7 1.5029 (18) C16—C15 1.5195 (7)
C6—H6b 0.9600 C16—H16a 0.9600
C6—H6a 0.9600 C21—H21a 0.9600
C7—C8 1.324 (2) C21—H21c 0.9600
C7—H7a 0.9600 C21—H21b 0.9600
C8—C9 1.5035 (19) C15—C14 1.5196 (5)
C8—H8a 0.9600 C15—H15b 0.9600
C9—C10 1.5492 (17) C15—H15a 0.9600
C9—H9a 0.9600 C14—C13 1.5379 (16)
C9—H9b 0.9600 C14—H14a 0.9600
C10—C1 1.5461 (16) C14—H14b 0.9600
C10—C11 1.546 (2) C13—C18 1.5436 (11)
C1—O1 1.4169 (17) C13—H13a 0.9600
C1—C2 1.5294 (18) C18—C20 1.5266 (6)
C1—H1a 0.9600 C18—C19 1.5128 (6)
O1—H1o 0.81 (2) C18—H18a 0.9600
C2—C3 1.5327 (6) C20—H20a 0.9600
C2—H2a 0.9600 C20—H20c 0.9600
C2—H2b 0.9600 C20—H20b 0.9600
C3—H3b 0.9600 C19—H19a 0.9600
C3—H3a 0.9600 C19—H19c 0.9600
C11—O2 1.214 (2) C19—H19b 0.9600
C4—N1—C10 119.33 (6) C11—O3—C12 117.97 (11)
C4—N1—C3 118.20 (5) O3—C12—C17 108.98 (11)
C10—N1—C3 111.19 (8) O3—C12—C13 107.64 (10)
N1—C4—C5 113.76 (3) O3—C12—H12a 112.00
N1—C4—H4a 109.47 C17—C12—C13 112.28 (7)
N1—C4—H4b 109.47 C17—C12—H12a 107.00
C5—C4—H4a 109.47 C13—C12—H12a 109.00
C5—C4—H4b 109.47 C12—C17—C16 109.87 (7)
H4a—C4—H4b 105.00 C12—C17—H17b 109.47
C4—C5—C6 115.00 (2) C12—C17—H17a 109.47
C4—C5—H5a 109.47 C16—C17—H17b 109.47
C4—C5—H5b 109.47 C16—C17—H17a 109.47
C6—C5—H5a 109.47 H17b—C17—H17a 109.00
C6—C5—H5b 109.47 C17—C16—C21 111.22 (4)
H5a—C5—H5b 103.00 C17—C16—C15 110.02 (4)
C5—C6—C7 115.30 (4) C17—C16—H16a 109.00
C5—C6—H6b 109.47 C21—C16—C15 111.69 (4)
C5—C6—H6a 109.47 C21—C16—H16a 107.00
C7—C6—H6b 109.47 C15—C16—H16a 108.00
C7—C6—H6a 109.47 C16—C21—H21a 109.47
H6b—C6—H6a 103.00 C16—C21—H21c 109.47
C6—C7—C8 126.38 (9) C16—C21—H21b 109.47
C6—C7—H7a 117.00 H21a—C21—H21c 109.00
C8—C7—H7a 117.00 H21a—C21—H21b 109.00
C7—C8—C9 124.00 (10) H21c—C21—H21b 109.47
C7—C8—H8a 118.00 C16—C15—C14 113.14 (3)
C9—C8—H8a 118.00 C16—C15—H15b 109.00
C8—C9—C10 113.14 (8) C16—C15—H15a 109.47
C8—C9—H9a 109.47 C14—C15—H15b 109.47
C8—C9—H9b 109.47 C14—C15—H15a 109.47
C10—C9—H9a 109.47 H15b—C15—H15a 106.00
C10—C9—H9b 109.47 C15—C14—C13 112.21 (4)
H9a—C9—H9b 105.53 C15—C14—H14a 109.47
N1—C10—C9 112.01 (8) C15—C14—H14b 109.47
N1—C10—C1 101.14 (11) C13—C14—H14a 109.47
N1—C10—C11 114.03 (11) C13—C14—H14b 109.47
C9—C10—C1 112.99 (10) H14a—C14—H14b 107.00
C9—C10—C11 107.60 (11) C12—C13—C14 107.36 (9)
C1—C10—C11 109.07 (10) C12—C13—C18 113.00 (9)
C10—C1—O1 114.00 (10) C12—C13—H13a 110.00
C10—C1—C2 104.69 (10) C14—C13—C18 113.97 (6)
C10—C1—H1a 110.00 C14—C13—H13a 109.00
O1—C1—C2 110.07 (10) C18—C13—H13a 103.00
O1—C1—H1a 105.00 C13—C18—C20 112.05 (5)
C2—C1—H1a 114.00 C13—C18—C19 113.60 (5)
C1—O1—H1o 111.1 (16) C13—C18—H18a 105.00
C1—C2—C3 105.37 (6) C20—C18—C19 110.95 (2)
C1—C2—H2a 109.47 C20—C18—H18a 108.00
C1—C2—H2b 109.47 C19—C18—H18a 106.00
C3—C2—H2a 109.47 C18—C20—H20a 109.47
C3—C2—H2b 109.47 C18—C20—H20c 109.47
H2a—C2—H2b 113.00 C18—C20—H20b 109.47
N1—C3—C2 104.74 (6) H20a—C20—H20c 109.47
N1—C3—H3b 109.47 H20a—C20—H20b 109.47
N1—C3—H3a 109.47 H20c—C20—H20b 109.47
C2—C3—H3b 109.47 C18—C19—H19a 109.47
C2—C3—H3a 109.47 C18—C19—H19c 109.47
H3b—C3—H3a 114.00 C18—C19—H19b 109.47
C10—C11—O2 125.10 (15) H19a—C19—H19c 109.47
C10—C11—O3 111.82 (14) H19a—C19—H19b 109.47
O2—C11—O3 123.07 (16) H19c—C19—H19b 109.00

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1o···O2i 0.81 (2) 2.02 (2) 2.8259 (19) 174 (2)

Symmetry code: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2433).

References

  1. Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  6. Clark, J. S., Hodgson, P. B., Goldsmith, M. D., Blake, A. J., Cooke, P. A. & Street, L. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3325–3337.
  7. Doyle, M. P., McKervey, M. A. & Ye, T. (1997). Modern Catalytic Methods for Organic Synthesis with Diazo Compounds New York: John Wiley and Sons.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Muroni, D., Saba, A. & Culeddu, N. (2006). Heterocycles, 68, 47–58.
  10. Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  11. Rao, K. V., Donia, M. S., Peng, J. N., Garcia-Palomero, E., Alonso, D., Martinez, A., Medina, M., Franzblau, S. G., Tekwani, B. L., Khan, S. I., Wahyuono, S., Willett, K. L. & Hamann, M. T. (2006). J. Nat. Prod. 69, 1034–1040. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). SADABS University of Göttingen, Germany.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Sun, H., Liu, L., Lu, J. F., Bai, L. C., Li, X. Q., Nikolovska-Coleska, Z., McEachern, D., Yang, C. Y., Qiu, S., Yi, H., Sun, D. X. & Wang, S. M. (2011). J. Med. Chem. 54, 3306–3318. [DOI] [PMC free article] [PubMed]
  15. Sweeney, J. B. (2009). Chem. Soc. Rev. 38, 1027–1038.
  16. Wang, T.-J., Fang, H., Cheng, F., Tang, G. & Zhao, Y.-F. (2006). Acta Cryst. E62, o5784–o5785.
  17. Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Yap, W.-S., Gan, C.-Y., Low, Y.-Y., Choo, Y.-M., Etoh, T., Hayashi, M., Komiyama, K. & Kam, T.-S. (2011). J. Nat. Prod. 74, 1309–1312. [DOI] [PubMed]
  20. Zhang, Y. & Wang, J. (2010). Coord. Chem. Rev. 254, 941–953.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027900/bh2433sup1.cif

e-68-o2224-sup1.cif (20.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812027900/bh2433Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027900/bh2433Isup3.hkl

e-68-o2224-Isup3.hkl (157.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027900/bh2433Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES