Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 27;68(Pt 7):o2231. doi: 10.1107/S1600536812027675

1-(2,2-Diphenyl­eth­yl)-1H-tetra­zole

Myrvete Tafili-Kryeziu a, Kurt Mereiter b, Wolfgang Linert a, Franz Werner c,*
PMCID: PMC3394022  PMID: 22798887

Abstract

The crystal structure of the title compound, C15H14N4, contains chains of coplanar tetra­zole rings with the chain direction along b. These are formed through weak hydrogen bonds, donated by the tetra­zole H atoms and by one of the H atoms of the methyl­ene group, and accepted by two neighbouring N atoms of the adjacent tetra­zole ring. The chains are connected to each other in a staircase-like manner via weak hydrogen bonds, donated from the second H atom of the methyl­ene group and accepted by the N atom next to the C atom in the tetra­zole ring. The resulting layers are parallel to the bc plane.

Related literature  

For the synthesis, see Kamiya & Saito (1973). For crystal structure studies of 1H-tetra­zol-1-yl compounds, see Absmeier et al. (2006); Grunert et al. (2005); Werner et al. (2009).graphic file with name e-68-o2231-scheme1.jpg

Experimental  

Crystal data  

  • C15H14N4

  • M r = 250.30

  • Monoclinic, Inline graphic

  • a = 12.5289 (6) Å

  • b = 10.4157 (5) Å

  • c = 11.0085 (5) Å

  • β = 107.906 (1)°

  • V = 1366.99 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.40 × 0.35 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b ) T min = 0.89, T max = 0.97

  • 18385 measured reflections

  • 3984 independent reflections

  • 3230 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.148

  • S = 1.04

  • 3984 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a ); molecular graphics: ATOMS (Dowty, 2006), Mercury (Macrae et al., 2006) and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027675/fj2563sup1.cif

e-68-o2231-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027675/fj2563Isup2.hkl

e-68-o2231-Isup2.hkl (195.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027675/fj2563Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N3i 0.93 2.61 3.4690 (19) 153
C2—H2B⋯N4i 0.97 2.50 3.4622 (17) 174
C2—H2A⋯N4ii 0.97 2.56 3.5155 (17) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Thanks for financial support are due to the "Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich" (project 19335-N17).

supplementary crystallographic information

Comment

In continuation of the crystallographic characterization of 1H–tetrazol–1–yl compounds, intended as potential ligands for Fe(II) spin crossover complexes (Absmeier et al., 2006; Grunert et al., 2005; Werner et al., 2009), the title compound was prepared.

At 296 K the title compound crystallizes in the monoclinic space group P21/c (No. 14), with one molecule in the asymmetric unit (Fig. 1). Bond lenghts and bond angles in the molecule adopt typical values. The point group symmetry of the free molecule is Cs. Owing to intermolecular interactions this symmetry is lowered to C1 in the crystalline solid, which can be readily seen from the (+)-synclinal arrangement of the tetrazolyl ring and the phenyl ring C10···C15 [N1—C2—C3—C10 = 60.68 (12)°] and the out–of–plane (plane defined by N1, C2 and C3) twist of the tetrazolyl ring [N2—N1—C2—C3 = 63.98 (14)°].

In the crystal the main type of interaction are three sets of weak hydrogen bonds between the tetrazolyl rings (C1—H1···N3) and the tetrazolyl rings and the methylenic H atoms (C2—H2A···N4 and C2—H2B···N4). Through the coplanar interactions C1—H1···N3 and C2—H2B···N4 chains of tetrazolyl rings are formed parallel to the b-axis (Fig. 2), whereas C2—H2A···N4 connects these chains in a staircase-like manner (Fig. 3) resulting in the formation of layers parallel to the bc-plane with the phenyl rings pointing outwards. The layers are loosely held together by C—H···π interactions (Fig. 4).

Experimental

The title compound was prepared according to the general procedure given by Kamiya & Saito (1973). All chemicals were used as supplied without further purification. Elemental analyses were performed on a Perkin Elmer 2400 CHN Elemental Analyzer. NMR-spectra were measured in DMSO-d6 with a Bruker DPX-200 spectrometer at 200 MHz (1H) and 50 MHz (13C) respectively. The chemical shifts (see Fig. 5 for the atom assignment) are calibrated to the solvent.

2,2-Diphenylethylamine (4.93 g, 25 mmol, Aldrich, 96%), NaN3 (3.25 g, 50 mmol, Fluka, 99%) and triethyl orthoformate (7.42 g, 50 mmol, Acros, 98%) were dissolved in 60 ml of acetic acid (Fluka, 99.8%) and heated to 85–90°C for 24 h. After evaporation of acetic acid under reduced pressure, 70 ml of 2 N hydrochloric acid was added to the residue. The solution was extracted three times with dichloromethane, the combined organic layers were washed with water and saturated aqueous solutions of NaHCO3 and NaCl. The organic phase was dried with Na2SO4, filtered and the solvent was evaporated under reduced pressure. The raw product was recrystallized from methanol. Yield 2.88 g (46%), m.p. 115°C. Single crystals were grown by slow evaporation from a solution of the tetrazole in methanol at room temperature over two days.

Elemental analysis C15H14N4 Calc.: C 71.98, H 5.64, N 22.38. Found: C 72.10, H 5.38, N 21.91%. 1H-NMR (DMSO-d6) δ [p.p.m.]: 4.73 (t, 3J=8.4 Hz, 1H, Hc), 5.21 (d, 3J=8.5 Hz, 2H, Hb), 7.15, 7.19, 7.22, 7.25, 7.29, 7.32, 7.36, 7.40 (m, 10H, Heg), 9.24 (s, 1H, Ha). 13C-NMR (DMSO-d6) δ [p.p.m.]: 50.5, 50.8 (Cbc), 127.0 (Cg), 127.8 (Ce), 128.7 (Cf), 140.7 (Cd), 144.0 (Ca).

Refinement

Hydrogen atoms were included at calculated positions and treated as riding on their base atoms with d(C—H)= 0.97 (CH2), 0.98 (CH) or 0.93 Å (CHarom) and Uiso(H)=1.2Ueq(C). Reflection 020 was omitted because of its large Δ(F2)/e.s.d. value.

Figures

Fig. 1.

Fig. 1.

Molecular moiety in the crystal structure of the title compound. Displacement ellipsoids for non–H atoms are drawn at the 33% probability level. Hydrogen atoms involved in weak hydrogen bonding are labelled.

Fig. 2.

Fig. 2.

Weak hydrogen bonds in the crystal structure of the title compound, viewed perpedicular to the layers formed by adjacent tetrazolyl rings (yellow C1—H1···N3, red C2—H2B···N4, orange C2—H2A···N4; phenyl rings are omitted for clarity).

Fig. 3.

Fig. 3.

View of the weak hydrogen bonds in the crystal structure of the title compound, showing the staircase-like arrangement (yellow C1—H1···N3, red C2—H2B···N4, orange C2—H2A···N4; phenyl rings are omitted for clarity).

Fig. 4.

Fig. 4.

Packing diagram of the title compound. Weak hydrogen bonds are drawn with cyan dashed lines, only those hydrogen atoms involved in weak interactions are shown and the unit cell is outlined.

Fig. 5.

Fig. 5.

Labelling scheme for the assignment of the NMR chemical shifts.

Crystal data

C15H14N4 F(000) = 528
Mr = 250.30 Dx = 1.216 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8429 reflections
a = 12.5289 (6) Å θ = 2.6–30.0°
b = 10.4157 (5) Å µ = 0.08 mm1
c = 11.0085 (5) Å T = 296 K
β = 107.906 (1)° Block, colourless
V = 1366.99 (11) Å3 0.45 × 0.40 × 0.35 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3984 independent reflections
Radiation source: fine-focus sealed tube 3230 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 30.1°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) h = −17→17
Tmin = 0.89, Tmax = 0.97 k = −14→14
18385 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.2149P] where P = (Fo2 + 2Fc2)/3
3984 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Experimental. Bruker Kappa APEX2 CCD diffractometer, full-sphere data collection.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.06288 (8) 0.25473 (9) 0.39090 (9) 0.0503 (2)
N2 0.07582 (12) 0.13614 (12) 0.43964 (12) 0.0755 (4)
N3 0.03463 (12) 0.05898 (12) 0.34413 (14) 0.0804 (4)
N4 −0.00552 (11) 0.12529 (13) 0.23470 (12) 0.0724 (3)
C1 0.01312 (12) 0.24583 (14) 0.26661 (13) 0.0630 (3)
H1 −0.0057 0.3149 0.2105 0.076*
C2 0.09677 (9) 0.36869 (11) 0.47103 (11) 0.0493 (2)
H2A 0.0581 0.3693 0.5351 0.059*
H2B 0.0740 0.4448 0.4186 0.059*
C3 0.22336 (9) 0.37415 (10) 0.53767 (10) 0.0464 (2)
H3 0.2443 0.2965 0.5899 0.056*
C4 0.24642 (9) 0.48874 (12) 0.62769 (11) 0.0506 (3)
C5 0.29138 (12) 0.47133 (17) 0.75794 (13) 0.0707 (4)
H5 0.3081 0.3892 0.7915 0.085*
C6 0.31156 (15) 0.5784 (2) 0.83910 (16) 0.0925 (6)
H6 0.3422 0.5670 0.9268 0.111*
C7 0.28658 (15) 0.6999 (2) 0.7905 (2) 0.0903 (6)
H7 0.3007 0.7703 0.8451 0.108*
C8 0.24121 (13) 0.71720 (16) 0.66276 (19) 0.0804 (5)
H8 0.2235 0.7995 0.6300 0.096*
C9 0.22120 (11) 0.61269 (12) 0.58099 (14) 0.0617 (3)
H9 0.1904 0.6257 0.4936 0.074*
C10 0.29411 (8) 0.37823 (10) 0.44771 (10) 0.0458 (2)
C11 0.40353 (11) 0.33206 (17) 0.49185 (14) 0.0722 (4)
H11 0.4298 0.2966 0.5732 0.087*
C12 0.47312 (12) 0.3379 (2) 0.41749 (19) 0.0919 (6)
H12 0.5460 0.3068 0.4490 0.110*
C13 0.43670 (13) 0.38890 (17) 0.29785 (18) 0.0805 (5)
H13 0.4848 0.3937 0.2483 0.097*
C14 0.32823 (14) 0.43332 (14) 0.25067 (15) 0.0701 (4)
H14 0.3024 0.4666 0.1684 0.084*
C15 0.25730 (11) 0.42836 (12) 0.32603 (12) 0.0563 (3)
H15 0.1843 0.4592 0.2940 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0485 (5) 0.0525 (5) 0.0533 (5) −0.0114 (4) 0.0206 (4) −0.0081 (4)
N2 0.0969 (9) 0.0575 (6) 0.0699 (7) −0.0239 (6) 0.0225 (6) −0.0022 (5)
N3 0.0952 (9) 0.0597 (7) 0.0895 (9) −0.0277 (6) 0.0329 (7) −0.0172 (6)
N4 0.0727 (7) 0.0758 (8) 0.0703 (7) −0.0213 (6) 0.0242 (6) −0.0241 (6)
C1 0.0632 (7) 0.0674 (8) 0.0556 (7) −0.0093 (6) 0.0141 (5) −0.0115 (6)
C2 0.0484 (5) 0.0522 (6) 0.0515 (6) −0.0071 (4) 0.0214 (4) −0.0102 (4)
C3 0.0499 (5) 0.0438 (5) 0.0453 (5) −0.0031 (4) 0.0146 (4) −0.0017 (4)
C4 0.0465 (5) 0.0573 (6) 0.0506 (5) −0.0084 (4) 0.0189 (4) −0.0114 (5)
C5 0.0712 (8) 0.0886 (10) 0.0520 (7) −0.0096 (7) 0.0186 (6) −0.0095 (7)
C6 0.0856 (11) 0.1339 (18) 0.0576 (8) −0.0170 (11) 0.0215 (7) −0.0333 (10)
C7 0.0762 (9) 0.0991 (13) 0.0996 (13) −0.0139 (9) 0.0326 (9) −0.0541 (11)
C8 0.0698 (8) 0.0656 (8) 0.1080 (13) −0.0083 (7) 0.0306 (8) −0.0332 (8)
C9 0.0611 (7) 0.0550 (7) 0.0701 (8) −0.0065 (5) 0.0217 (6) −0.0131 (6)
C10 0.0442 (5) 0.0420 (5) 0.0521 (5) −0.0029 (4) 0.0164 (4) −0.0079 (4)
C11 0.0502 (6) 0.0951 (11) 0.0667 (8) 0.0103 (6) 0.0110 (6) −0.0048 (7)
C12 0.0472 (7) 0.1337 (16) 0.0969 (12) 0.0088 (8) 0.0253 (7) −0.0167 (11)
C13 0.0695 (8) 0.0884 (11) 0.1028 (12) −0.0155 (7) 0.0549 (9) −0.0259 (9)
C14 0.0884 (10) 0.0626 (8) 0.0741 (8) −0.0027 (7) 0.0470 (7) 0.0009 (6)
C15 0.0588 (6) 0.0527 (6) 0.0641 (7) 0.0081 (5) 0.0285 (5) 0.0063 (5)

Geometric parameters (Å, º)

N1—C1 1.3209 (16) C6—H6 0.9300
N1—N2 1.3365 (15) C7—C8 1.357 (3)
N1—C2 1.4619 (13) C7—H7 0.9300
N2—N3 1.2978 (17) C8—C9 1.3854 (18)
N3—N4 1.3449 (19) C8—H8 0.9300
N4—C1 1.3054 (17) C9—H9 0.9300
C1—H1 0.9300 C10—C15 1.3783 (17)
C2—C3 1.5301 (15) C10—C11 1.3918 (16)
C2—H2A 0.9700 C11—C12 1.368 (2)
C2—H2B 0.9700 C11—H11 0.9300
C3—C10 1.5193 (14) C12—C13 1.362 (3)
C3—C4 1.5212 (15) C12—H12 0.9300
C3—H3 0.9800 C13—C14 1.377 (2)
C4—C5 1.3818 (18) C13—H13 0.9300
C4—C9 1.3896 (18) C14—C15 1.3906 (17)
C5—C6 1.403 (2) C14—H14 0.9300
C5—H5 0.9300 C15—H15 0.9300
C6—C7 1.372 (3)
C1—N1—N2 108.14 (11) C5—C6—H6 119.7
C1—N1—C2 129.72 (11) C8—C7—C6 119.97 (15)
N2—N1—C2 122.09 (10) C8—C7—H7 120.0
N3—N2—N1 106.15 (12) C6—C7—H7 120.0
N2—N3—N4 110.72 (12) C7—C8—C9 120.21 (17)
C1—N4—N3 105.44 (11) C7—C8—H8 119.9
N4—C1—N1 109.55 (13) C9—C8—H8 119.9
N4—C1—H1 125.2 C8—C9—C4 120.96 (14)
N1—C1—H1 125.2 C8—C9—H9 119.5
N1—C2—C3 112.67 (9) C4—C9—H9 119.5
N1—C2—H2A 109.1 C15—C10—C11 118.00 (11)
C3—C2—H2A 109.1 C15—C10—C3 123.79 (10)
N1—C2—H2B 109.1 C11—C10—C3 118.18 (11)
C3—C2—H2B 109.1 C12—C11—C10 121.06 (15)
H2A—C2—H2B 107.8 C12—C11—H11 119.5
C10—C3—C4 111.76 (8) C10—C11—H11 119.5
C10—C3—C2 114.52 (9) C13—C12—C11 120.68 (14)
C4—C3—C2 107.62 (9) C13—C12—H12 119.7
C10—C3—H3 107.6 C11—C12—H12 119.7
C4—C3—H3 107.6 C12—C13—C14 119.61 (13)
C2—C3—H3 107.6 C12—C13—H13 120.2
C5—C4—C9 118.66 (12) C14—C13—H13 120.2
C5—C4—C3 120.54 (12) C13—C14—C15 120.00 (14)
C9—C4—C3 120.79 (11) C13—C14—H14 120.0
C4—C5—C6 119.52 (16) C15—C14—H14 120.0
C4—C5—H5 120.2 C10—C15—C14 120.64 (12)
C6—C5—H5 120.2 C10—C15—H15 119.7
C7—C6—C5 120.67 (16) C14—C15—H15 119.7
C7—C6—H6 119.7
C1—N1—N2—N3 0.47 (16) C5—C6—C7—C8 0.4 (3)
C2—N1—N2—N3 178.18 (11) C6—C7—C8—C9 −0.7 (2)
N1—N2—N3—N4 −0.49 (16) C7—C8—C9—C4 0.3 (2)
N2—N3—N4—C1 0.32 (17) C5—C4—C9—C8 0.42 (19)
N3—N4—C1—N1 −0.01 (16) C3—C4—C9—C8 179.46 (12)
N2—N1—C1—N4 −0.28 (16) C4—C3—C10—C15 −95.17 (13)
C2—N1—C1—N4 −177.76 (11) C2—C3—C10—C15 27.54 (15)
C1—N1—C2—C3 −118.85 (13) C4—C3—C10—C11 82.93 (13)
N2—N1—C2—C3 63.98 (14) C2—C3—C10—C11 −154.37 (11)
N1—C2—C3—C10 60.68 (12) C15—C10—C11—C12 1.0 (2)
N1—C2—C3—C4 −174.40 (9) C3—C10—C11—C12 −177.25 (15)
C10—C3—C4—C5 −116.60 (12) C10—C11—C12—C13 −0.2 (3)
C2—C3—C4—C5 116.84 (12) C11—C12—C13—C14 −0.9 (3)
C10—C3—C4—C9 64.38 (13) C12—C13—C14—C15 1.3 (2)
C2—C3—C4—C9 −62.18 (13) C11—C10—C15—C14 −0.55 (19)
C9—C4—C5—C6 −0.7 (2) C3—C10—C15—C14 177.55 (11)
C3—C4—C5—C6 −179.78 (12) C13—C14—C15—C10 −0.6 (2)
C4—C5—C6—C7 0.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···N3i 0.93 2.61 3.4690 (19) 153
C2—H2B···N4i 0.97 2.50 3.4622 (17) 174
C2—H2A···N4ii 0.97 2.56 3.5155 (17) 169

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2563).

References

  1. Absmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Letard, J.-F. & Linert, W. (2006). Chem. Eur. J. 12, 2235–2243. [DOI] [PubMed]
  2. Bruker (2009). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dowty, E. (2006). ATOMS Shape Software, Kingsport, Tennessee, USA.
  5. Grunert, C. M., Weinberger, P., Schweifer, J., Hampel, C., Stassen, A. F., Mereiter, K. & Linert, W. (2005). J. Mol. Struct. 733, 41–52.
  6. Kamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent).
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.
  9. Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008b). SADABS University of Göttingen, Germany.
  11. Werner, F., Mereiter, K., Tokuno, K., Inagaki, Y. & Hasegawa, M. (2009). Acta Cryst. E65, o2726–o2727. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027675/fj2563sup1.cif

e-68-o2231-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027675/fj2563Isup2.hkl

e-68-o2231-Isup2.hkl (195.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027675/fj2563Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES