Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2241. doi: 10.1107/S1600536812028437

2-(3-Meth­oxy­phen­yl)-1,3-dihydro-1,3,2-benzodiaza­borole

Ross S Robinson a,*, Siphamandla Sithebe a, Matthew P Akerman a
PMCID: PMC3394032  PMID: 22798897

Abstract

The title compound, C13H13BN2O, is one in a series of 1,3,2-benzodiaza­boroles featuring a 2-meth­oxy­phenyl substitution at the 2-position in the nitro­gen–boron heterocyle. The dihedral angle between the mean planes of the benzodiaza­borole and 2-meth­oxy­phenyl ring systems is 21.5 (1)°. There is an inter­molecular hydrogen bond between one of the NH groups and the meth­oxy O atom. This hydrogen bond leads to an infinite hydrogen-bonded chain colinear with the a axis.

Related literature  

For the synthesis of the title compound, see: Sithebe et al. (2011); Weber et al. (2009, 2011). For related derivatives as well as their photoluminiscence studies, see: Weber et al. (2010); Maruyama & Kawanishi (2002). For structures of related compounds, see: Slabber et al. (2011); Akerman et al. (2011). For applications of 1,3,2-diaza­borolyl compounds, see: Schwedler et al. (2011).graphic file with name e-68-o2241-scheme1.jpg

Experimental  

Crystal data  

  • C13H13BN2O

  • M r = 224.06

  • Orthorhombic, Inline graphic

  • a = 7.549 (5) Å

  • b = 12.230 (5) Å

  • c = 12.308 (5) Å

  • V = 1136.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 110 K

  • 0.50 × 0.40 × 0.40 mm

Data collection  

  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.960, T max = 0.968

  • 11586 measured reflections

  • 2125 independent reflections

  • 1939 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.094

  • S = 1.05

  • 2125 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and POV-RAY (Cason et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028437/nk2170sup1.cif

e-68-o2241-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028437/nk2170Isup2.hkl

e-68-o2241-Isup2.hkl (102.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028437/nk2170Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H102⋯O001i 0.89 (2) 2.40 (2) 3.201 (2) 151 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge the National Research Foundation and the University of KwaZulu Natal for financial assistance.

supplementary crystallographic information

Comment

Molecular compounds functionalized with 1,3,2-diazaborolyl groups have received considerable attention and have been investigated for their optical, electronic and ion sensing abilities, making them possible candidates for use in advanced material science (Schwedler et al.,2011). Rapid developments in the chemistry of 1,3,2-diazaborolyl containing compounds, due to their photoluminescence characteristics and unusual stability, have been observed in recent years. Unlike most triarylborane compounds which require dimesitylborolyl moieties for the enhancement of their stability, 2-arylbenzo-1,3,2-diazaborole compounds have been reported to be water and air stable without any additional dimesityl groups (Weber et al., 2009). To gain insight into the intriguing characteristics exhibited by these compounds, we (Sithebe et al., 2011) and other researchers (Maruyama et al., 2002 and Weber et al. 2011) have directed our reseach focus towards the investigation of the photophysical studies as well as the determination of the crystal structures of 1,3,2-benzodiazaborolyl compounds.

The molecule features a 1,3,2-benzodiazaborolyl backbone with a five-membered diazaborole ring substituted with hydrogen atoms at the 1- and 3-positions, and a 3-methoxyphenyl ring at the 2-position. The 1,3,2-benzodiazaborolyl backbone of the molecule is essentially planar, however, the 3-methoxyphenyl ring at the 2-position, is rotated out of plane with a dihedral angle of 21.5 (1)°. The two N—B bonds are approximately equal (averaged to 1.433 (2) Å). The N1—B—N2 bond angle is 105.2 (1)°, the N1—B—C1 and N2—B—C1 bond angles are slighly different, measuring 125.4 (1)° and 129.3 (1)°, respectively (refer to Figure 1 for the atom numbering scheme). These bond lengths and angles compare favourably to those of previously reported diazaborolyl systems (Weber et al., 2009). The molecules are linked through hydrogen bonding forming infinite, one-dimensional chains co-linear with the a-axis (Figure 2). The amine NH acts as the hydrogen bond donor and the etheryl oxygen atom the H-bond acceptor. The hydrogen bond lengths and bond angles are summarized in Table 1.

Experimental

3-Methoxyphenylboronic acid (1.00 g, 5.18 mmol) and o-phenylenediamine (0.56 g, 5.18 mmol) were dissolved in toluene (80 ml) in a two neck flask equipped with a Dean and Stark Apparatus, magnetic stirrer bar and reflux condenser. The mixture was heated under reflux overnight and the solvent was removed in vacuo, affording 2-{3-methoxyphenyl}benzo-1,3,2-diazaborole as an off-white solid. The desired product was purified using a flash column and radial chromatography using Hexane: Ethyl acetate (8:2) as the eluent. Crystals suitable for X-ray difraction were grown by slow evaporation of a n-hexane:dicloromethane (6:4) solution.

Refinement

All non-hydrogen atoms were located in the difference Fourier map and refined anisotropically. The positions of all hydrogen atoms were calculated using the standard riding model of SHELXL97. with C—H(aromatic) distances of 0.93 Å and Uiso = 1.2 Ueq, and CH(methyl) distances of 0.96 Å and Uiso = 1.5 Ueq. The amine hydrogen atoms were located in the difference Fourier map and allowed to refine isotropically. In the absence of significant anomalous scattering, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot of (1) at the 50% probability level.

Fig. 2.

Fig. 2.

Hydrogen bonding interactions in (1), shown as dashed lines, viewed down the b-axis.

Crystal data

C13H13BN2O F(000) = 472
Mr = 224.06 Dx = 1.310 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1939 reflections
a = 7.549 (5) Å θ = 3.2–32.1°
b = 12.230 (5) Å µ = 0.08 mm1
c = 12.308 (5) Å T = 110 K
V = 1136.3 (10) Å3 Needle, colourless
Z = 4 0.50 × 0.40 × 0.40 mm

Data collection

Oxford Diffraction Xcalibur 2 CCD diffractometer 2125 independent reflections
Radiation source: fine-focus sealed tube 1939 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω scans at fixed θ angles θmax = 32.1°, θmin = 3.2°
Absorption correction: multi-scan (Blessing, 1995) h = −11→7
Tmin = 0.960, Tmax = 0.968 k = −17→18
11586 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0725P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2125 reflections Δρmax = 0.32 e Å3
164 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.058 (6)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O001 0.68887 (13) 0.34747 (7) 1.11670 (7) 0.0238 (2)
N2 0.86812 (15) 0.17066 (8) 0.71418 (8) 0.0184 (2)
N1 0.69146 (14) 0.27984 (8) 0.61068 (8) 0.0187 (2)
C8 0.85853 (16) 0.12575 (9) 0.61012 (9) 0.0171 (2)
C2 0.73726 (16) 0.30830 (10) 0.92377 (10) 0.0179 (2)
H2 0.7848 0.2380 0.9388 0.022*
C6 0.65474 (16) 0.44957 (10) 0.79625 (10) 0.0217 (2)
H6 0.6449 0.4756 0.7238 0.026*
C11 0.78716 (17) 0.07371 (10) 0.39528 (10) 0.0208 (2)
H11 0.7634 0.0544 0.3219 0.025*
C13 0.74943 (16) 0.19384 (9) 0.54613 (9) 0.0168 (2)
C12 0.71345 (16) 0.16880 (10) 0.43846 (9) 0.0194 (2)
H12 0.6407 0.2151 0.3954 0.023*
C1 0.72155 (16) 0.34445 (10) 0.81557 (9) 0.0181 (2)
C9 0.93295 (17) 0.03188 (10) 0.56632 (11) 0.0203 (2)
H9 1.0075 −0.0139 0.6087 0.024*
C4 0.61570 (17) 0.47951 (10) 0.98828 (10) 0.0228 (3)
H4 0.5789 0.5249 1.0467 0.027*
C3 0.68309 (17) 0.37557 (10) 1.00871 (10) 0.0193 (2)
C5 0.60273 (18) 0.51624 (10) 0.88201 (11) 0.0241 (3)
H5 0.5580 0.5874 0.8677 0.029*
C10 0.89523 (17) 0.00661 (10) 0.45839 (10) 0.0213 (2)
H10 0.9442 −0.0577 0.4272 0.026*
C7 0.7662 (2) 0.24408 (11) 1.14365 (11) 0.0296 (3)
H7A 0.6947 0.1852 1.1122 0.044*
H7B 0.7700 0.2358 1.2228 0.044*
H7C 0.8868 0.2405 1.1144 0.044*
B1 0.76235 (18) 0.26817 (10) 0.71788 (10) 0.0179 (2)
H102 0.940 (3) 0.1411 (15) 0.7630 (17) 0.042 (5)*
H101 0.625 (3) 0.3271 (17) 0.5846 (18) 0.050 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O001 0.0320 (5) 0.0242 (4) 0.0153 (4) 0.0015 (4) 0.0037 (4) −0.0013 (3)
N2 0.0218 (5) 0.0184 (4) 0.0150 (4) 0.0016 (4) −0.0021 (4) 0.0006 (3)
N1 0.0233 (5) 0.0172 (4) 0.0156 (4) 0.0040 (4) −0.0009 (4) 0.0001 (4)
C8 0.0195 (5) 0.0166 (5) 0.0152 (5) −0.0009 (4) 0.0005 (4) 0.0018 (4)
C2 0.0197 (5) 0.0175 (5) 0.0166 (5) −0.0002 (4) 0.0004 (4) −0.0011 (4)
C6 0.0237 (6) 0.0211 (5) 0.0202 (5) 0.0015 (5) −0.0015 (5) 0.0007 (4)
C11 0.0239 (6) 0.0214 (5) 0.0172 (5) −0.0029 (5) 0.0019 (5) −0.0017 (4)
C13 0.0196 (5) 0.0158 (4) 0.0150 (5) 0.0004 (4) 0.0013 (4) 0.0009 (4)
C12 0.0224 (5) 0.0207 (5) 0.0151 (5) 0.0000 (4) −0.0003 (4) 0.0006 (4)
C1 0.0188 (5) 0.0185 (5) 0.0170 (5) −0.0006 (4) −0.0008 (4) −0.0006 (4)
C9 0.0219 (5) 0.0182 (5) 0.0207 (5) 0.0018 (4) 0.0015 (5) 0.0018 (4)
C4 0.0243 (6) 0.0220 (6) 0.0221 (6) 0.0024 (5) 0.0021 (5) −0.0036 (4)
C3 0.0202 (5) 0.0210 (5) 0.0166 (5) −0.0022 (4) 0.0010 (4) −0.0020 (4)
C5 0.0265 (6) 0.0194 (5) 0.0265 (6) 0.0047 (5) −0.0011 (5) −0.0010 (5)
C10 0.0242 (6) 0.0180 (5) 0.0219 (5) 0.0004 (5) 0.0041 (5) −0.0015 (4)
C7 0.0382 (7) 0.0313 (7) 0.0195 (5) 0.0066 (6) 0.0031 (5) 0.0052 (5)
B1 0.0202 (5) 0.0178 (5) 0.0157 (5) −0.0005 (5) 0.0001 (5) 0.0003 (4)

Geometric parameters (Å, º)

O001—C3 1.3735 (15) C11—C10 1.3937 (18)
O001—C7 1.4316 (17) C11—C12 1.3945 (17)
N2—C8 1.3954 (15) C11—H11 0.9500
N2—B1 1.4359 (17) C13—C12 1.3870 (16)
N2—H102 0.89 (2) C12—H12 0.9500
N1—C13 1.3888 (15) C1—B1 1.5527 (18)
N1—B1 1.4309 (17) C9—C10 1.3933 (19)
N1—H101 0.83 (2) C9—H9 0.9500
C8—C9 1.3872 (17) C4—C5 1.3864 (19)
C8—C13 1.4115 (16) C4—C3 1.3921 (18)
C2—C3 1.3918 (16) C4—H4 0.9500
C2—C1 1.4081 (17) C5—H5 0.9500
C2—H2 0.9500 C10—H10 0.9500
C6—C5 1.3903 (18) C7—H7A 0.9800
C6—C1 1.4013 (17) C7—H7B 0.9800
C6—H6 0.9500 C7—H7C 0.9800
C3—O001—C7 117.27 (10) C6—C1—B1 119.42 (11)
C8—N2—B1 109.10 (10) C2—C1—B1 121.80 (11)
C8—N2—H102 119.5 (12) C8—C9—C10 118.12 (12)
B1—N2—H102 131.1 (12) C8—C9—H9 120.9
C13—N1—B1 109.52 (10) C10—C9—H9 120.9
C13—N1—H101 119.8 (15) C5—C4—C3 119.48 (12)
B1—N1—H101 130.7 (15) C5—C4—H4 120.3
C9—C8—N2 131.41 (11) C3—C4—H4 120.3
C9—C8—C13 120.51 (11) O001—C3—C2 124.73 (11)
N2—C8—C13 108.07 (10) O001—C3—C4 114.51 (11)
C3—C2—C1 120.01 (11) C2—C3—C4 120.76 (12)
C3—C2—H2 120.0 C4—C5—C6 120.41 (12)
C1—C2—H2 120.0 C4—C5—H5 119.8
C5—C6—C1 120.72 (12) C6—C5—H5 119.8
C5—C6—H6 119.6 C9—C10—C11 121.36 (12)
C1—C6—H6 119.6 C9—C10—H10 119.3
C10—C11—C12 120.81 (12) C11—C10—H10 119.3
C10—C11—H11 119.6 O001—C7—H7A 109.5
C12—C11—H11 119.6 O001—C7—H7B 109.5
C12—C13—N1 130.70 (11) H7A—C7—H7B 109.5
C12—C13—C8 121.14 (11) O001—C7—H7C 109.5
N1—C13—C8 108.15 (10) H7A—C7—H7C 109.5
C13—C12—C11 118.05 (12) H7B—C7—H7C 109.5
C13—C12—H12 121.0 N1—B1—N2 105.16 (10)
C11—C12—H12 121.0 N1—B1—C1 125.44 (11)
C6—C1—C2 118.61 (11) N2—B1—C1 129.33 (11)
B1—N2—C8—C9 −178.52 (13) C7—O001—C3—C4 −176.53 (12)
B1—N2—C8—C13 0.68 (13) C1—C2—C3—O001 178.47 (12)
B1—N1—C13—C12 178.50 (13) C1—C2—C3—C4 −1.02 (18)
B1—N1—C13—C8 −0.17 (14) C5—C4—C3—O001 −179.61 (12)
C9—C8—C13—C12 0.17 (18) C5—C4—C3—C2 −0.07 (19)
N2—C8—C13—C12 −179.14 (11) C3—C4—C5—C6 0.7 (2)
C9—C8—C13—N1 178.99 (10) C1—C6—C5—C4 −0.2 (2)
N2—C8—C13—N1 −0.32 (13) C8—C9—C10—C11 0.53 (18)
N1—C13—C12—C11 −178.02 (12) C12—C11—C10—C9 0.14 (19)
C8—C13—C12—C11 0.50 (18) C13—N1—B1—N2 0.57 (13)
C10—C11—C12—C13 −0.65 (18) C13—N1—B1—C1 −176.89 (11)
C5—C6—C1—C2 −0.88 (19) C8—N2—B1—N1 −0.76 (13)
C5—C6—C1—B1 174.46 (12) C8—N2—B1—C1 176.55 (12)
C3—C2—C1—C6 1.48 (18) C6—C1—B1—N1 −19.86 (19)
C3—C2—C1—B1 −173.75 (12) C2—C1—B1—N1 155.33 (12)
N2—C8—C9—C10 178.44 (12) C6—C1—B1—N2 163.32 (12)
C13—C8—C9—C10 −0.68 (17) C2—C1—B1—N2 −21.5 (2)
C7—O001—C3—C2 3.95 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H102···O001i 0.89 (2) 2.40 (2) 3.201 (2) 151 (2)

Symmetry code: (i) x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2170).

References

  1. Akerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873. [DOI] [PMC free article] [PubMed]
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Cason, C. J. (2002). POV-RAY for Windows Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Maruyama, S. & Kawanishi, Y. (2002). J Mater. Chem. 12, 2245-2249.
  6. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Schwedler, S., Eickhoff, D., Brockhinke, R., Cherian, D., Weber, L. & Brockhinke, A. (2011). Phys. Chem. Chem. Phys. 13, 9301–9310. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sithebe, S., Hadebe, S. W. & Robinson, S. R. (2011). Tetrahedron, 67, 4277–4282.
  10. Slabber, C. A., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1338. [DOI] [PMC free article] [PubMed]
  11. Weber, L., Halama, J., Bohling, L., Chrostowska, A., Dargelos, A., Stammler, H.-G. & Neumann, B. (2011). Eur. J. Inorg. Chem. pp. 3091–3101.
  12. Weber, L., Halama, J., Werner, V., Hanke, K., Bohling, L., Chrostowska, A., Maciejczyk, M., Raza, A.-L., Stammler, H.-G. & Neumann, B. (2010). Eur. J. Inorg. Chem. pp. 5416–5425.
  13. Weber, L., Werner, V., Fox, A. M., Marder, B. T., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339–1351. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028437/nk2170sup1.cif

e-68-o2241-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028437/nk2170Isup2.hkl

e-68-o2241-Isup2.hkl (102.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028437/nk2170Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES